Focal adhesion kinase (FAK) is a widely expressed nonreceptor tyrosine kinase found in focal adhesions. FAK has been indicated as a point of convergence of other signaling pathways including platelet-derived growth factor (PDGF) receptors, and recently, FAK tyrosine phosphorylation has been shown to be stimulated by PDGF. In the present study we assessed the role of Ras as a possible intermediate protein regulating PDGF-induced FAK tyrosine phosphorylation in human hepatic stellate cells (HSCs), liver-specific pericytes primarily involved in the pathogenesis of liver fibrosis. For this purpose, cells were first subjected to retroviral-mediated gene transfer with a dominant-negative mutant of Ras (N17Ras). This resulted in a marked inhibition of PDGF-induced FAK tyrosine phosphorylation together with the expected reduction of PDGF-induced extracellular signal-regulated kinase activity (ERK). Afterward, the effects of pharmacological agents potentially affecting Ras isoprenylation were evaluated. PDGF-induced FAK tyrosine phosphorylation, ERK activity and intracellular calcium increase, as well as the biological effects of this growth factor, (i.e., mitogenesis and cell migration) were effectively blocked by GGTI-298, an inhibitor of geranylgeranyltransferase I. Inhibition of Ras processing obtained with FTI-277, an inhibitor of farnesyltransferase, resulted in detectable effects only at high doses. Taken together, these results establish that Ras operates as a protein-linking PDGF-beta receptor to FAK in human HSCs, and that signaling molecules requiring geranylgeranylation may also be involved in this process.

Tyrosine phosphorylation of focal adhesion kinase by PDGF is dependent on ras in human hepatic stellate cells

PAROLA, Maurizio;
2000-01-01

Abstract

Focal adhesion kinase (FAK) is a widely expressed nonreceptor tyrosine kinase found in focal adhesions. FAK has been indicated as a point of convergence of other signaling pathways including platelet-derived growth factor (PDGF) receptors, and recently, FAK tyrosine phosphorylation has been shown to be stimulated by PDGF. In the present study we assessed the role of Ras as a possible intermediate protein regulating PDGF-induced FAK tyrosine phosphorylation in human hepatic stellate cells (HSCs), liver-specific pericytes primarily involved in the pathogenesis of liver fibrosis. For this purpose, cells were first subjected to retroviral-mediated gene transfer with a dominant-negative mutant of Ras (N17Ras). This resulted in a marked inhibition of PDGF-induced FAK tyrosine phosphorylation together with the expected reduction of PDGF-induced extracellular signal-regulated kinase activity (ERK). Afterward, the effects of pharmacological agents potentially affecting Ras isoprenylation were evaluated. PDGF-induced FAK tyrosine phosphorylation, ERK activity and intracellular calcium increase, as well as the biological effects of this growth factor, (i.e., mitogenesis and cell migration) were effectively blocked by GGTI-298, an inhibitor of geranylgeranyltransferase I. Inhibition of Ras processing obtained with FTI-277, an inhibitor of farnesyltransferase, resulted in detectable effects only at high doses. Taken together, these results establish that Ras operates as a protein-linking PDGF-beta receptor to FAK in human HSCs, and that signaling molecules requiring geranylgeranylation may also be involved in this process.
2000
31
131
140
CARLONI V.; PINZANI M.; GIUSTI S.; ROMANELLI R.G.; PAROLA M.; BELLOMO G.; FAILLI P.; HAMILTON A.D.; SEBTI S.M.; LAFFI G.; GENTILINI P.
File in questo prodotto:
File Dimensione Formato  
Hepatology 2000.pdf

Accesso riservato

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 453.29 kB
Formato Adobe PDF
453.29 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/43059
Citazioni
  • ???jsp.display-item.citation.pmc??? 11
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact