This paper reports the synthesis of Fe-titanate nanotubes by means of the conventional ion-exchange method with iron nitrate solutions. As the iron-rich nanotubes were found to contain the catalyst precursor intrinsically dispersed in their structures, the unprecedented possibility of using this kind of materials for building carbon nanostructures, firmly attached at the surface of the forming TiO2 nanoparticles, was verified. The catalytic decomposition of ethylene, used as a carbon source, was performed at a relatively high temperature (750 °C) when the nanotubes undergo an irreversible phase transformation to form anatase and rutile nanoparticles. Due to the different amounts of Fe ions in the nanotubes, distinct types of carbon/TiO2 hybrid interfaces were formed, ranging from amorphous (lower Fe3+ concentration) to the more crystalline graphitic domains (higher Fe3+ concentrations), as documented by the microstructure of the treated samples. The present approach is of potential interest for (photo)catalytic and energy conversion/transport applications.

Interplay between Fe-Titanate Nanotube Fragmentation and Catalytic Decomposition of C2H4: Formation of C/TiO2 Hybrid Interfaces

Cesano, Federico;Cravanzola, Sara;Rahman, Mohammed;Scarano, Domenica
2018-01-01

Abstract

This paper reports the synthesis of Fe-titanate nanotubes by means of the conventional ion-exchange method with iron nitrate solutions. As the iron-rich nanotubes were found to contain the catalyst precursor intrinsically dispersed in their structures, the unprecedented possibility of using this kind of materials for building carbon nanostructures, firmly attached at the surface of the forming TiO2 nanoparticles, was verified. The catalytic decomposition of ethylene, used as a carbon source, was performed at a relatively high temperature (750 °C) when the nanotubes undergo an irreversible phase transformation to form anatase and rutile nanoparticles. Due to the different amounts of Fe ions in the nanotubes, distinct types of carbon/TiO2 hybrid interfaces were formed, ranging from amorphous (lower Fe3+ concentration) to the more crystalline graphitic domains (higher Fe3+ concentrations), as documented by the microstructure of the treated samples. The present approach is of potential interest for (photo)catalytic and energy conversion/transport applications.
2018
6
2
1
13
Iron titanate nanotubes, C/TiO2, Catalysis, C2H4 decomposition, X-Ray diffraction, TEM, UV-Vis spectroscopy, FTIR spectroscopy, TGA analysis.
Cesano, Federico; Cravanzola, Sara; Rahman, Mohammed; Scarano, Domenica
File in questo prodotto:
File Dimensione Formato  
Interplay between Fe-Titanate Nanotube Fragmentation and Catalytic Decomposition of C2H4.pdf

Accesso aperto

Tipo di file: PDF EDITORIALE
Dimensione 660.28 kB
Formato Adobe PDF
660.28 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1669519
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact