This study shows that regulating the electron flow to the heme of human cytochrome P450 CYP3A4, using artificial redox chains, can significantly enhance its coupling efficiency and catalytic activity at electrode surfaces. The human CYP3A4 was fused at the genetic level either to the reductase domain of CYP102A1 (BMR) to create the CYP3A4/BMR or to Desulfovibrio vulgaris flavodoxin (FLD) to create the CYP3A4/FLD. Direct electrochemistry of the CYP3A4, CYP3A4/BMR and CYP3A4/FLD on glassy carbon and gold electrodes showed that the BMR and FLD flavo-proteins reduced the electron transfer rate to the CYP3A4 heme. Electrocatalysis resulted in appreciably higher product formation with the immobilized CYP3A4/BMR and CYP3A4/FLD on both surfaces due to an increased coupling efficiency. Rotating disk electrode studies and quantification of hydrogen peroxide were consistent with the proposed mechanism of a longer lived iron-peroxy species in the immobilized CYP3A4/BMR and CYP3A4/FLD. The approaches in this study provide a better understanding of cytochrome P450 uncoupling at electrode surfaces and aids in the construction of improved cytochrome P450 biosensors; and bioelectrocatalysts.

Modulating the coupling efficiency of human cytochrome P450 CYP3A4 at electrode surfaces through protein engineering

DI NARDO, Giovanna;SADEGHI, JILA;GILARDI, Gianfranco
2008-01-01

Abstract

This study shows that regulating the electron flow to the heme of human cytochrome P450 CYP3A4, using artificial redox chains, can significantly enhance its coupling efficiency and catalytic activity at electrode surfaces. The human CYP3A4 was fused at the genetic level either to the reductase domain of CYP102A1 (BMR) to create the CYP3A4/BMR or to Desulfovibrio vulgaris flavodoxin (FLD) to create the CYP3A4/FLD. Direct electrochemistry of the CYP3A4, CYP3A4/BMR and CYP3A4/FLD on glassy carbon and gold electrodes showed that the BMR and FLD flavo-proteins reduced the electron transfer rate to the CYP3A4 heme. Electrocatalysis resulted in appreciably higher product formation with the immobilized CYP3A4/BMR and CYP3A4/FLD on both surfaces due to an increased coupling efficiency. Rotating disk electrode studies and quantification of hydrogen peroxide were consistent with the proposed mechanism of a longer lived iron-peroxy species in the immobilized CYP3A4/BMR and CYP3A4/FLD. The approaches in this study provide a better understanding of cytochrome P450 uncoupling at electrode surfaces and aids in the construction of improved cytochrome P450 biosensors; and bioelectrocatalysts.
2008
10
11
1744
1747
Cytochrome P450; Uncoupling; Electrochemistry; Biosensor
Dodhia V.R. Sassone C.; Fantuzzi A.; Di Nardo G.; Sadeghi S.J.; Gilardi G.
File in questo prodotto:
File Dimensione Formato  
Electrochem-commun-2008-.pdf

Accesso riservato

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 502.36 kB
Formato Adobe PDF
502.36 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/59623
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 62
  • ???jsp.display-item.citation.isi??? 57
social impact