PML nuclear bodies (NBs) are nuclear structures that have been implicated in processes such as transcriptional regulation, genome stability, response to viral infection, apoptosis, and tumor suppression. PML has been found to be essential for the formation of the NBs, as these structures do not form in Pml null cells, although PML add back fully rescues their formation. However, the basis for such a structural role of PML is unknown. We demonstrate that PML contains a SUMO binding motif that is independent of its SUMOylation sites and is surprisingly necessary for PML-NB formation. We demonstrate that the PML RING domain is critical for PML SUMOylation and PML-NB formation. We propose a model for PML-NB formation whereby PML SUMOylation and noncovalent binding of PML to SUMOylated PML through the SUMO binding motif constitutes the nucleation event for subsequent recruitment of SUMOylated proteins and/or proteins containing SUMO binding motifs to the PML NBs.

The mechanisms of PML-nuclear body formation.

PANDOLFI DE RINALDIS, Pier Paolo
2006-01-01

Abstract

PML nuclear bodies (NBs) are nuclear structures that have been implicated in processes such as transcriptional regulation, genome stability, response to viral infection, apoptosis, and tumor suppression. PML has been found to be essential for the formation of the NBs, as these structures do not form in Pml null cells, although PML add back fully rescues their formation. However, the basis for such a structural role of PML is unknown. We demonstrate that PML contains a SUMO binding motif that is independent of its SUMOylation sites and is surprisingly necessary for PML-NB formation. We demonstrate that the PML RING domain is critical for PML SUMOylation and PML-NB formation. We propose a model for PML-NB formation whereby PML SUMOylation and noncovalent binding of PML to SUMOylated PML through the SUMO binding motif constitutes the nucleation event for subsequent recruitment of SUMOylated proteins and/or proteins containing SUMO binding motifs to the PML NBs.
2006
24
331
339
http://dx.doi.org/10.1016/j.molcel.2006.09.013
Amino Acid Motifs; Amino Acid Sequence; Animals; Cell Line; Transformed; Cell Nucleus Structures; Fibroblasts; Humans; Mice; Models; Biological; Molecular Sequence Data; Nuclear Proteins; Protein Binding; Protein Structure; Tertiary; SUMO-1 Protein; Transcription Factors; Tumor Suppressor Proteins
T. H. Shen;H. Lin;P. P. Scaglioni;T. M. Yung;P. P. Pandolfi
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/60654
Citazioni
  • ???jsp.display-item.citation.pmc??? 229
  • Scopus 419
  • ???jsp.display-item.citation.isi??? 411
social impact