α6β4 integrin is an adhesion molecule for laminin receptors involved in tumor progression. We present a link between β4 integrin expression and miR-221/222 in the most prevalent human mammary tumor: luminal invasive carcinomas (Lum-ICs). Using human primary tumors that display different β4 integrin expression and grade, we show that miR-221/222 expression inversely correlates with tumor proliferating index, Ki67. Interestingly, most high-grade tumors express β4 integrin and low miR-221/222 levels. We ectopically transfected miR-221/222 into a human-derived mammary tumor cell line that recapitulates the luminal subtype to investigate whether miR-221/222 regulates β4 expression. We demonstrate that miR-221/222 overexpression results in β4 expression downregulation, breast cancer cell proliferation, and invasion inhibition. The role of miR-221/222 in driving β4 integrin expression is also confirmed via mutating the miR-221/222 seed sequence for β4 integrin 3'UTR. Furthermore, we show that these 2 miRNAs are also key breast cancer cell proliferation and invasion regulators, via the post-transcriptional regulation of signal transducer and activator of transcription 5A (STAT5A) and of a disintegrin and metalloprotease-17 (ADAM-17). We further confirm these data by silencing ADAM-17, using a dominant-negative or an activated STAT5A form. miR-221/222-driven β4 integrin, STAT5A, and ADAM-17 did not occur in MCF-10A cells, denoted "normal" breast epithelial cells, indicating that the mechanism is cancer cell-specific. These results provide the first evidence of a post-transcriptional mechanism that regulates β4 integrin, STAT5A, and ADAM-17 expression, thus controlling breast cancer cell proliferation and invasion. Pre-miR-221/222 use in the aggressive luminal subtype may be a powerful therapeutic anti-cancer strategy.

miR-221/222 control luminal breast cancer tumor progression by regulating different targets

DENTELLI, Patrizia;TRAVERSA, Matteo;ROSSO, Arturo;TOGLIATTO, Gabriele Maria;OLGASI, CRISTINA;MARCHIO', Caterina;PROVERO, Paolo;LEMBO, ANTONIO;ANNARATONE, LAURA;SAPINO, Anna;BRIZZI, Maria Felice
2014-01-01

Abstract

α6β4 integrin is an adhesion molecule for laminin receptors involved in tumor progression. We present a link between β4 integrin expression and miR-221/222 in the most prevalent human mammary tumor: luminal invasive carcinomas (Lum-ICs). Using human primary tumors that display different β4 integrin expression and grade, we show that miR-221/222 expression inversely correlates with tumor proliferating index, Ki67. Interestingly, most high-grade tumors express β4 integrin and low miR-221/222 levels. We ectopically transfected miR-221/222 into a human-derived mammary tumor cell line that recapitulates the luminal subtype to investigate whether miR-221/222 regulates β4 expression. We demonstrate that miR-221/222 overexpression results in β4 expression downregulation, breast cancer cell proliferation, and invasion inhibition. The role of miR-221/222 in driving β4 integrin expression is also confirmed via mutating the miR-221/222 seed sequence for β4 integrin 3'UTR. Furthermore, we show that these 2 miRNAs are also key breast cancer cell proliferation and invasion regulators, via the post-transcriptional regulation of signal transducer and activator of transcription 5A (STAT5A) and of a disintegrin and metalloprotease-17 (ADAM-17). We further confirm these data by silencing ADAM-17, using a dominant-negative or an activated STAT5A form. miR-221/222-driven β4 integrin, STAT5A, and ADAM-17 did not occur in MCF-10A cells, denoted "normal" breast epithelial cells, indicating that the mechanism is cancer cell-specific. These results provide the first evidence of a post-transcriptional mechanism that regulates β4 integrin, STAT5A, and ADAM-17 expression, thus controlling breast cancer cell proliferation and invasion. Pre-miR-221/222 use in the aggressive luminal subtype may be a powerful therapeutic anti-cancer strategy.
2014
13
1811
1826
breast cancer; miRs; proliferation; invasion
Dentelli P; Traversa M; Rosso A; Togliatto G; Olgasi C; Marchiò C; Provero P; Lembo A; Bon G; Annaratone L; Sapino A; Falcioni R; Brizzi MF
File in questo prodotto:
File Dimensione Formato  
Dentelli et al _4aperto.pdf

Open Access dal 01/05/2015

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 989.21 kB
Formato Adobe PDF
989.21 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/145267
Citazioni
  • ???jsp.display-item.citation.pmc??? 11
  • Scopus 35
  • ???jsp.display-item.citation.isi??? 37
social impact