Arsenic trioxide (ATO) is a potent anti-leukemic chemotherapeutic agent for acute promyelocytic leukemia (APL) that results from a t (15, 17) chromosomal translocation that produces PML-RARalpha, a fusion protein between a tumor suppressor PML and the retinoic acid receptor RARalpha. APL patients are initially treated with retinoic acid, but most develop resistance and relapse. In contrast, ATO induces prolonged remissions even in the relapsed cases. However, the molecular mechanisms by which ATO kills the leukemic cells are not fully understood. We find that ATO induces apoptosis, at least in part, by activating proapoptotic kinase Chk2. ATO does this by stimulating ATR (ataxia telangiectasia mutated and Rad3-related) kinase, a Chk2-activating kinase. In conjunction, ATO degrades PML-RARalpha, resulting in the restoration of PML, which is required for autophosphorylation and full activation of Chk2. As a result, the p53-dependent apoptosis pathway is activated. Based on this, we propose that a pathway composed of ATR, PML, Chk2, and p53 plays a role in ATO-mediated apoptosis, a notion that is consistent with the observation that Chk2 is genetically intact and mutations in the p53 gene are extremely rare in APL.

ATR, PML, and CHK2 play a role in arsenic trioxide-induced apoptosis.

PANDOLFI DE RINALDIS, Pier Paolo;
2006-01-01

Abstract

Arsenic trioxide (ATO) is a potent anti-leukemic chemotherapeutic agent for acute promyelocytic leukemia (APL) that results from a t (15, 17) chromosomal translocation that produces PML-RARalpha, a fusion protein between a tumor suppressor PML and the retinoic acid receptor RARalpha. APL patients are initially treated with retinoic acid, but most develop resistance and relapse. In contrast, ATO induces prolonged remissions even in the relapsed cases. However, the molecular mechanisms by which ATO kills the leukemic cells are not fully understood. We find that ATO induces apoptosis, at least in part, by activating proapoptotic kinase Chk2. ATO does this by stimulating ATR (ataxia telangiectasia mutated and Rad3-related) kinase, a Chk2-activating kinase. In conjunction, ATO degrades PML-RARalpha, resulting in the restoration of PML, which is required for autophosphorylation and full activation of Chk2. As a result, the p53-dependent apoptosis pathway is activated. Based on this, we propose that a pathway composed of ATR, PML, Chk2, and p53 plays a role in ATO-mediated apoptosis, a notion that is consistent with the observation that Chk2 is genetically intact and mutations in the p53 gene are extremely rare in APL.
2006
281
28764
28771
http://dx.doi.org/10.1074/jbc.M604392200
http://www.jbc.org/content/281/39/28764.full.pdf+html
Animals; Antineoplastic Agents; Apoptosis; Arsenicals; Cell Cycle Proteins; Cell Line; Enzyme Activation; Fibroblasts; Mice; Mice SCID; Mice Transgenic; Nuclear Proteins; Oxides; Protein-Serine-Threonine Kinases; Transcription F; Tumor Suppressor Protein p53; Tumor Suppressor Proteins; actors
Y. Joe;J. Jeong;S. Yang;H. Kang;N. Motoyama;P. P. Pandolfi;J. H. Chung;M. K. Kim
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/62903
Citazioni
  • ???jsp.display-item.citation.pmc??? 19
  • Scopus 38
  • ???jsp.display-item.citation.isi??? 37
social impact