MFCs (Microbial fuel cells) are bio-electrochemical systems that convert chemical energy into electrical energy by utilizing electrochemically active bacteria.rt-qPCR (Real-time quantitative polymerase chain reaction) assays were used to identify the planktonic bacteria present in the production of electricity in MFCs. The relationship between the bacterial communities with different carbon-based anode materials, such as C-FELT (carbon felt), carbon felt with C-PANI (polyaniline) and C-SADDLES (carbon-coated Berl saddles), were investigated.The distribution of bacteria among the three different MFC anode materials was evaluated. Significant differences were observed for total bacteria (p < 0.01), Geobacter (p < 0.05) and Shewanella (p < 0.05). These differences were generally due to higher bacterial counts in the C-FELT anode MFC. Significant differences in maximum power density (p < 0.001) were also observed; the C-PANI MFC showed the highest maximum power density of 28.5 W/m3 when compared with the C-FELT (4.7 W/m3) and C-SADDLES (4.6 W/m3) MFCs. The greatest number of electrochemically active planktonic microbes was observed in the C-FELT MFC, whereas the C-PANI MFC had the optimum carbon-based anode material.

The study of electrochemically active planktonic microbes in microbial fuel cells in relation to different carbon-based anode materials

SCHILIRO', Tiziana
First
;
ARMATO, CATERINA;TRAVERSI, Deborah;GILLI, Giorgio;
2016-01-01

Abstract

MFCs (Microbial fuel cells) are bio-electrochemical systems that convert chemical energy into electrical energy by utilizing electrochemically active bacteria.rt-qPCR (Real-time quantitative polymerase chain reaction) assays were used to identify the planktonic bacteria present in the production of electricity in MFCs. The relationship between the bacterial communities with different carbon-based anode materials, such as C-FELT (carbon felt), carbon felt with C-PANI (polyaniline) and C-SADDLES (carbon-coated Berl saddles), were investigated.The distribution of bacteria among the three different MFC anode materials was evaluated. Significant differences were observed for total bacteria (p < 0.01), Geobacter (p < 0.05) and Shewanella (p < 0.05). These differences were generally due to higher bacterial counts in the C-FELT anode MFC. Significant differences in maximum power density (p < 0.001) were also observed; the C-PANI MFC showed the highest maximum power density of 28.5 W/m3 when compared with the C-FELT (4.7 W/m3) and C-SADDLES (4.6 W/m3) MFCs. The greatest number of electrochemically active planktonic microbes was observed in the C-FELT MFC, whereas the C-PANI MFC had the optimum carbon-based anode material.
2016
106
july
277
284
www.elsevier.com/inca/publications/store/4/8/3/
Bacterial communities; Carbon felt; Carbon-coated Berl saddles; Microbial fuel cells; Polyaniline deposition; Rt-qPCR; Pollution; Energy (all)
Schilirò, T; Tommasi, T.; Armato, C.; Hidalgo, D.; Traversi, D.; Bocchini, S.; Gilli, G.; Pirri, C.F.
File in questo prodotto:
File Dimensione Formato  
Schilirò2017.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 1.97 MB
Formato Adobe PDF
1.97 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
the study.pdf

Accesso aperto

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 713.24 kB
Formato Adobe PDF
713.24 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1593012
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 47
  • ???jsp.display-item.citation.isi??? 40
social impact