In this paper, we present a new C++ API with a fluent interface called PiCo (Pipeline Composition). PiCo's programming model aims at making easier the programming of data analytics applications while preserving or enhancing their performance. This is attained through three key design choices: 1) unifying batch and stream data access models, 2) decoupling processing from data layout, and 3) exploiting a stream-oriented, scalable, efficient C++11 runtime system. PiCo proposes a programming model based on pipelines and operators that are polymorphic with respect to data types in the sense that it is possible to re-use the same algorithms and pipelines on different data models (e.g., streams, lists, sets, etc.). Preliminary results show that PiCo can attain better performances in terms of execution times and hugely improve memory utilization when compared to Spark and Flink in both batch and stream processing.
PiCo: a Novel Approach to Stream Data Analytics
Claudia Misale;Maurizio Drocco;Guy Tremblay;Marco Aldinucci
2018-01-01
Abstract
In this paper, we present a new C++ API with a fluent interface called PiCo (Pipeline Composition). PiCo's programming model aims at making easier the programming of data analytics applications while preserving or enhancing their performance. This is attained through three key design choices: 1) unifying batch and stream data access models, 2) decoupling processing from data layout, and 3) exploiting a stream-oriented, scalable, efficient C++11 runtime system. PiCo proposes a programming model based on pipelines and operators that are polymorphic with respect to data types in the sense that it is possible to re-use the same algorithms and pipelines on different data models (e.g., streams, lists, sets, etc.). Preliminary results show that PiCo can attain better performances in terms of execution times and hugely improve memory utilization when compared to Spark and Flink in both batch and stream processing.File | Dimensione | Formato | |
---|---|---|---|
autodasp.pdf
Accesso aperto
Tipo di file:
POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione
395.84 kB
Formato
Adobe PDF
|
395.84 kB | Adobe PDF | Visualizza/Apri |
2018_pico_autodasp.pdf
Accesso riservato
Descrizione: pdf editoriale
Tipo di file:
PDF EDITORIALE
Dimensione
212.81 kB
Formato
Adobe PDF
|
212.81 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.