Haem binding to human serum albumin (HSA) endows the protein with peculiar spectroscopic properties. Here, the effect of ibuprofen and warfarin on the spectroscopic properties of ferric haem-human serum albumin (ferric HSA-haem) and of ferrous nitrosylated haem-human serum albumin (ferrous HSA-haem-NO) is reported. Ferric HSA-haem is hexa-coordinated, the haem-iron atom being bonded to His105 and Tyr148. Upon drug binding to the warfarin primary site, the displacement of water molecules - buried in close proximity to the haem binding pocket - induces perturbation of the electronic absorbance properties of the chromophore without affecting the coordination number or the spin state of the haem-iron, and the quenching of the H-1-NMR relaxivity. Values of K-d for ibuprofen and warfarin binding to the warfarin primary site of ferric HSA-haem, corresponding to the ibuprofen secondary cleft, are 5.4 +/- 1.1 x 10(-4) rm and 2.1 +/- 0.4 x 10(-5) M, respectively. The affinity of ibuprofen and warfarin for the warfarin primary cleft of ferric HSA-haem is lower than that reported for drug binding to haem-free HSA. Accordingly, the K-d value for haem binding to HSA increases from 1.3 +/- 0.2 x 10(-8) m in the absence of drugs to 1.5 +/- 0.2 x 10(-7) M in the presence of ibuprofen and warfarin. Ferrous HSA-haem-NO is a five-coordinated haem-iron system. Drug binding to the warfarin primary site of ferrous HSA-haem-NO induces the transition towards the six-coordinated haem-iron species, the haem-iron atom being bonded to His105. Remarkably, the ibuprofen primary cleft appears to be functionally and spectroscopically uncoupled from the haem site of HSA. Present results represent a clear-cut evidence for the drug-induced shift of allosteric equilibrium(a) of HSA.

EFFECT OF IBUPROFEN AND WARFARIN ON THE ALLOSTERIC PROPERTIES OF HAEM-HUMAN SERUM ALBUMIN

BARONI, SIMONA;AIME, Silvio;FASANO, Mauro
2001-01-01

Abstract

Haem binding to human serum albumin (HSA) endows the protein with peculiar spectroscopic properties. Here, the effect of ibuprofen and warfarin on the spectroscopic properties of ferric haem-human serum albumin (ferric HSA-haem) and of ferrous nitrosylated haem-human serum albumin (ferrous HSA-haem-NO) is reported. Ferric HSA-haem is hexa-coordinated, the haem-iron atom being bonded to His105 and Tyr148. Upon drug binding to the warfarin primary site, the displacement of water molecules - buried in close proximity to the haem binding pocket - induces perturbation of the electronic absorbance properties of the chromophore without affecting the coordination number or the spin state of the haem-iron, and the quenching of the H-1-NMR relaxivity. Values of K-d for ibuprofen and warfarin binding to the warfarin primary site of ferric HSA-haem, corresponding to the ibuprofen secondary cleft, are 5.4 +/- 1.1 x 10(-4) rm and 2.1 +/- 0.4 x 10(-5) M, respectively. The affinity of ibuprofen and warfarin for the warfarin primary cleft of ferric HSA-haem is lower than that reported for drug binding to haem-free HSA. Accordingly, the K-d value for haem binding to HSA increases from 1.3 +/- 0.2 x 10(-8) m in the absence of drugs to 1.5 +/- 0.2 x 10(-7) M in the presence of ibuprofen and warfarin. Ferrous HSA-haem-NO is a five-coordinated haem-iron system. Drug binding to the warfarin primary site of ferrous HSA-haem-NO induces the transition towards the six-coordinated haem-iron species, the haem-iron atom being bonded to His105. Remarkably, the ibuprofen primary cleft appears to be functionally and spectroscopically uncoupled from the haem site of HSA. Present results represent a clear-cut evidence for the drug-induced shift of allosteric equilibrium(a) of HSA.
2001
268
6214
6220
BARONI S.; MATTU M.; VANNINI A.; CIPOLLONE R.; S. AIME; ASCENZI P.; FASANO M.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/6806
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact