OBJECTIVES: In humans, fasting leads to elevated serum GH concentrations. Traditionally, changes in hypothalamic GH-releasing hormone and somatostatin release are considered as the main mechanisms that induce this elevated GH secretion during fasting. Ghrelin is an endogenous ligand of the GH secretagogue receptor and is synthesized in the stomach. As ghrelin administration in man stimulates GH release, while serum ghrelin concentrations are elevated during fasting in man, this increase in ghrelin levels might be another mechanism whereby fasting results in stimulation of GH release. DESIGN AND SUBJECTS: In ten healthy non-obese males we performed a double-blind placebo-controlled crossover study comparing fasting with and fasting without GH receptor blockade. GH, ghrelin, insulin, glucose and free fatty acids were assessed. RESULTS: While ghrelin levels do not vary considerably in the fed state, fasting rapidly induced a diurnal rhythm in ghrelin concentrations. These changes in serum ghrelin concentrations during fasting were followed by similar, profound changes in serum GH levels. The rapid development of a diurnal ghrelin rhythm could not be explained by changes in insulin, glucose, or free fatty acid levels. Compared with fasting without pegvisomant, fasting with pegvisomant did not change the ghrelin rhythm. CONCLUSIONS: These data indicate that ghrelin is the main driving force behind the enhanced GH secretion during fasting.

Ghrelin drives GH secretion during fasting in man.

GHIGO, Ezio;
2002-01-01

Abstract

OBJECTIVES: In humans, fasting leads to elevated serum GH concentrations. Traditionally, changes in hypothalamic GH-releasing hormone and somatostatin release are considered as the main mechanisms that induce this elevated GH secretion during fasting. Ghrelin is an endogenous ligand of the GH secretagogue receptor and is synthesized in the stomach. As ghrelin administration in man stimulates GH release, while serum ghrelin concentrations are elevated during fasting in man, this increase in ghrelin levels might be another mechanism whereby fasting results in stimulation of GH release. DESIGN AND SUBJECTS: In ten healthy non-obese males we performed a double-blind placebo-controlled crossover study comparing fasting with and fasting without GH receptor blockade. GH, ghrelin, insulin, glucose and free fatty acids were assessed. RESULTS: While ghrelin levels do not vary considerably in the fed state, fasting rapidly induced a diurnal rhythm in ghrelin concentrations. These changes in serum ghrelin concentrations during fasting were followed by similar, profound changes in serum GH levels. The rapid development of a diurnal ghrelin rhythm could not be explained by changes in insulin, glucose, or free fatty acid levels. Compared with fasting without pegvisomant, fasting with pegvisomant did not change the ghrelin rhythm. CONCLUSIONS: These data indicate that ghrelin is the main driving force behind the enhanced GH secretion during fasting.
2002
146
203
207
MULLER AF ;LAMBERTS SW ;JANSSEN JA ;HOFLAND LJ ;KOETSVELD PV ;BIDLINGMAIER M ;STRASBURGER CJ ;GHIGO E ;VAN DER LELY AJ
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/32560
Citazioni
  • ???jsp.display-item.citation.pmc??? 14
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact