The role of human Sex Hormone-Binding Globulin (SHBG), the plasma carrier of sex steroids, and its membrane receptor, SHBG-R, in estrogen-dependent breast cancer has been investigated in our laboratory in the past few years. SHBG-R is expressed in MCF-10 A cells (not neoplastic mammary cells), MCF-7 cells (breast cancer, ER positive) and in tissue samples from patients affected with ER positive breast cancer, but not in estrogen-insensitive MDA-MB 231 cells. The SHBG/SHBG-R interaction, followed by the binding of estradiol to the complex protein/receptor, causes a significant increase of the intracellular levels of cAMP, but does not modify the amount of estradiol entering MCF-7 cells. The estradiol-induced proliferation of MCF-7 cells is inhibited by SHBG, through SHBG-R, cAMP and PKA. Similarly, the proliferation rate of tissue samples positive for SHBG-R was significantly lower than the proliferation rate of negative samples. SHBG and SHBG-R could thus trigger a 'biologic' anti-estrogenic pathway. In order to get a more detailed knowledge of this system, we first examined the frequence of the reported mutated form of SHBG in 255 breast cancer patients. The mutated SHBG is characterized by a point mutation (Asp 327 --> Asn) causing an additional N-glycosylation site, which does not affect the binding of steroids to SHBG. The frequence of the mutation was significantly higher (24.5%) in estrogen-dependent breast cancers than in healthy control subjects (11.6%). This observation confirms the close relationship between SHBG and estrogen-dependent breast cancer and suggests that the mutation could modify SHBG activity at cell site. Lastly, the possibility of using SHBG to modulate the estradiol action in breast cancer was further studied by transfecting MCF-7 cells with an expression vector carrying the SHBG cDNA (study in collaboration with G.L. Hammond). Transfected cells are able to produce significant amount of SHBG in their medium, but their SHBG-R is reduced to undetectable levels. The SHBG produced by transfected MCF-7 cells is, however, able to inhibit estradiol-induced proliferation of MCF-7 cells expressing a functional receptor. Thus, the local production of SHBG obtained with transfection could be a useful tool to control cell growth in estrogen-dependent breast cancer.

Sex hormone-binding globulin, its membrane receptor, and breast cancer: a new approach to the modulation of estradiol action in neoplastic cells.

CATALANO, Maria Graziella;BERTA, Laura Adelaide Angela;FRAIRIA, Roberto
1999-01-01

Abstract

The role of human Sex Hormone-Binding Globulin (SHBG), the plasma carrier of sex steroids, and its membrane receptor, SHBG-R, in estrogen-dependent breast cancer has been investigated in our laboratory in the past few years. SHBG-R is expressed in MCF-10 A cells (not neoplastic mammary cells), MCF-7 cells (breast cancer, ER positive) and in tissue samples from patients affected with ER positive breast cancer, but not in estrogen-insensitive MDA-MB 231 cells. The SHBG/SHBG-R interaction, followed by the binding of estradiol to the complex protein/receptor, causes a significant increase of the intracellular levels of cAMP, but does not modify the amount of estradiol entering MCF-7 cells. The estradiol-induced proliferation of MCF-7 cells is inhibited by SHBG, through SHBG-R, cAMP and PKA. Similarly, the proliferation rate of tissue samples positive for SHBG-R was significantly lower than the proliferation rate of negative samples. SHBG and SHBG-R could thus trigger a 'biologic' anti-estrogenic pathway. In order to get a more detailed knowledge of this system, we first examined the frequence of the reported mutated form of SHBG in 255 breast cancer patients. The mutated SHBG is characterized by a point mutation (Asp 327 --> Asn) causing an additional N-glycosylation site, which does not affect the binding of steroids to SHBG. The frequence of the mutation was significantly higher (24.5%) in estrogen-dependent breast cancers than in healthy control subjects (11.6%). This observation confirms the close relationship between SHBG and estrogen-dependent breast cancer and suggests that the mutation could modify SHBG activity at cell site. Lastly, the possibility of using SHBG to modulate the estradiol action in breast cancer was further studied by transfecting MCF-7 cells with an expression vector carrying the SHBG cDNA (study in collaboration with G.L. Hammond). Transfected cells are able to produce significant amount of SHBG in their medium, but their SHBG-R is reduced to undetectable levels. The SHBG produced by transfected MCF-7 cells is, however, able to inhibit estradiol-induced proliferation of MCF-7 cells expressing a functional receptor. Thus, the local production of SHBG obtained with transfection could be a useful tool to control cell growth in estrogen-dependent breast cancer.
1999
69
473
479
SHBG; SBP; SBP receptors
FORTUNATI N ;BECCHIS M ;CATALANO MG ;COMBA A ;FERRERA P ;RAINERI M ;BERTA L ;FRAIRIA R
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/31560
Citazioni
  • ???jsp.display-item.citation.pmc??? 9
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact