The Fe(II)-catalyzed transformation of ferrihydrite into highly crystalline forms may represent an important pathway for soil organic matter (SOM) destabilization under moderately reducing conditions. However, the link between redox-driven changes in soil Fe mineral composition and crystallinity and SOM chemical properties in the field remains elusive. We evaluated abiotic Fe(II)-catalyzed mineralogical transformation of Fe (oxyhydr)oxides in bulk soils and two particle-size SOM fractions, namely the fine silt plus clay (<20 μm, FSi + Cl) and fine sand (50–200 μm, FSa) fractions of an agricultural soil unamended or amended with biochar, compost, or the combination of both. After spiking with Fe(II) and incubating for 7 days under anoxic and sterile conditions at neutral pH, the FSa fractions (Fe(II):Fe (III) molar ratios ≈ 3.3) showed more significant ferrihydrite transformations with respect to FSi + Cl fractions (Fe(II):Fe (III) molar ratios ≈ 0.7), with the consequent production of well-ordered Fe oxides in most soils, particularly those unamended or amended with biochar alone. Nonetheless, poorly crystalline ferrihydrite still constituted about 45% of the FSi + Cl fractions of amended soils after reaction with Fe(II), which confirms that the higher SOM and clay mineral content in this fraction may possibly inhibit atom exchange between aqueous Fe(II) and the solid phase. Building on our knowledge of abiotic Fe(II)-catalyzed mineralogical changes, the suppression of ferrihydrite transformation in FSi + Cl fractions in amended soils could ultimately lead to a slower turnover of ferrihydrite, possibly preserving the carbon sequestration potential associated with this mineral. Conversely, in both bulk soils and FSa fractions, the extent to which mineral transformation occur seemed to be contingent on the quality of the amendment used.

Fe(II)-catalyzed transformation of Fe (oxyhydr)oxides across organic matter fractions in organically amended soils

Giannetta B.
;
Balint R.;Said-Pullicino D.;Martin M.;
2020-01-01

Abstract

The Fe(II)-catalyzed transformation of ferrihydrite into highly crystalline forms may represent an important pathway for soil organic matter (SOM) destabilization under moderately reducing conditions. However, the link between redox-driven changes in soil Fe mineral composition and crystallinity and SOM chemical properties in the field remains elusive. We evaluated abiotic Fe(II)-catalyzed mineralogical transformation of Fe (oxyhydr)oxides in bulk soils and two particle-size SOM fractions, namely the fine silt plus clay (<20 μm, FSi + Cl) and fine sand (50–200 μm, FSa) fractions of an agricultural soil unamended or amended with biochar, compost, or the combination of both. After spiking with Fe(II) and incubating for 7 days under anoxic and sterile conditions at neutral pH, the FSa fractions (Fe(II):Fe (III) molar ratios ≈ 3.3) showed more significant ferrihydrite transformations with respect to FSi + Cl fractions (Fe(II):Fe (III) molar ratios ≈ 0.7), with the consequent production of well-ordered Fe oxides in most soils, particularly those unamended or amended with biochar alone. Nonetheless, poorly crystalline ferrihydrite still constituted about 45% of the FSi + Cl fractions of amended soils after reaction with Fe(II), which confirms that the higher SOM and clay mineral content in this fraction may possibly inhibit atom exchange between aqueous Fe(II) and the solid phase. Building on our knowledge of abiotic Fe(II)-catalyzed mineralogical changes, the suppression of ferrihydrite transformation in FSi + Cl fractions in amended soils could ultimately lead to a slower turnover of ferrihydrite, possibly preserving the carbon sequestration potential associated with this mineral. Conversely, in both bulk soils and FSa fractions, the extent to which mineral transformation occur seemed to be contingent on the quality of the amendment used.
2020
748
141125
1
9
EXAFS; Linear combination fitting; Organic amendments; Physical fractionation
Giannetta B.; Balint R.; Said-Pullicino D.; Plaza C.; Martin M.; Zaccone C.
File in questo prodotto:
File Dimensione Formato  
STOTEN_748_141125.pdf

Accesso riservato

Descrizione: STOTEN_748_141125
Tipo di file: PDF EDITORIALE
Dimensione 1.39 MB
Formato Adobe PDF
1.39 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pre-proof.pdf

Open Access dal 30/07/2022

Descrizione: STOTEN_748_141125 (Post-print)
Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 1.65 MB
Formato Adobe PDF
1.65 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1759311
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 13
social impact