This study investigates the potential changes in surface energy budget components under certain future climate conditions over the Alps and Northern Italy. The regional climate scenarios are obtained though the Regional Climate Model version 3 (RegCM3) runs, based on a reference climate (1961–1990) and the future climate (2071–2100) via the A2 and B2 scenarios. The energy budget components are calculated by employing the University of Torino model of land Processes Interaction with Atmosphere (UTOPIA), and using the RegCM3 outputs as input data. Our results depict a significant change in the energy budget components during springtime over high-mountain areas, whereas the most relevant difference over the plain areas is the increase in latent heat flux and hence, evapotranspiration during summertime. The precedence of snow-melting season over the Alps is evidenced by the earlier increase in sensible heat flux. The annual mean number of warm and cold days is evaluated by analyzing the top-layer soil temperature and shows a large increment (slight reduction) of warm (cold) days. These changes at the end of this century could influence the regional radiative properties and energy cycles and thus, exert significant impacts on human life and general infrastructures.

Projected changes in soil temperature and surface energy budget components over the Alps and Northern Italy

Cassardo C.;Galli M.
2018-01-01

Abstract

This study investigates the potential changes in surface energy budget components under certain future climate conditions over the Alps and Northern Italy. The regional climate scenarios are obtained though the Regional Climate Model version 3 (RegCM3) runs, based on a reference climate (1961–1990) and the future climate (2071–2100) via the A2 and B2 scenarios. The energy budget components are calculated by employing the University of Torino model of land Processes Interaction with Atmosphere (UTOPIA), and using the RegCM3 outputs as input data. Our results depict a significant change in the energy budget components during springtime over high-mountain areas, whereas the most relevant difference over the plain areas is the increase in latent heat flux and hence, evapotranspiration during summertime. The precedence of snow-melting season over the Alps is evidenced by the earlier increase in sensible heat flux. The annual mean number of warm and cold days is evaluated by analyzing the top-layer soil temperature and shows a large increment (slight reduction) of warm (cold) days. These changes at the end of this century could influence the regional radiative properties and energy cycles and thus, exert significant impacts on human life and general infrastructures.
2018
10
7
954
971
http://www.mdpi.com/2073-4441/10/7/954/pdf
Climate change; Heat flux; Land surface model; Snowmelt; Soil temperature; Surface energy budget
Cassardo C.; Park S.K.; Sungmin O.; Galli M.
File in questo prodotto:
File Dimensione Formato  
2018-Cassardo_Park_O_Galli-Projected_changes_soil_temperature_surface_energy_budget_components_Alps_NItaly.pdf

Accesso aperto

Descrizione: Articolo principale
Tipo di file: PDF EDITORIALE
Dimensione 18.64 MB
Formato Adobe PDF
18.64 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1721893
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 8
social impact