Although alteration of airway pH may serve an innate host defense capacity, it also is implicated in the pathophysiology of obstructive airway diseases. Acid-induced asthma appears in association with gastroesophageal reflux after accidental inhalation of acid (fog, pollution, and workplace exposure) and in the presence of altered airway pH homeostasis. Endogenous and exogenous exposures to acids evoke cough, bronchoconstriction, airway hyperreactivity, microvascular leakage, and heightened production of mucous, fluid, and nitric oxide. Abnormal acidity of the airways is reflected in exhaled breath assays. The intimate mechanisms of acid-induced airway obstruction are dependent on activation of capsaicin-sensitive sensory nerves. Protons activate these nerves with the subsequent release of tachykinins (major mediators of this pathway) that, in conjunction with kinins, nitric oxide, oxygen radicals, and proteases, modulate diverse aspects of airway dysfunction and inflammation. The recognition that acid stress might initiate or exacerbate airway obstructive symptomatology has prompted the consideration of new therapies targeting pH homeostasis.

Acid stress in the pathology of asthma

RICCIARDOLO, Fabio Luigi Massimo;
2004-01-01

Abstract

Although alteration of airway pH may serve an innate host defense capacity, it also is implicated in the pathophysiology of obstructive airway diseases. Acid-induced asthma appears in association with gastroesophageal reflux after accidental inhalation of acid (fog, pollution, and workplace exposure) and in the presence of altered airway pH homeostasis. Endogenous and exogenous exposures to acids evoke cough, bronchoconstriction, airway hyperreactivity, microvascular leakage, and heightened production of mucous, fluid, and nitric oxide. Abnormal acidity of the airways is reflected in exhaled breath assays. The intimate mechanisms of acid-induced airway obstruction are dependent on activation of capsaicin-sensitive sensory nerves. Protons activate these nerves with the subsequent release of tachykinins (major mediators of this pathway) that, in conjunction with kinins, nitric oxide, oxygen radicals, and proteases, modulate diverse aspects of airway dysfunction and inflammation. The recognition that acid stress might initiate or exacerbate airway obstructive symptomatology has prompted the consideration of new therapies targeting pH homeostasis.
2004
113
610
619
RICCIARDOLO FLM; GASTON B; HUNT J
File in questo prodotto:
File Dimensione Formato  
Ricciardolo JACI2001.pdf

Accesso riservato

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 158.22 kB
Formato Adobe PDF
158.22 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/39445
Citazioni
  • ???jsp.display-item.citation.pmc??? 62
  • Scopus 189
  • ???jsp.display-item.citation.isi??? 177
social impact