We propose an infinitesimal counterpart to the notion of braided category. The corresponding infinitesimal braidings are natural transformations which are compatible with an underlying braided monoidal structure in the sense that they constitute a first-order deformation of the braiding. This extends previously considered infinitesimal symmetric or Cartier categories, where involutivity of the braiding and an additional commutativity of the infinitesimal braiding with the symmetry are required. The generalized pre-Cartier framework is then elaborated in detail for the categories of (co)quasitriangular bialgebra (co)modules and we characterize the resulting infinitesimal ℛ-matrices (respectively, ℛ-forms) on the bialgebra. It is proven that the latter are Hochschild 2-cocycles and that they satisfy an infinitesimal quantum Yang-Baxter equation, while they are Hochschild 2-coboundaries under the Cartier (co)triangular assumption in the presence of an antipode. We provide explicit examples of infinitesimal braidings, particularly on quantum 2 × 2-matrices, GLq(2), Sweedler's Hopf algebra and via Drinfel'd twist deformation. As conceptual tools to produce examples of infinitesimal braidings, we prove an infinitesimal version of the FRT construction and we provide a Tannaka-Krein reconstruction theorem for pre-Cartier coquasitriangular bialgebras. We comment on the deformation of infinitesimal braidings and construct a quasitriangular structure on formal power series of Sweedler's Hopf algebra.

Infinitesimal braidings and pre-Cartier bialgebras

Ardizzoni A.
;
Bottegoni L.;Sciandra A.;Weber T.
2025-01-01

Abstract

We propose an infinitesimal counterpart to the notion of braided category. The corresponding infinitesimal braidings are natural transformations which are compatible with an underlying braided monoidal structure in the sense that they constitute a first-order deformation of the braiding. This extends previously considered infinitesimal symmetric or Cartier categories, where involutivity of the braiding and an additional commutativity of the infinitesimal braiding with the symmetry are required. The generalized pre-Cartier framework is then elaborated in detail for the categories of (co)quasitriangular bialgebra (co)modules and we characterize the resulting infinitesimal ℛ-matrices (respectively, ℛ-forms) on the bialgebra. It is proven that the latter are Hochschild 2-cocycles and that they satisfy an infinitesimal quantum Yang-Baxter equation, while they are Hochschild 2-coboundaries under the Cartier (co)triangular assumption in the presence of an antipode. We provide explicit examples of infinitesimal braidings, particularly on quantum 2 × 2-matrices, GLq(2), Sweedler's Hopf algebra and via Drinfel'd twist deformation. As conceptual tools to produce examples of infinitesimal braidings, we prove an infinitesimal version of the FRT construction and we provide a Tannaka-Krein reconstruction theorem for pre-Cartier coquasitriangular bialgebras. We comment on the deformation of infinitesimal braidings and construct a quasitriangular structure on formal power series of Sweedler's Hopf algebra.
2025
Inglese
Esperti anonimi
27
05
1
55
55
https://arxiv.org/abs/2306.00558
L'articolo è stato pubblicato online nel 2024.
Cartier categories; Hochschild cohomology; Infinitesimal braidings; quasitriangular bialgebras
REPUBBLICA CECA
   ARDIZZONI - Programmi di Rilevante Interesse Nazionale - Bando PRIN 2017
   MINISTERO DELL'UNIVERSITA' E DELLA RICERCA
4 – prodotto già presente in altro archivio Open Access (arXiv, REPEC…)
262
4
Ardizzoni A.; Bottegoni L.; Sciandra A.; Weber T.
info:eu-repo/semantics/article
mixed
03-CONTRIBUTO IN RIVISTA::03A-Articolo su Rivista
File in questo prodotto:
File Dimensione Formato  
cartier-accepted.pdf

Accesso aperto con embargo fino al 14/08/2025

Descrizione: paper
Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 775.35 kB
Formato Adobe PDF
775.35 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Ardizzoni2024.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 15.06 MB
Formato Adobe PDF
15.06 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/2009170
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact