The tumor suppressor PTEN was originally identified as a negative regulator of the phosphoinositide 3-kinase (PI3K) signaling, a main regulator of cell growth, metabolism and survival. Yet this function of PTEN is extremely relevant for its tumor-suppressive ability, albeit the recent characterization of many PI3K-independent tumor-suppressive activities. PI3K-mediated PIP(3) production leads to the activation of the canonical AKT-mTORC1 pathway. The implications of this signaling cascade in health and disease have been underscored by the high number of regulators within the pathway whose alterations give rise to different malignancies, including familiar syndromes, metabolic dysfunctions and cancer. Moreover, PI3K is tightly buffered at multiple levels by downstream components, which have turned this signaling pathway literally upside down. PI3K and its downstream components in turn cross-talk with a number of other pathways, thereby leading to a complex network of signals that may have dramatic consequences when perturbed. Here, we review the current status of the PTEN-PI3K signaling pathway with special emphasis on the most recent data on targets and regulation of the PTEN-PI3K axis. This provides novel provocative therapeutic implications based on the targeted modulation of PI3K-cross-talking signals.

The PTEN-PI3K pathway: of feedbacks and cross-talks

PANDOLFI DE RINALDIS, Pier Paolo
2008-01-01

Abstract

The tumor suppressor PTEN was originally identified as a negative regulator of the phosphoinositide 3-kinase (PI3K) signaling, a main regulator of cell growth, metabolism and survival. Yet this function of PTEN is extremely relevant for its tumor-suppressive ability, albeit the recent characterization of many PI3K-independent tumor-suppressive activities. PI3K-mediated PIP(3) production leads to the activation of the canonical AKT-mTORC1 pathway. The implications of this signaling cascade in health and disease have been underscored by the high number of regulators within the pathway whose alterations give rise to different malignancies, including familiar syndromes, metabolic dysfunctions and cancer. Moreover, PI3K is tightly buffered at multiple levels by downstream components, which have turned this signaling pathway literally upside down. PI3K and its downstream components in turn cross-talk with a number of other pathways, thereby leading to a complex network of signals that may have dramatic consequences when perturbed. Here, we review the current status of the PTEN-PI3K signaling pathway with special emphasis on the most recent data on targets and regulation of the PTEN-PI3K axis. This provides novel provocative therapeutic implications based on the targeted modulation of PI3K-cross-talking signals.
2008
27(41)
5527
5541
http://www.nature.com/onc/journal/v27/n41/abs/onc2008247a.html
feedback; PTEN; PI3K; drug combination; cross-talk
Carracedo A; Pandolfi PP
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/64390
Citazioni
  • ???jsp.display-item.citation.pmc??? 342
  • Scopus 743
  • ???jsp.display-item.citation.isi??? 700
social impact