Adsorption of N2 at 77 K and scanning electron microscopy have been used to measure the changes in the support morphology, at nano- and microscale level, along the processes involved in the preparation of a supported Pd catalyst: Pd deposition, doping, and thermal treatments. Among the investigated supports, viz., activated carbons, γ-Al2O3, SiO2, and SiO2−Al2O3 (SA), the SA one was found particularly sensitive to these processes, as a result of its high plasticity and reactivity. Involved processes can be summarized as follows: (i) During the Pd deposition, the support itself is partially dissolved and removed as a result of both the basicity of the precipitating agent and the final washing. (ii) When the undoped sample is thermally treated up to 823 K, only modest phenomena are observed. (iii) Upon doping with potassium carbonate, the support dissolution continues, and the greater the carbonate concentration, the greater the dissolution extent. In this case the dissolved material is not removed, but reprecipitates (partially outside the pores), during the subsequent drying at 393 K. (iv) When doped samples are thermally treated, the reaction between carbonate and support causes the mobilization of the support itself, with sintering phenomena that can reach the total collapse of the porous structure. The starting temperature of the pore collapse decreases with increasing potassium carbonate concentration. The modification of the support influences, directly or indirectly, the surface properties and the availability of Pd particles that can be doped or even covered by materials from support and made more or less accessible or even inaccessible by pore narrowing, widening, or blocking.

Pd-Supported Catalysts: Evolution of Support Porous Texture along Pd Deposition and Alkali-Metal Doping

AGOSTINI, Giovanni;GROPPO, Elena Clara;RIVALLAN, MICKAEL;LAMBERTI, Carlo
2009-01-01

Abstract

Adsorption of N2 at 77 K and scanning electron microscopy have been used to measure the changes in the support morphology, at nano- and microscale level, along the processes involved in the preparation of a supported Pd catalyst: Pd deposition, doping, and thermal treatments. Among the investigated supports, viz., activated carbons, γ-Al2O3, SiO2, and SiO2−Al2O3 (SA), the SA one was found particularly sensitive to these processes, as a result of its high plasticity and reactivity. Involved processes can be summarized as follows: (i) During the Pd deposition, the support itself is partially dissolved and removed as a result of both the basicity of the precipitating agent and the final washing. (ii) When the undoped sample is thermally treated up to 823 K, only modest phenomena are observed. (iii) Upon doping with potassium carbonate, the support dissolution continues, and the greater the carbonate concentration, the greater the dissolution extent. In this case the dissolved material is not removed, but reprecipitates (partially outside the pores), during the subsequent drying at 393 K. (iv) When doped samples are thermally treated, the reaction between carbonate and support causes the mobilization of the support itself, with sintering phenomena that can reach the total collapse of the porous structure. The starting temperature of the pore collapse decreases with increasing potassium carbonate concentration. The modification of the support influences, directly or indirectly, the surface properties and the availability of Pd particles that can be doped or even covered by materials from support and made more or less accessible or even inaccessible by pore narrowing, widening, or blocking.
2009
25
11
6476
6485
http://pubs.acs.org/doi/abs/10.1021/la900084p
catalyst preparation; Pd supported catalyst Al2O3; SiO2; silico-alumina; active carbons; N2 physisorption; BET; pore volume; pore size distribution; surface area; Heterogeneous catalysis
R. Pellegrini; G. Leofanti; G. Agostini; E. Groppo; M. Rivallan; C. Lamberti
File in questo prodotto:
File Dimensione Formato  
09Pd_supports.pdf

Accesso aperto

Tipo di file: MATERIALE NON BIBLIOGRAFICO
Dimensione 2.3 MB
Formato Adobe PDF
2.3 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/61323
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 32
  • ???jsp.display-item.citation.isi??? 32
social impact