We report the hydrothermal synthesis of graphene (GNP)–TiO2 nanoparticle (NP) hybrids using COOH and NH2 functionalized GNP as a shape controller. Anatase was the only TiO2 crystalline phase nucleated on the functionalized GNP, whereas traces of rutile were detected on unfunctionalized GNP. X-Ray Photoelectron spectroscopy (XPS) showed C–Ti bonds on all hybrids, thus confirming heterogeneous nucleation. GNP functionalization induced the nucleation of TiO2 NPs with specific shapes and crystalline facets exposed. COOH functionalization directed the synthesis of anatase truncated bipyramids, bonded to graphene sheets via the {101} facets, while NH2 functionalization induced the formation of belted truncated bipyramids, bonded to graphene via the {100} facets. Belted truncated bipyramids formed on unfunctionalized GNP too, however the NPs were more irregular and rounded. These effects were ascribed to pH variations in the proximity of the functionalized GNP sheets, due to the high density of COOH or NH2 groups. Because of the different reactivity of anatase {100} and {101} crystalline facets, we hypothesize that the hybrid materials will behave differently as photocatalysts, and that the COOH– GNP–TiO2 hybrids will be better photocatalysts for water splitting and H2 production.

Tuning TiO2 nanoparticle morphology in graphene–TiO2 hybrids by graphene surface modification

SORDELLO, FABRIZIO;CALZA, Paola;MINERO, Claudio;
2014-01-01

Abstract

We report the hydrothermal synthesis of graphene (GNP)–TiO2 nanoparticle (NP) hybrids using COOH and NH2 functionalized GNP as a shape controller. Anatase was the only TiO2 crystalline phase nucleated on the functionalized GNP, whereas traces of rutile were detected on unfunctionalized GNP. X-Ray Photoelectron spectroscopy (XPS) showed C–Ti bonds on all hybrids, thus confirming heterogeneous nucleation. GNP functionalization induced the nucleation of TiO2 NPs with specific shapes and crystalline facets exposed. COOH functionalization directed the synthesis of anatase truncated bipyramids, bonded to graphene sheets via the {101} facets, while NH2 functionalization induced the formation of belted truncated bipyramids, bonded to graphene via the {100} facets. Belted truncated bipyramids formed on unfunctionalized GNP too, however the NPs were more irregular and rounded. These effects were ascribed to pH variations in the proximity of the functionalized GNP sheets, due to the high density of COOH or NH2 groups. Because of the different reactivity of anatase {100} and {101} crystalline facets, we hypothesize that the hybrid materials will behave differently as photocatalysts, and that the COOH– GNP–TiO2 hybrids will be better photocatalysts for water splitting and H2 production.
2014
6
12
6710
6719
Fabrizio Sordello; Gul Zeb; Kaiwen Hu; Paola Calza; Claudio Minero; Thomas Szkopekc; Marta Cerruti
File in questo prodotto:
File Dimensione Formato  
OP70.pdf

Accesso aperto

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 1.75 MB
Formato Adobe PDF
1.75 MB Adobe PDF Visualizza/Apri
nanoscale_2014.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 1.84 MB
Formato Adobe PDF
1.84 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/158131
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 60
  • ???jsp.display-item.citation.isi??? 56
social impact