1,2-Hydroxypyridinones (1,2-HOPO) form very stable lanthanide complexes that may be useful as contrast agents for magnetic resonance imaging (MRI). X-ray diffraction of single crystals established that the solid-state structures of the Eu(III) and the previously reported [Inorg. Chem. 2004, 43, 54521 Gd(III) complex are identical. The recently discovered sensitizing properties of 1,2-HOPO chelates for Eu(III) luminescence [J. Am. Chem. Soc. 2006, 128, 10 067] allow for direct measurement of the number of water molecules coordinated to the metal center. Fluorescence measurements of the Eu(III) complex corroborate that, in solution, two water molecules coordinate the lanthanide (q = 2) as proposed from the analysis of NMRD profiles. In addition, fluorescence measurements have verified the anion binding interactions of lanthanide TREN-1,2-HOPO complexes in solution, studied by relaxivity, revealing only very weak oxalate binding (K-A = 82.7 +/- 6.5 M-1). Solution thermodynamic studies of the metal complex and free ligand have been carried out using potentiometry, spectrophotometry, and fluorescence spectroscopy. The metal ion selectivity of TREN-1,2-HOPO supports the feasibility of using 1,2-HOPO ligands for selective lanthanide binding [pGd = 19.3 (2), pZn = 15.2 (2), pCa = 8.8 (3)].

1,2-Hydroxypyridonates as Contrast Agents for Magnetic Resonance Imaging: TREN-1,2-HOPO

AVEDANO, STEFANO;BOTTA, Mauro;AIME, Silvio;
2007-01-01

Abstract

1,2-Hydroxypyridinones (1,2-HOPO) form very stable lanthanide complexes that may be useful as contrast agents for magnetic resonance imaging (MRI). X-ray diffraction of single crystals established that the solid-state structures of the Eu(III) and the previously reported [Inorg. Chem. 2004, 43, 54521 Gd(III) complex are identical. The recently discovered sensitizing properties of 1,2-HOPO chelates for Eu(III) luminescence [J. Am. Chem. Soc. 2006, 128, 10 067] allow for direct measurement of the number of water molecules coordinated to the metal center. Fluorescence measurements of the Eu(III) complex corroborate that, in solution, two water molecules coordinate the lanthanide (q = 2) as proposed from the analysis of NMRD profiles. In addition, fluorescence measurements have verified the anion binding interactions of lanthanide TREN-1,2-HOPO complexes in solution, studied by relaxivity, revealing only very weak oxalate binding (K-A = 82.7 +/- 6.5 M-1). Solution thermodynamic studies of the metal complex and free ligand have been carried out using potentiometry, spectrophotometry, and fluorescence spectroscopy. The metal ion selectivity of TREN-1,2-HOPO supports the feasibility of using 1,2-HOPO ligands for selective lanthanide binding [pGd = 19.3 (2), pZn = 15.2 (2), pCa = 8.8 (3)].
2007
Inglese
Sì, ma tipo non specificato
46
9182
9191
fast water exchange; high-relaxivity; thermodynamic evaluation; equilibrium-constants; europium complexes; gadolinium complex; luminescence; relaxation; stability; hydration
ITALIA
STATI UNITI D'AMERICA
262
7
JOCHER CJ; MOORE EG; XU J; AVEDANO S; BOTTA M; AIME S; RAYMOND KN
info:eu-repo/semantics/article
none
03-CONTRIBUTO IN RIVISTA::03A-Articolo su Rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/22482
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 52
  • ???jsp.display-item.citation.isi??? 50
social impact