Mitochondria have a compartmentalized gene expression system dedicated to the synthesis of membrane proteins essential for oxidative phosphorylation. Responsive quality control mechanisms are needed to ensure that aberrant protein synthesis does not disrupt mitochondrial function. Pathogenic mutations that impede the function of the mitochondrial matrix quality control protease complex composed of AFG3L2 and paraplegin cause a multifaceted clinical syndrome. At the cell and molecular level, defects to this quality control complex are defined by impairment to mitochondrial form and function. Here, we establish the etiology of these phenotypes. We show how disruptions to the quality control of mitochondrial protein synthesis trigger a sequential stress response characterized first by OMA1 activation followed by loss of mitochondrial ribosomes and by remodelling of mitochondrial inner membrane ultrastructure. Inhibiting mitochondrial protein synthesis with chloramphenicol completely blocks this stress response. Together, our data establish a mechanism linking major cell biological phenotypes of AFG3L2 pathogenesis and show how modulation of mitochondrial protein synthesis can exert a beneficial effect on organelle homeostasis.

Mitochondrial stress response triggered by defects in protein synthesis quality control

Mancini, Cecilia;Brusco, Alfredo;
2019-01-01

Abstract

Mitochondria have a compartmentalized gene expression system dedicated to the synthesis of membrane proteins essential for oxidative phosphorylation. Responsive quality control mechanisms are needed to ensure that aberrant protein synthesis does not disrupt mitochondrial function. Pathogenic mutations that impede the function of the mitochondrial matrix quality control protease complex composed of AFG3L2 and paraplegin cause a multifaceted clinical syndrome. At the cell and molecular level, defects to this quality control complex are defined by impairment to mitochondrial form and function. Here, we establish the etiology of these phenotypes. We show how disruptions to the quality control of mitochondrial protein synthesis trigger a sequential stress response characterized first by OMA1 activation followed by loss of mitochondrial ribosomes and by remodelling of mitochondrial inner membrane ultrastructure. Inhibiting mitochondrial protein synthesis with chloramphenicol completely blocks this stress response. Together, our data establish a mechanism linking major cell biological phenotypes of AFG3L2 pathogenesis and show how modulation of mitochondrial protein synthesis can exert a beneficial effect on organelle homeostasis.
2019
2
1
1
17
http://www.life-science-alliance.org/content/2/1/e201800219
mitochondria, AFG3L2, protein synthesis, inner mitochondrial membrane, chloramphenicol
Richter, Uwe; Ng, Kah Ying; Suomi, Fumi; Marttinen, Paula; Turunen, Taina; Jackson, Christopher; Suomalainen, Anu; Vihinen, Helena; Jokitalo, Eija; Nyman, Tuula A; Isokallio, Marita A; Stewart, James B; Mancini, Cecilia; Brusco, Alfredo; Seneca, Sara; Lombès, Anne; Taylor, Robert W; Battersby, Brendan J
File in questo prodotto:
File Dimensione Formato  
136. SCA28_Brendan_LSA_2019_ non definitivo.pdf

Accesso aperto

Descrizione: Articolo principale
Tipo di file: PDF EDITORIALE
Dimensione 3.73 MB
Formato Adobe PDF
3.73 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1688175
Citazioni
  • ???jsp.display-item.citation.pmc??? 8
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 25
social impact