The reaction of small-grain Bioglass® 45S5 in artificial saliva (AS), to produce a layer of hydroxy-apatite (HA) and/or hydroxy-carbonate apatite (HCA), has been studied and compared to the results obtained in a simple buffered solution (TRIS). Some potentially bioactive glasses based on the composition of Bioglass® and containing CaF2 (HCaCaF2 5% and HNaCaF2 5%) have also been studied, in order to analyze the effects/changes produced when a F-containing glass surface is contacted with AS. The insertion of fluorine has been proposed to improve bioactive glass bone-bonding ability, and to parallel fluorine-containing glass-ceramics currently used in dentistry. ICP-OES analysis of the solution, and FTIR spectroscopy of the solid samples provided compositional information on the stages of reaction. These data were integrated with XRD and the textural and morphological data, obtained by specific surface areas determination and TEM-EDS measurements. In the case of Bioglass® 45S5, a comparison at corresponding reaction times indicates that the precipitation of an amorphous Ca-phosphate phase is faster in AS, but the crystallization of HA/HCA is delayed in AS with respect to the TRIS solution. For fluoride-containing glasses, the sample HCaCaF2 5%, in which CaF2 replaces part of CaO, possesses the fastest rate for HA/HCA crystallization (1 week) in AS. Some lines of interpretation for these results are proposed.

On the dissolution/reaction of small-grain Bioglass® 45S5 and F-modified bioactive glasses in artificial saliva (AS)

AINA, VALENTINA;BERTINETTI, Luca;CERRATO, Giuseppina;MORTERRA, Claudio;
2011-01-01

Abstract

The reaction of small-grain Bioglass® 45S5 in artificial saliva (AS), to produce a layer of hydroxy-apatite (HA) and/or hydroxy-carbonate apatite (HCA), has been studied and compared to the results obtained in a simple buffered solution (TRIS). Some potentially bioactive glasses based on the composition of Bioglass® and containing CaF2 (HCaCaF2 5% and HNaCaF2 5%) have also been studied, in order to analyze the effects/changes produced when a F-containing glass surface is contacted with AS. The insertion of fluorine has been proposed to improve bioactive glass bone-bonding ability, and to parallel fluorine-containing glass-ceramics currently used in dentistry. ICP-OES analysis of the solution, and FTIR spectroscopy of the solid samples provided compositional information on the stages of reaction. These data were integrated with XRD and the textural and morphological data, obtained by specific surface areas determination and TEM-EDS measurements. In the case of Bioglass® 45S5, a comparison at corresponding reaction times indicates that the precipitation of an amorphous Ca-phosphate phase is faster in AS, but the crystallization of HA/HCA is delayed in AS with respect to the TRIS solution. For fluoride-containing glasses, the sample HCaCaF2 5%, in which CaF2 replaces part of CaO, possesses the fastest rate for HA/HCA crystallization (1 week) in AS. Some lines of interpretation for these results are proposed.
2011
257
4185
4195
F-containing bioactive glasses; Protein adsorption; Dissolution/reaction study; Surface characterization
Valentina Aina; Luca Bertinetti; Giuseppina Cerrato; Marta Cerruti; Gigliola Lusvardi; Gianluca Malavasi; Claudio Morterra; Linda Tacconi; Ledi Menabue
File in questo prodotto:
File Dimensione Formato  
Saliva_appl_surf_sci.pdf

Accesso riservato

Tipo di file: MATERIALE NON BIBLIOGRAFICO
Dimensione 1.1 MB
Formato Adobe PDF
1.1 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/80330
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 31
  • ???jsp.display-item.citation.isi??? 30
social impact