The availability of high-density single nucleotide polymorphism (SNPs) panels for humans and, recently, for several livestock species has given a great impulse to genome-wide association studies towards the identification of genes associated with complex traits and diseases. The frequentist and the Bayesian approach are commonly used to investigate marker associations with traits of interest. Briefly, the former is the most widely used method, being intuitive and easily to apply, whereas the latter requires deeper statistical knowledge, but has the advantage to include prior information to obtain a posterior probability of association. Both methods, however, require parameters or distributions to be set a priori by the researcher. In this work, we suggest a new empirical method for genome-wide studies (GWAS), which verifies marker-trait associations using the bootstrap resampling and Chebyshev’s inequality. This method, called Maximum Difference Analysis (MDA), was tested on a real dataset of 2093 Italian Holstein bulls with the objective of finding associations between SNPs and milk, fat and protein yield and fat and protein percentage. Results of the MDA method were compared with those obtained to a genome-wide association analysis performed using the R package GenABEL. In addition, we assessed the bovine annotated genes related to the traits under study. The MDA method was able to locate known important loci for milk productive traits, such as the DGAT1, PRLR, GHR and SCD. Moreover, some new putative candidate genes were detected. The python script of MDA procedure is available at

Maximum difference analysis: a new empirical method for genome-wide association studies

Gaspa Giustino;
2016-01-01

Abstract

The availability of high-density single nucleotide polymorphism (SNPs) panels for humans and, recently, for several livestock species has given a great impulse to genome-wide association studies towards the identification of genes associated with complex traits and diseases. The frequentist and the Bayesian approach are commonly used to investigate marker associations with traits of interest. Briefly, the former is the most widely used method, being intuitive and easily to apply, whereas the latter requires deeper statistical knowledge, but has the advantage to include prior information to obtain a posterior probability of association. Both methods, however, require parameters or distributions to be set a priori by the researcher. In this work, we suggest a new empirical method for genome-wide studies (GWAS), which verifies marker-trait associations using the bootstrap resampling and Chebyshev’s inequality. This method, called Maximum Difference Analysis (MDA), was tested on a real dataset of 2093 Italian Holstein bulls with the objective of finding associations between SNPs and milk, fat and protein yield and fat and protein percentage. Results of the MDA method were compared with those obtained to a genome-wide association analysis performed using the R package GenABEL. In addition, we assessed the bovine annotated genes related to the traits under study. The MDA method was able to locate known important loci for milk productive traits, such as the DGAT1, PRLR, GHR and SCD. Moreover, some new putative candidate genes were detected. The python script of MDA procedure is available at
2016
Inglese
Esperti anonimi
15
1
11
11
https://www.tandfonline.com/doi/abs/10.1080/1828051X.2016.1216336
GWAS, Bayesian analysis, genetics
no
1 – prodotto con file in versione Open Access (allegherò il file al passo 6 - Carica)
262
7
Cellesi Massimo; Dimauro Corrado; Sorbolini Silvia; Nicolazzi Ezequiel Luis; Gaspa Giustino; Ajmone-Marsan Paolo; Macciotta NPP
info:eu-repo/semantics/article
open
03-CONTRIBUTO IN RIVISTA::03A-Articolo su Rivista
File in questo prodotto:
File Dimensione Formato  
22.Cellesi et al. 2017-IJAS.pdf

Accesso aperto

Tipo di file: PDF EDITORIALE
Dimensione 3.08 MB
Formato Adobe PDF
3.08 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1687050
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact