Microsurgery is a technically demanding field with long learning curves. Robotic-assisted microsurgery has the ability to decrease these learning curves. We, therefore, sought to assess the feasibility of robotic-assisted microvascular surgery in a rat model, and whether this could be translated into a worthwhile skills acquisition exercise for residents. Twenty-eight rats underwent microvascular anastomosis. Procedures were performed by a trained microvascular surgeon with no robotic experience (n = 14), or a trained robotic surgeon with no microvascular experience (n = 14). Anesthetized rats were subjected to complete transection and end-to-end anastomosis of the abdominal aorta using 10-0 prolene. Manually (n = 6) and robotic-assisted (n = 8) procedures were performed by both surgeons. A successful procedure required a patent anastomosis and no bleeding. After approximately 35 days, angiography and histopathological studies of the anastomoses were performed. Median times for robotic-assisted anastomoses were 37.5 (34.2-42.7) min for the microsurgeon and 38.5 (32.7-52) min for robotic surgeon. In the manual group, it took 17 (13.5-23) min for microsurgeon and 44 (34.5-60) min for robotic surgeon. Within the robotic-assisted group, there was a trend toward improvement in both surgeons, but greater in the microsurgeon. Robotic-assisted microvascular anastomosis in a rat model is a feasible skill acquisition exercise. By eliminating the need for a skilled microsurgical assistant, as well as, improved microsurgical technology, the robotic system may prove to be a crucial player in future microsurgical skill training.

Robotic-assisted microvascular surgery: skill acquisition in a rat model

Salizzoni, Stefano;
2018-01-01

Abstract

Microsurgery is a technically demanding field with long learning curves. Robotic-assisted microsurgery has the ability to decrease these learning curves. We, therefore, sought to assess the feasibility of robotic-assisted microvascular surgery in a rat model, and whether this could be translated into a worthwhile skills acquisition exercise for residents. Twenty-eight rats underwent microvascular anastomosis. Procedures were performed by a trained microvascular surgeon with no robotic experience (n = 14), or a trained robotic surgeon with no microvascular experience (n = 14). Anesthetized rats were subjected to complete transection and end-to-end anastomosis of the abdominal aorta using 10-0 prolene. Manually (n = 6) and robotic-assisted (n = 8) procedures were performed by both surgeons. A successful procedure required a patent anastomosis and no bleeding. After approximately 35 days, angiography and histopathological studies of the anastomoses were performed. Median times for robotic-assisted anastomoses were 37.5 (34.2-42.7) min for the microsurgeon and 38.5 (32.7-52) min for robotic surgeon. In the manual group, it took 17 (13.5-23) min for microsurgeon and 44 (34.5-60) min for robotic surgeon. Within the robotic-assisted group, there was a trend toward improvement in both surgeons, but greater in the microsurgeon. Robotic-assisted microvascular anastomosis in a rat model is a feasible skill acquisition exercise. By eliminating the need for a skilled microsurgical assistant, as well as, improved microsurgical technology, the robotic system may prove to be a crucial player in future microsurgical skill training.
2018
12
2
331
336
http://www.haworthpress.com/store/product.asp?sid=LH9C67VBD7PP9PECDFMTMV3RWC3L62U4&sku=J451&AuthType=4
Microvascular surgery; Robotic microvascular simulation; Robotic-assisted surgery; Surgical education; Surgery; Health Informatics
Clarke, Nicholas S.; Price, Johnathan; Boyd, Travis; Salizzoni, Stefano; Zehr, Kenton J.; Nieponice, Alejandro; Bajona, Pietro
File in questo prodotto:
File Dimensione Formato  
Robotic-assisted.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 3.91 MB
Formato Adobe PDF
3.91 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1660413
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 8
social impact