Human activities have the potential to enhance carbon sequestration by the world's forests and contribute to climate change mitigation. Voluntary carbon trading is currently the only option to pursue and reward carbon sequestration by forestry activities. Carbon credits for enhanced sequestration can be sold to partners wishing to offset their own emissions. Here we illustrate the steps taken to design guidelines for the generation of voluntary carbon credits by improved forest management in Piemonte, Italy. The guidelines have been developed in a joint effort by academia, regional administrations, forest owners and professional consultants. In particular, we show how to compute the baseline and the additionality of credit-generating forest management activities, and how to reconcile the generation of forest carbon credits with law requirements, technical limitations, and the provision of other ecosystem services. To illustrate the profitability of carbon credit generation, we simulated the application of carbon credit guidelines to two forest-rich mountain watersheds in the southern part of the Piemonte region. The two dominating tree species are beech (Fagus sylvatica L.) and chestnut (Castanea sativa Mill.). We computed current forest carbon stock and carbon credits generated in 20 years under business as usual and an alternative biomass retention scenario. The IFM resulted in an avoided harvest of 39,362 m3 for a net total of 64,014 MgCO2e after subtracting harvest emissions, or 38 Mg ha-1 throughout the permanence period of 20 years. These steps can be replicated in other mountain regions where there is interest in promoting this ecosystem service as an alternative or an addition to production-oriented forest management.

Voluntary carbon credits from improved forest management: Policy guidelines and case study

Vacchiano, Giorgio;Berretti, Roberta;Motta, Renzo
Last
2018-01-01

Abstract

Human activities have the potential to enhance carbon sequestration by the world's forests and contribute to climate change mitigation. Voluntary carbon trading is currently the only option to pursue and reward carbon sequestration by forestry activities. Carbon credits for enhanced sequestration can be sold to partners wishing to offset their own emissions. Here we illustrate the steps taken to design guidelines for the generation of voluntary carbon credits by improved forest management in Piemonte, Italy. The guidelines have been developed in a joint effort by academia, regional administrations, forest owners and professional consultants. In particular, we show how to compute the baseline and the additionality of credit-generating forest management activities, and how to reconcile the generation of forest carbon credits with law requirements, technical limitations, and the provision of other ecosystem services. To illustrate the profitability of carbon credit generation, we simulated the application of carbon credit guidelines to two forest-rich mountain watersheds in the southern part of the Piemonte region. The two dominating tree species are beech (Fagus sylvatica L.) and chestnut (Castanea sativa Mill.). We computed current forest carbon stock and carbon credits generated in 20 years under business as usual and an alternative biomass retention scenario. The IFM resulted in an avoided harvest of 39,362 m3 for a net total of 64,014 MgCO2e after subtracting harvest emissions, or 38 Mg ha-1 throughout the permanence period of 20 years. These steps can be replicated in other mountain regions where there is interest in promoting this ecosystem service as an alternative or an addition to production-oriented forest management.
2018
11
1
1
10
http://www.sisef.it/iforest/pdf/?id=ifor2431-010
Biomass; Carbon credits; Carbon stocks; Climate change mitigation; Coppice; Ecosystem services; Forest management plan; Retention forestry; Forestry; Ecology; Nature and Landscape Conservation
Vacchiano, Giorgio*; Berretti, Roberta; Romano, Raoul; Motta, Renzo
File in questo prodotto:
File Dimensione Formato  
2018 iForest carbon credits.pdf

Accesso aperto

Descrizione: ms
Tipo di file: PDF EDITORIALE
Dimensione 851.79 kB
Formato Adobe PDF
851.79 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1661984
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 15
social impact