Identifying the mechanisms through which genetic risk causes dementia is an imperative for new therapeutic development. Here, we apply a multistage, systems biology approach to elucidate the disease mechanisms in frontotemporal dementia. We identify two gene coexpression modules that are preserved in mice harboring mutations in MAPT, GRN and other dementia mutations on diverse genetic backgrounds. We bridge the species divide via integration with proteomic and transcriptomic data from the human brain to identify evolutionarily conserved, disease-relevant networks. We find that overexpression of miR-203, a hub of a putative regulatory microRNA (miRNA) module, recapitulates mRNA coexpression patterns associated with disease state and induces neuronal cell death, establishing this miRNA as a regulator of neurodegeneration. Using a database of drug-mediated gene expression changes, we identify small molecules that can normalize the disease-associated modules and validate this experimentally. Our results highlight the utility of an integrative, cross-species network approach to drug discovery.

Identification of evolutionarily conserved gene networks mediating neurodegenerative dementia

Rainero I.;Rubino E.;
2019-01-01

Abstract

Identifying the mechanisms through which genetic risk causes dementia is an imperative for new therapeutic development. Here, we apply a multistage, systems biology approach to elucidate the disease mechanisms in frontotemporal dementia. We identify two gene coexpression modules that are preserved in mice harboring mutations in MAPT, GRN and other dementia mutations on diverse genetic backgrounds. We bridge the species divide via integration with proteomic and transcriptomic data from the human brain to identify evolutionarily conserved, disease-relevant networks. We find that overexpression of miR-203, a hub of a putative regulatory microRNA (miRNA) module, recapitulates mRNA coexpression patterns associated with disease state and induces neuronal cell death, establishing this miRNA as a regulator of neurodegeneration. Using a database of drug-mediated gene expression changes, we identify small molecules that can normalize the disease-associated modules and validate this experimentally. Our results highlight the utility of an integrative, cross-species network approach to drug discovery.
2019
25
1
152
164
Animals; Cell Death; Dementia; Disease Models, Animal; Frontotemporal Dementia; Gene Expression Regulation; Genetic Predisposition to Disease; Genetic Vectors; Humans; Mice, Inbred C57BL; Mice, Transgenic; MicroRNAs; Neurodegenerative Diseases; Proteomics; RNA, Messenger; Reproducibility of Results; Transcriptome; tau Proteins; Evolution, Molecular; Gene Regulatory Networks
Swarup V.; Hinz F.I.; Rexach J.E.; Noguchi K.-I.; Toyoshiba H.; Oda A.; Hirai K.; Sarkar A.; Seyfried N.T.; Cheng C.; Haggarty S.J.; Ferrari R.; Rohrer J.D.; Ramasamy A.; Hardy J.; Hernandez D.G.; Nalls M.A.; Singleton A.B.; Kwok J.B.J.; Dobson-Stone C.; Brooks W.S.; Schofield P.R.; Halliday G.M.; Hodges J.R.; Piguet O.; Bartley L.; Thompson E.; Haan E.; Hernandez I.; Ruiz A.; Boada M.; Borroni B.; Padovani A.; Cairns N.J.; Cruchaga C.; Binetti G.; Ghidoni R.; Benussi L.; Forloni G.; Albani D.; Galimberti D.; Fenoglio C.; Serpente M.; Scarpini E.; Clarimon J.; Lleo A.; Blesa R.; Waldo M.L.; Nilsson K.; Nilsson C.; Mackenzie I.R.A.; Hsiung G.-Y.R.; Mann D.M.A.; Grafman J.; Morris C.M.; Attems J.; Griffiths T.D.; McKeith I.G.; Thomas A.J.; Jaros E.; Pietrini P.; Huey E.D.; Wassermann E.M.; Tierney M.C.; Baborie A.; Pastor P.; Ortega-Cubero S.; Razquin C.; Alonso E.; Perneczky R.; Diehl-Schmid J.; Alexopoulos P.; Kurz A.; Rainero I.; Rubino E.; Pinessi L.; Rogaeva E.; George-Hyslop P.S.; Rossi G.; Tagliavini F.; Giaccone G.; Rowe J.B.; Schlachetzki J.C.M.; Uphill J.; Collinge J.; Mead S.; Danek A.; Van Deerlin V.M.; Grossman M.; Trojanowski J.Q.; Pickering-Brown S.; Momeni P.; van der Zee J.; Cruts M.; Van Broeckhoven C.; Cappa S.F.; Leber I.; Brice A.; Hannequin D.; Golfier V.; Vercelletto M.; Nacmias B.; Sorbi S.; Bagnoli S.; Piaceri I.; Nielsen J.E.; Hjermind L.E.; Riemenschneider M.; Mayhaus M.; Gasparoni G.; Pichler S.; Ibach B.; Rossor M.N.; Fox N.C.; Warren J.D.; Spillantini M.G.; Morris H.R.; Rizzu P.; Heutink P.; Snowden J.S.; Rollinson S.; Gerhard A.; Richardson A.; Bruni A.C.; Maletta R.; Frangipane F.; Cupidi C.; Bernardi L.; Anfossi M.; Gallo M.; Conidi M.E.; Smirne N.; Rademakers R.; Baker M.; Dickson D.W.; Graff-Radford N.R.; Petersen R.C.; Knopman D.; Josephs K.A.; Boeve B.F.; Parisi J.E.; Miller B.L.; Karydas A.M.; Rosen H.; Seeley W.W.; van Swieten J.C.; Dopper E.G.P.; Seelaar H.; Pijnenburg Y.A.L.; Scheltens P.; Logroscino G.; Capozzo R.; Novelli V.; Puca A.A.; Franceschi M.; Postiglione A.; Milan G.; Sorrentino P.; Kristiansen M.; Chiang H.-H.; Graff C.; Pasquier F.; Rollin A.; Deramecourt V.; Lebouvier T.; Ferrucci L.; Kapogiannis D.; Grossman M.; Van Deerlin V.M.; Trojanowski J.Q.; Lah J.J.; Levey A.I.; Kondou S.; Geschwind D.H.
File in questo prodotto:
File Dimensione Formato  
nat med 2019.pdf

Accesso aperto

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 3.02 MB
Formato Adobe PDF
3.02 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1783269
Citazioni
  • ???jsp.display-item.citation.pmc??? 45
  • Scopus 85
  • ???jsp.display-item.citation.isi??? 80
social impact