In this study, chitosan and bio-based substances (BBS) obtained from composted biowaste were used as stabilizers for the synthesis of magnet-sensitive nanoparticles (NPs) via coprecipitation method. A pyrolysis treatment was carried out on both biopolymers at 550°C, and their consequent conversion into a carbon matrix was followed by means of different physicochemical characterization techniques (mainly FTIR spectroscopy and XRD), whereas magnetic properties were evaluated by magnetization curves. The prepared materials were tested in water remediation processes from arsenic (As) species (both inorganic and organic forms). These tests, explained by means of the most common adsorption models, evidenced that the best performances were reached by both materials obtained after pyrolysis treatments, pointing out the promising application of such magnet-sensitive materials as easy-recoverable tools for water purification treatments.
Sustainable magnet-responsive nanomaterials for the removal of arsenic from contaminated water
CELI, Luisella Roberta;BIANCO PREVOT, Alessandra;MAGNACCA, Giuliana;ZANZO, ELENA;MARTIN, Maria
Last
2018-01-01
Abstract
In this study, chitosan and bio-based substances (BBS) obtained from composted biowaste were used as stabilizers for the synthesis of magnet-sensitive nanoparticles (NPs) via coprecipitation method. A pyrolysis treatment was carried out on both biopolymers at 550°C, and their consequent conversion into a carbon matrix was followed by means of different physicochemical characterization techniques (mainly FTIR spectroscopy and XRD), whereas magnetic properties were evaluated by magnetization curves. The prepared materials were tested in water remediation processes from arsenic (As) species (both inorganic and organic forms). These tests, explained by means of the most common adsorption models, evidenced that the best performances were reached by both materials obtained after pyrolysis treatments, pointing out the promising application of such magnet-sensitive materials as easy-recoverable tools for water purification treatments.File | Dimensione | Formato | |
---|---|---|---|
Nisticò_JHM_APERTO_2017.pdf
Open Access dal 16/10/2019
Tipo di file:
POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione
1.18 MB
Formato
Adobe PDF
|
1.18 MB | Adobe PDF | Visualizza/Apri |
Nisticò et al_JHM_2018_published.pdf
Accesso riservato
Tipo di file:
PDF EDITORIALE
Dimensione
2.48 MB
Formato
Adobe PDF
|
2.48 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.