We consider linear systems on a separable Hilbert space H, which are null controllable at some time T_0 > 0 under the action of a point or boundary control. Parabolic and hyperbolic control systems usually studied in applications are special cases. To every initial state y_0 \in H we associate the minimal "energy" needed to transfer y_0 to 0 in a time T ≥ T_0 ("energy" of a control being the square of its L 2 norm). We give both necessary and sufficient conditions under which the minimal energy converges to 0 for T → +∞. This extends to boundary control systems the concept of null controllability with vanishing energy introduced by Priola and Zabczyk [SIAM J. Control Optim., 42 (2003), pp. 1013-1032] for distributed systems. The proofs in the Priola-Zabczyk paper depend on properties of the associated Riccati equation, which are not available in the present, general setting. Here we base our results on new properties of the quadratic regulator problem with stability and the linear operator inequality.

Linear Operator Inequality and Null Controllability with Vanishing Energy for Unbounded Control Systems

PRIOLA, Enrico;
2013-01-01

Abstract

We consider linear systems on a separable Hilbert space H, which are null controllable at some time T_0 > 0 under the action of a point or boundary control. Parabolic and hyperbolic control systems usually studied in applications are special cases. To every initial state y_0 \in H we associate the minimal "energy" needed to transfer y_0 to 0 in a time T ≥ T_0 ("energy" of a control being the square of its L 2 norm). We give both necessary and sufficient conditions under which the minimal energy converges to 0 for T → +∞. This extends to boundary control systems the concept of null controllability with vanishing energy introduced by Priola and Zabczyk [SIAM J. Control Optim., 42 (2003), pp. 1013-1032] for distributed systems. The proofs in the Priola-Zabczyk paper depend on properties of the associated Riccati equation, which are not available in the present, general setting. Here we base our results on new properties of the quadratic regulator problem with stability and the linear operator inequality.
2013
Inglese
Esperti anonimi
51
629
659
31
http://arxiv.org/pdf/1108.5860v2
Boundary control systems; Null controllability
ITA
POLONIA
4 – prodotto già presente in altro archivio Open Access (arXiv, REPEC…)
262
3
Luciano Pandolfi;Enrico Priola;Jerzy Zabczyk
info:eu-repo/semantics/article
none
03-CONTRIBUTO IN RIVISTA::03A-Articolo su Rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/139897
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 4
social impact