Natural hemozoin (nHZ), a lipid-bound ferriprotoporphyrin IX crystal produced by Plasmodium parasites after hemoglobin catabolism, seriously compromises the functions of human monocytes, and 15-hydroxyeicosatetraenoic acid (15-HETE) and 4-hydroxynonenal (4-HNE), two nHZ lipoperoxidation products, have been related to such a functional impairment. nHZ was recently shown to promote inflammation-mediated lysozyme release from human monocytes through p38 mitogen-activated protein kinase- (MAPK)- and nuclear factor (NF)-κB-dependent mechanisms. This study aimed at identifying the molecule of nHZ lipid moiety that was responsible for these effects. Results showed that 15-HETE mimicked nHZ effects on lysozyme release, whereas 4-HNE did not. 15-HETE-enhanced lysozyme release was abrogated by anti-TNF-α and anti-IL-1β-blocking antibodies and mimicked by recombinant cytokines; on the contrary, MIP-1α/CCL3 was not involved as a soluble mediator of 15-HETE effects. Moreover, 15-HETE early activated p38 MAPK and NF-κB pathways by inducing p38 MAPK phosphorylation; cytosolic I-κBα phosphorylation and degradation; NF-κB nuclear translocation and DNA-binding. Inhibition of both routes through chemical inhibitors (SB203580, quercetin, artemisinin, and parthenolide) prevented 15-HETE-dependent lysozyme release. Collectively, these data suggest that 15-HETE plays a major role in nHZ-enhanced monocyte degranulation.

Role of 15-HETE in haemozoin-induced lysozyme release from human adherent monocytes.

POLIMENI, Manuela;VALENTE, Elena;ALDIERI, Elisabetta;KHADJAVI, AMINA;GIRIBALDI, Giuliana;PRATO, Mauro
2013-01-01

Abstract

Natural hemozoin (nHZ), a lipid-bound ferriprotoporphyrin IX crystal produced by Plasmodium parasites after hemoglobin catabolism, seriously compromises the functions of human monocytes, and 15-hydroxyeicosatetraenoic acid (15-HETE) and 4-hydroxynonenal (4-HNE), two nHZ lipoperoxidation products, have been related to such a functional impairment. nHZ was recently shown to promote inflammation-mediated lysozyme release from human monocytes through p38 mitogen-activated protein kinase- (MAPK)- and nuclear factor (NF)-κB-dependent mechanisms. This study aimed at identifying the molecule of nHZ lipid moiety that was responsible for these effects. Results showed that 15-HETE mimicked nHZ effects on lysozyme release, whereas 4-HNE did not. 15-HETE-enhanced lysozyme release was abrogated by anti-TNF-α and anti-IL-1β-blocking antibodies and mimicked by recombinant cytokines; on the contrary, MIP-1α/CCL3 was not involved as a soluble mediator of 15-HETE effects. Moreover, 15-HETE early activated p38 MAPK and NF-κB pathways by inducing p38 MAPK phosphorylation; cytosolic I-κBα phosphorylation and degradation; NF-κB nuclear translocation and DNA-binding. Inhibition of both routes through chemical inhibitors (SB203580, quercetin, artemisinin, and parthenolide) prevented 15-HETE-dependent lysozyme release. Collectively, these data suggest that 15-HETE plays a major role in nHZ-enhanced monocyte degranulation.
2013
39
3
304
314
M. Polimeni; E. Valente; E. Aldieri; A. Khadjavi; G. Giribaldi; M. Prato
File in questo prodotto:
File Dimensione Formato  
http___authorservices.wiley.com_bauthor_onlineLibraryTPS.asp_DOI=10.1002_biof.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 684.36 kB
Formato Adobe PDF
684.36 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/136215
Citazioni
  • ???jsp.display-item.citation.pmc??? 6
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 13
social impact