Hypergraphs are natural generalization of graphs in which a single (hyper)edge can connect any number of vertices. As a result, hypergraphs are suitable and useful to model many important networks and processes. Typical applications are related to social data analysis and include situations such as exchanging emails with several recipients, reviewing products on social platforms, or analyzing security vulnerabilities of information networks. In many situations, using hypergraphs instead of classical graphs allows us to better capture and analyze dependencies within the network. In this paper, we propose a new library, named SimpleHypergraphs.jl, designed for efficient hypegraph analysis. The library exploits the Julia language flexibility and direct support for distributed computing in order to bring a new quality for simulating and analyzing processes represented as hypergraphs. In order to show how the library can be used we study two case studies based on the Yelp dataset. Results are promising and confirm the ability of hypergraphs to provide more insight than standard graph-based approaches.
SimpleHypergraphs.jl—novel software framework for modelling and analysis of hypergraphs
Antelmi A.
First
;
2019-01-01
Abstract
Hypergraphs are natural generalization of graphs in which a single (hyper)edge can connect any number of vertices. As a result, hypergraphs are suitable and useful to model many important networks and processes. Typical applications are related to social data analysis and include situations such as exchanging emails with several recipients, reviewing products on social platforms, or analyzing security vulnerabilities of information networks. In many situations, using hypergraphs instead of classical graphs allows us to better capture and analyze dependencies within the network. In this paper, we propose a new library, named SimpleHypergraphs.jl, designed for efficient hypegraph analysis. The library exploits the Julia language flexibility and direct support for distributed computing in order to bring a new quality for simulating and analyzing processes represented as hypergraphs. In order to show how the library can be used we study two case studies based on the Yelp dataset. Results are promising and confirm the ability of hypergraphs to provide more insight than standard graph-based approaches.File | Dimensione | Formato | |
---|---|---|---|
_WAW_19_.pdf
Accesso aperto
Tipo di file:
POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione
357.14 kB
Formato
Adobe PDF
|
357.14 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.