Due to their outstanding mechanical properties, diamond and diamond-like materials find significant technological applications ranging from well-established industrial fields (cutting tools, coatings, etc.) to more advanced mechanical devices as micro- and nano-electromechanical systems. The use of energetic ions is a powerful and versatile tool to fabricate three-dimensional micro-mechanical structures. In this context, it is of paramount importance to have an accurate knowledge of the effects of ion-induced structural damage on the mechanical properties of this material, primarily to predict potential undesired side-effects of the ion implantation process, and possibly to tailor the desired mechanical properties of the fabricated devices. We present an Atomic Force Microscopy (AFM) characterization of free-standing cantilevers in single-crystal diamond obtained by a FIB-assisted lift-off technique, which allows the determination of the Young's modulus of the diamond crystal after the MeV ion irradiation process concurrent to the fabrication of the microstructures, and subsequent thermal annealing. The AFM measurements were performed with the beam-bending technique and show that the thermal annealing process allows for an effective recovery of the mechanical properties of the pristine crystal.
Characterization of the recovery of mechanical properties of ion-implanted diamond after thermal annealing
PICOLLO, FEDERICO;BATTIATO, ALFIO;BERNARDI, ETTORE;FORNERIS, Jacopo;TENGATTINI, ANDREA;BOSIA, Federico;OLIVERO, Paolo
2016-01-01
Abstract
Due to their outstanding mechanical properties, diamond and diamond-like materials find significant technological applications ranging from well-established industrial fields (cutting tools, coatings, etc.) to more advanced mechanical devices as micro- and nano-electromechanical systems. The use of energetic ions is a powerful and versatile tool to fabricate three-dimensional micro-mechanical structures. In this context, it is of paramount importance to have an accurate knowledge of the effects of ion-induced structural damage on the mechanical properties of this material, primarily to predict potential undesired side-effects of the ion implantation process, and possibly to tailor the desired mechanical properties of the fabricated devices. We present an Atomic Force Microscopy (AFM) characterization of free-standing cantilevers in single-crystal diamond obtained by a FIB-assisted lift-off technique, which allows the determination of the Young's modulus of the diamond crystal after the MeV ion irradiation process concurrent to the fabrication of the microstructures, and subsequent thermal annealing. The AFM measurements were performed with the beam-bending technique and show that the thermal annealing process allows for an effective recovery of the mechanical properties of the pristine crystal.File | Dimensione | Formato | |
---|---|---|---|
DRM_63_75.pdf
Accesso riservato
Tipo di file:
PDF EDITORIALE
Dimensione
539.9 kB
Formato
Adobe PDF
|
539.9 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
postprint.pdf
Accesso aperto
Descrizione: postprint
Tipo di file:
POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione
1.27 MB
Formato
Adobe PDF
|
1.27 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.