We report an x-ray standing wave (XSW) study on a set of structurally well-characterized InxGa1-xAs/InP short-period superlattices grown by metal-organic chemical vapor deposition and chemical-beam epitaxy techniques. It was possible to model the x-ray standing wave profiles only once the superlattice period has been assumed to be constituted by four layers of well-defined chemical composition [barrier (InP), first interface (InAs0.7P0.3), well (In0.53Ga0.47As), and second interface (In0.53Ga0.47As0.7P0.3)], and of variable thickness. The thickness of the four layers have been obtained by fitting the high resolution x-ray diffraction profiles of the heterostructures. The presence of partially disordered interface layers, as evidenced by a transmission electron microscopy study, causes a significant reduction of the coherent fraction, F, of both Ga and As atoms. The difference in F values among measured samples illustrates how the XSW can provide important information on the quality of semiconductor superlattices. Comparison with a "long period (160 Angstrom)" In0.53Ga0.47As/InP superlattice, where the role played by InAs0.7P0.3 and In0.53Ga0.47As0.7P0.3 interface layers is negligible, confirms this picture. The coherent fraction of both As and Ga correlates well with the average perpendicular lattice misfit <Deltaa(perpendicular to)/a> determined by x-ray diffraction.

X-ray Standing Waves studies of strained InxGa1-xAs/InP short period superlattices

LAMBERTI, Carlo;
2003-01-01

Abstract

We report an x-ray standing wave (XSW) study on a set of structurally well-characterized InxGa1-xAs/InP short-period superlattices grown by metal-organic chemical vapor deposition and chemical-beam epitaxy techniques. It was possible to model the x-ray standing wave profiles only once the superlattice period has been assumed to be constituted by four layers of well-defined chemical composition [barrier (InP), first interface (InAs0.7P0.3), well (In0.53Ga0.47As), and second interface (In0.53Ga0.47As0.7P0.3)], and of variable thickness. The thickness of the four layers have been obtained by fitting the high resolution x-ray diffraction profiles of the heterostructures. The presence of partially disordered interface layers, as evidenced by a transmission electron microscopy study, causes a significant reduction of the coherent fraction, F, of both Ga and As atoms. The difference in F values among measured samples illustrates how the XSW can provide important information on the quality of semiconductor superlattices. Comparison with a "long period (160 Angstrom)" In0.53Ga0.47As/InP superlattice, where the role played by InAs0.7P0.3 and In0.53Ga0.47As0.7P0.3 interface layers is negligible, confirms this picture. The coherent fraction of both As and Ga correlates well with the average perpendicular lattice misfit determined by x-ray diffraction.
2003
93
9
5307
5315
https://aip.scitation.org/doi/10.1063/1.1562736
X-RAY STANDING WAVES; SURFACE-STRUCTURE DETERMINATION; QUANTUM-WELLS; ULTRATHIN InGaAs; COMPOUND SEMICONDUCTORS; INTERFACE-ROUGHNESS; BIPOLAR-TRANSISTORS; GROWTH-PARAMETERS; LAYER PERFECTION; HETEROSTRUCTURES
C. ARUTA; C. LAMBERTI; G. GASTALDI; F. BOSCHERINI
File in questo prodotto:
File Dimensione Formato  
03JAP_XSW_InAsP.pdf

Accesso riservato

Descrizione: Published article
Tipo di file: PDF EDITORIALE
Dimensione 390.95 kB
Formato Adobe PDF
390.95 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/6853
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact