The hyaluronan and proteoglycanbinding link protein (Hapln) is a key molecule in the formation and control of hyaluronan-based condensed perineuronal matrix in the adult brain. This review summarizes the recent advances in understanding the role of Haplns in the formation and control of two distinct types of perineuronal matrices, one for "classical" PNN and the other for the specialized extracellular matrix (ECM) at the node of Ranvier in the central nervous system (CNS). We introduce the structural components of each ECM organization including the basic concept of supramolecular structure named "HLT model". We furthermore summarize the developmental and physiological role of perineuronal ECMs from the studies of Haplns and related molecules. Finally, we also discuss the potential mechanism modulating PNNs in the adult CNS. This layer of organized matrices may exert a direct effect via core protein or sugar moiety from the structure or by acting as a binding site for biologically active molecules, which are important for neuronal plasticity and saltatory conduction.

The hyaluronan and proteoglycan link proteins: organizers of the brain extracellular matrix and key molecules for neuronal function and plasticity

CARULLI, Daniela
Last
2015-01-01

Abstract

The hyaluronan and proteoglycanbinding link protein (Hapln) is a key molecule in the formation and control of hyaluronan-based condensed perineuronal matrix in the adult brain. This review summarizes the recent advances in understanding the role of Haplns in the formation and control of two distinct types of perineuronal matrices, one for "classical" PNN and the other for the specialized extracellular matrix (ECM) at the node of Ranvier in the central nervous system (CNS). We introduce the structural components of each ECM organization including the basic concept of supramolecular structure named "HLT model". We furthermore summarize the developmental and physiological role of perineuronal ECMs from the studies of Haplns and related molecules. Finally, we also discuss the potential mechanism modulating PNNs in the adult CNS. This layer of organized matrices may exert a direct effect via core protein or sugar moiety from the structure or by acting as a binding site for biologically active molecules, which are important for neuronal plasticity and saltatory conduction.
2015
274
134
144
Oohashi, T; Edamatsu, M; Bekku, Y; Carulli, D.
File in questo prodotto:
File Dimensione Formato  
Oohashi Link protein review Exp Neurol 2015.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 1.11 MB
Formato Adobe PDF
1.11 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Experimental Neurology 2015.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 1.11 MB
Formato Adobe PDF
1.11 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
pre-print YEXNR-S-15-00416-2.pdf

Accesso aperto

Tipo di file: PREPRINT (PRIMA BOZZA)
Dimensione 686.22 kB
Formato Adobe PDF
686.22 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1574992
Citazioni
  • ???jsp.display-item.citation.pmc??? 55
  • Scopus 88
  • ???jsp.display-item.citation.isi??? 86
social impact