The most frequently occurring kringle 4 domain of human apolipoprotein (a), Kringle 4-subtype 2 (K4(2)), was expressed as a fusion protein with the maltose binding protein in Escherichia coli using the 'tac' promoter. Although the fusion protein was expressed without a signal sequence, 25% was secreted into the periplasmic space; the remainder was found associated with the soluble cytosolic fraction. The fusion protein was readily isolated from whole cell lysate by amylose agarose affinity chromatography. Although a factor Xa cleavage site was engineered into the fusion protein, it was found that release of the K4(2) protein was most conveniently achieved by proteolysis with subtilisin A. The cleavage product produced in this way was shown to be intact K4(2) with only the first three amino acid residues of the leading flanking peptide missing, as judged by N-terminal sequence analysis. K4(2) was isolated from the hydrolysate by FPLC on a Mono-Q column with a yield of 170 +/- 30 micrograms/g wet cells. The resulting protein was monomeric in phosphate-buffered saline as judged by size-exclusion chromatography and appeared to be folded as shown by spectroscopic and immunological assays. The recombinant K4(2) did not bind to either lysine- or proline-Sepharose, suggesting that the ligand binding activities of lipoprotein (a) may reside in the other kringle domains of apolipoprotein (a).

Expression and purification of kringle 4-type 2 of human apolipoprotein (a) in Escherichia coli.

GAMBINO, Roberto;
1992-01-01

Abstract

The most frequently occurring kringle 4 domain of human apolipoprotein (a), Kringle 4-subtype 2 (K4(2)), was expressed as a fusion protein with the maltose binding protein in Escherichia coli using the 'tac' promoter. Although the fusion protein was expressed without a signal sequence, 25% was secreted into the periplasmic space; the remainder was found associated with the soluble cytosolic fraction. The fusion protein was readily isolated from whole cell lysate by amylose agarose affinity chromatography. Although a factor Xa cleavage site was engineered into the fusion protein, it was found that release of the K4(2) protein was most conveniently achieved by proteolysis with subtilisin A. The cleavage product produced in this way was shown to be intact K4(2) with only the first three amino acid residues of the leading flanking peptide missing, as judged by N-terminal sequence analysis. K4(2) was isolated from the hydrolysate by FPLC on a Mono-Q column with a yield of 170 +/- 30 micrograms/g wet cells. The resulting protein was monomeric in phosphate-buffered saline as judged by size-exclusion chromatography and appeared to be folded as shown by spectroscopic and immunological assays. The recombinant K4(2) did not bind to either lysine- or proline-Sepharose, suggesting that the ligand binding activities of lipoprotein (a) may reside in the other kringle domains of apolipoprotein (a).
1992
3
212
222
LI Z ;GAMBINO R ;FLESS GM ;COPELAND RA ;HALFPENNY AJ ;SCANU AM
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/32541
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 16
social impact