“Vitreous silica” is a particular form of amorphous silica, much neglected in experimental studies on silica toxicity. In spite of the incorrect term “quartz glass”, often employed, this material is fully amorphous. When reduced in powdered form by grinding, the particulate appears most close to workplace quartz dust but, opposite to quartz, is not crystalline. As silicosis and lung cancer are also found among workers exposed to “quartz glass”, the question arises of whether crystallinity is the prerequisite feature that makes a silica dust toxic. We compare here the behavior of comminuted quartz, vitreous silica, and monodispersed silica spheres, as it concerns surface reactivity and cellular responses involved in the accepted mechanisms of silica toxicity. Care was taken to choose samples of extreme purity, to avoid any effect due to trace contaminants. Quartz and vitreous silica, opposite to silica spheres, show irregular particles with sharp edges, stable surface radicals, and sustained release of HO• radicals via a Fenton-like mechanism. The evolution of the heat of adsorption of water as a function of coverage shows with quartz and vitreous silica a similar pattern of strong hydrophilic sites, nearly absent on the other silica specimen. When tested on a macrophage cell line (MH-S), vitreous silica and pure quartz, but not the monodispersed silica spheres, showed a remarkable potency in cytotoxicity, nitric oxide synthase activation and release of nitrite, and tumor necrosis factor-R production, suggesting a common behavior in inducing an oxidative stress. All of the above features appear to indicate that crystallinity might not be a necessary prerequisite to make a silica particle toxic.

Does vitreous silica contradict the toxicity of the crystalline silica paradigm?

GHIAZZA, Mara;POLIMENI, Manuela;FENOGLIO, Ivana;GAZZANO, Elena;GHIGO, Dario Antonio;FUBINI, Bice
2010-01-01

Abstract

“Vitreous silica” is a particular form of amorphous silica, much neglected in experimental studies on silica toxicity. In spite of the incorrect term “quartz glass”, often employed, this material is fully amorphous. When reduced in powdered form by grinding, the particulate appears most close to workplace quartz dust but, opposite to quartz, is not crystalline. As silicosis and lung cancer are also found among workers exposed to “quartz glass”, the question arises of whether crystallinity is the prerequisite feature that makes a silica dust toxic. We compare here the behavior of comminuted quartz, vitreous silica, and monodispersed silica spheres, as it concerns surface reactivity and cellular responses involved in the accepted mechanisms of silica toxicity. Care was taken to choose samples of extreme purity, to avoid any effect due to trace contaminants. Quartz and vitreous silica, opposite to silica spheres, show irregular particles with sharp edges, stable surface radicals, and sustained release of HO• radicals via a Fenton-like mechanism. The evolution of the heat of adsorption of water as a function of coverage shows with quartz and vitreous silica a similar pattern of strong hydrophilic sites, nearly absent on the other silica specimen. When tested on a macrophage cell line (MH-S), vitreous silica and pure quartz, but not the monodispersed silica spheres, showed a remarkable potency in cytotoxicity, nitric oxide synthase activation and release of nitrite, and tumor necrosis factor-R production, suggesting a common behavior in inducing an oxidative stress. All of the above features appear to indicate that crystallinity might not be a necessary prerequisite to make a silica particle toxic.
2010
23(3)
620
629
silica; calorimetry; free radicals; nitric oxide; oxidative stress.
Ghiazza M; Polimeni M; Fenoglio I; Gazzano E; Ghigo D; Fubini B.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/71031
Citazioni
  • ???jsp.display-item.citation.pmc??? 21
  • Scopus 78
  • ???jsp.display-item.citation.isi??? 75
social impact