Graphitic carbon nitride (g-C3N4) has emerged as one of the most promising solar-light-activated polymeric metal-free semiconductor photocatalysts due to its thermal physicochemical stability but also its characteristics of environmentally friendly and sustainable material. Despite the challenging properties of g-C3N4, its photocatalytic performance is still limited by the low surface area, together with the fast charge recombination phenomena. Hence, many efforts have been focused on overcoming these drawbacks by controlling and improving the synthesis methods. With regard to this, many structures including strands of linearly condensed melamine monomers, which are interconnected by hydrogen bonds, or highly condensed systems, have been proposed. Nevertheless, complete and consistent knowledge of the pristine material has not yet been achieved. Thus, to shed light on the nature of polymerised carbon nitride structures, which are obtained from the well-known direct heating of melamine under mild conditions, we combined the results obtained from XRD analysis, SEM and AFM microscopies, and UV-visible and FTIR spectroscopies with the data from the Density Functional Theory method (DFT). An indirect band gap and the vibrational peaks have been calculated without uncertainty, thus highlighting a mixture of highly condensed g-C3N4 domains embedded in a less condensed “melon-like” framework.

Combined DFT-D3 Computational and Experimental Studies on g-C3N4: New Insight into Structure, Optical, and Vibrational Properties

Negro, Paolo
First
;
Cesano, Federico;Casassa, Silvia;Scarano, Domenica
2023-01-01

Abstract

Graphitic carbon nitride (g-C3N4) has emerged as one of the most promising solar-light-activated polymeric metal-free semiconductor photocatalysts due to its thermal physicochemical stability but also its characteristics of environmentally friendly and sustainable material. Despite the challenging properties of g-C3N4, its photocatalytic performance is still limited by the low surface area, together with the fast charge recombination phenomena. Hence, many efforts have been focused on overcoming these drawbacks by controlling and improving the synthesis methods. With regard to this, many structures including strands of linearly condensed melamine monomers, which are interconnected by hydrogen bonds, or highly condensed systems, have been proposed. Nevertheless, complete and consistent knowledge of the pristine material has not yet been achieved. Thus, to shed light on the nature of polymerised carbon nitride structures, which are obtained from the well-known direct heating of melamine under mild conditions, we combined the results obtained from XRD analysis, SEM and AFM microscopies, and UV-visible and FTIR spectroscopies with the data from the Density Functional Theory method (DFT). An indirect band gap and the vibrational peaks have been calculated without uncertainty, thus highlighting a mixture of highly condensed g-C3N4 domains embedded in a less condensed “melon-like” framework.
2023
Inglese
Esperti anonimi
16
10
3644-1
3644-19
19
https://www.mdpi.com/1996-1944/16/10/3644
graphitic carbon nitrides; melon polymorph structure; DFT-D3 computation; structure and morphological properties; optical properties; vibrational properties
no
1 – prodotto con file in versione Open Access (allegherò il file al passo 6 - Carica)
262
4
Negro, Paolo; Cesano, Federico; Casassa, Silvia; Scarano, Domenica
info:eu-repo/semantics/article
open
03-CONTRIBUTO IN RIVISTA::03A-Articolo su Rivista
File in questo prodotto:
File Dimensione Formato  
materials-16-03644-v2.pdf

Accesso aperto

Descrizione: articolo
Tipo di file: PDF EDITORIALE
Dimensione 4.85 MB
Formato Adobe PDF
4.85 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1904530
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 7
social impact