Low-consistency, high-moisture feces have been observed in large dogs, compared to small dogs, and particularly in sensitive breeds (e.g., German Shepherd). The aim of this work was to determine if higher colonic protein fermentation is responsible for poorer fecal quality in large sensitive dogs. Twenty seven bitches were allotted to 4 groups based on size and digestive sensitivity: small, medium, large tolerant, and large sensitive. Five experimental diets varying in protein source [highly digestible wheat gluten (WG) vs. medium digestible poultry meal (PM), and protein concentration from 21.4 to 21.6 (LP) to 38.2 to 39.2% CP (HP)] were tested. Diets were fed for 14 d followed by a 12-d transition period. Digestive fermentation by-products were investigated in fresh stools [ammonia, phenol, indole, and short chain fatty acids including acetate, propionate, and butyrate (C2-C4 SCFA), branched-chain fatty acids (BCFA) and valerate] and in urine (phenol and indole). Bacterial populations in feces were identified. The PM diets resulted in greater fecal concentrations of ammonia, BCFA, valerate, indole, and C2-C4 SCFA than WG diets (P = 0.002, P < 0.001, P = 0.039, P = 0.003, and P = 0.012, respectively). Greater concentrations of ammonia, BCFA, and valerate were found in the feces of dogs fed HP compared with LP diets (P < 0.001, P < 0.001, and P = 0.012, respectively). The concentrations of ammonia, valerate, phenol, and indole in feces of large sensitive dogs were greater (P < 0.001, P < 0.001, P = 0.002, and P = 0.019, respectively) compared with the other groups. The Enterococcus populations were greater in feces of dogs fed with PMHP rather than WGLP diets (P = 0.006). Urinary phenol and indole excretion was greater when dogs were fed PM than WG diets (P < 0.001 and P = 0.038, respectively) and HP than LP diets (P = 0.001 and P = 0.087, respectively). Large sensitive dogs were prone to excrete a greater quantity of phenol in urine (P < 0.001). A diet formulated with highly digestible protein, such as WG, led to lower concentrations of protein-based fermentation products in feces together with improved fecal quality in dogs, especially in large sensitive ones. Poor fecal quality in large sensitive dogs could be partly related to the pattern of protein fermentation in the hindgut.

Influence of dietary protein content and source on colonic fermentative activity in dogs differing in body size and digestive tolerance

VENDA DA GRACA NERY, JOANA MARIA;
2012-01-01

Abstract

Low-consistency, high-moisture feces have been observed in large dogs, compared to small dogs, and particularly in sensitive breeds (e.g., German Shepherd). The aim of this work was to determine if higher colonic protein fermentation is responsible for poorer fecal quality in large sensitive dogs. Twenty seven bitches were allotted to 4 groups based on size and digestive sensitivity: small, medium, large tolerant, and large sensitive. Five experimental diets varying in protein source [highly digestible wheat gluten (WG) vs. medium digestible poultry meal (PM), and protein concentration from 21.4 to 21.6 (LP) to 38.2 to 39.2% CP (HP)] were tested. Diets were fed for 14 d followed by a 12-d transition period. Digestive fermentation by-products were investigated in fresh stools [ammonia, phenol, indole, and short chain fatty acids including acetate, propionate, and butyrate (C2-C4 SCFA), branched-chain fatty acids (BCFA) and valerate] and in urine (phenol and indole). Bacterial populations in feces were identified. The PM diets resulted in greater fecal concentrations of ammonia, BCFA, valerate, indole, and C2-C4 SCFA than WG diets (P = 0.002, P < 0.001, P = 0.039, P = 0.003, and P = 0.012, respectively). Greater concentrations of ammonia, BCFA, and valerate were found in the feces of dogs fed HP compared with LP diets (P < 0.001, P < 0.001, and P = 0.012, respectively). The concentrations of ammonia, valerate, phenol, and indole in feces of large sensitive dogs were greater (P < 0.001, P < 0.001, P = 0.002, and P = 0.019, respectively) compared with the other groups. The Enterococcus populations were greater in feces of dogs fed with PMHP rather than WGLP diets (P = 0.006). Urinary phenol and indole excretion was greater when dogs were fed PM than WG diets (P < 0.001 and P = 0.038, respectively) and HP than LP diets (P = 0.001 and P = 0.087, respectively). Large sensitive dogs were prone to excrete a greater quantity of phenol in urine (P < 0.001). A diet formulated with highly digestible protein, such as WG, led to lower concentrations of protein-based fermentation products in feces together with improved fecal quality in dogs, especially in large sensitive ones. Poor fecal quality in large sensitive dogs could be partly related to the pattern of protein fermentation in the hindgut.
2012
90
8
2570
2580
http://www.journalofanimalscience.org/content/90/8/2570.long
bacteria; dietary protein; dog; fecal quality; fermentation products
J. Nery; R. Goudez; V. Biourge; C. Tournier; V. Leray; L. Martin; C. Thorin; P. Nguyen; H. Dumon
File in questo prodotto:
File Dimensione Formato  
J ANIM SCI-2012-Nery-2570-80.pdf

Accesso aperto

Tipo di file: PDF EDITORIALE
Dimensione 773.63 kB
Formato Adobe PDF
773.63 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/94132
Citazioni
  • ???jsp.display-item.citation.pmc??? 28
  • Scopus 47
  • ???jsp.display-item.citation.isi??? 47
social impact