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Abstract
We deal, for the classical N -body problem, with the existence of action minimiz-
ing half entire expansive solutions with prescribed asymptotic direction and initial
configuration of the bodies. We tackle the cases of hyperbolic, hyperbolic-parabolic
and parabolic arcs in a unified manner. Our approach is based on the minimization
of a renormalized Lagrangian action on a suitable functional space. With this new
strategy, we are able to confirm the already-known results of the existence of both
hyperbolic and parabolic solutions, and we prove for the first time the existence of
hyperbolic-parabolic solutions for any prescribed asymptotic expansion in a suitable
class. Associated with each element of this class we find a viscosity solution of the
Hamilton-Jacobi equation as a linear correction of the value function. Besides, we
also manage to give a precise description of the growth of parabolic and hyperbolic-
parabolic solutions.

1 Introduction and main results

In this paper, we deal with half entire solutions to the N -body problem of Celestial
Mechanics in the Euclidean space R

d of hyperbolic, parabolic or mixed hyperbolic-
parabolic type. We first investigate the existence of trajectories to the gravitational
N -body problem having prescribed growth at infinity. This classical line of research
has recently been re-energized by the injection of new methods of analysis, of per-
turbative, variational, geometric and/or analytic functional nature. Indeed, in addi-
tion to the classical literature on the subject [1, 9, 23, 28, 29], we quote the recent
results about the existence of hyperbolic solutions [11, 15, 17, 20], parabolic ones
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[3–5, 18, 19, 30] and hyperbolic-parabolic ones [6], without neglecting those ending
in an oscillatory manner [13, 14, 25] and references therein.

To start with, let us consider N point masses m1, . . . ,mN > 0 moving under the
action of the mutual attraction, with the inverse-square law of universal gravitation.
We denote the components of the configuration vector x = (r1, . . . , rN ) ∈R

dN of the
positions of the bodies and by |ri − rj | the Euclidean distance between two bodies i

and j . Newton’s equation of motion for the i-th body of the N -body problem reads
as

mir̈i = −
N∑

j=1,...,N, j �=i

mimj

ri − rj

|ri − rj |3 . (1.1)

Since these equations are invariant by translation, we can fix the origin of our inertial
frame at the center of mass of the system. We can thus define the configuration space
of the system as

X =
{
x = (r1, . . . , rN ) ∈R

dN ,

N∑

i=1

miri = 0

}

and denote by � = {x ∈ X | ri �= rj ∀ i �= j} ⊂ X the set of configurations without
collisions, which is open and dense in X , and with � its complement, that is the
collision set. Now we can write the equations of motion as

Mẍ = ∇U(x), (1.2)

where M = diag(m1Id, . . . ,mNId) is the matrix of the masses and the function U :
� → R∪ {+∞} is the Newtonian potential

U(x) =
∑

i<j

mimj

|ri − rj | . (1.3)

Newton’s equations define an analytic local flow on � × R
dN with a first integral

given by the mechanical energy:

h = 1

2
‖ẋ‖2

M − U(x).

We will use ‖ · ‖M to denote the norm induced by the mass scalar product

〈x, y〉M =
N∑

i=1

mi〈ri , si〉, for any x = (r1, . . . , rN ), y = (s1, . . . , sN ) ∈X ,

where, with a little abuse, 〈·, ·〉 denotes the standard scalar product in R
d and also in

X .
In this paper we will be concerned with the class of expansive motions, which is

defined in the following way.
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Definition 1.1 A motion x : [0,+∞) → � is said to be expansive when all the mutual
distances diverge, that is, when |ri(t) − rj (t)| → +∞ as t → +∞ for all i < j .
Equivalently, the motion is expansive if U(x(t)) → 0 as t → +∞.

From the conservation of the energy, we observe that, since U(x(t)) → 0 implies
‖ẋ(t)‖2

M → 2h as t → +∞, expansive motions can only occur at nonnegative ener-
gies.

For a given motion, we introduce the minimum and the maximum separation be-
tween the bodies at time t as the two functions

r(t) = min
i<j

|ri(t) − rj (t)| and R(t) = max
i<j

|ri(t) − rj (t)|,

where we write | · | to denote the standard Euclidean norm in R
d . The next funda-

mental theorems give us a more accurate description of the system’s expansion.

Theorem 1.2 (Pollard, 1967 [27]) Let x be a motion defined for all t > t0. If r is
bounded away from zero, then we have that R = O(t) as t → +∞. In addition,
R(t)/t → +∞ if and only if r(t) → 0.

Theorem 1.3 (Marchal-Saari, 1976 [23]) Let x be a motion defined for all t > t0. Then
either R(t)/t → +∞ and r(t) → 0, or there is a configuration a ∈ X such that
x(t) = at + O(t2/3). In particular, for superhyperbolic motions (i.e. motions such
that lim supt→+∞ R(t)/t = +∞) the quotient R(t)/t diverges.

Theorem 1.4 (Marchal-Saari, 1976 [23]) Suppose that x(t) = at + O(t2/3) for some
a ∈ X and that the motion is expansive. Then, for each pair i < j such that ai = aj ,
we have |ri(t) − rj (t)| ≈ 1 t2/3.

Next, let us recall the well-known Chazy classification of the expansive motions
for the N -body problem (cfr. [9]), based on the asymptotic order of growth of the
distances between the bodies. In light of Theorem 1.2, expansive motions cannot be
superhyperbolic, and hence they have the form x(t) = at + O(t2/3) for some limit
a ∈ X . Assuming that the center of mass of the system is at rest, Chazy classified
these motions in three classes:

• Hyperbolic: a ∈ � and |ri(t) − rj (t)| ≈ t for all i < j ;
• Hyperbolic-parabolic: a ∈ � but a �= 0;
• Completely parabolic: a = 0 and |ri(t) − rj (t)| ≈ t2/3 for all i < j .

The following definition is in order.

Definition 1.5 A motion x(t) is said to have limit shape when there is a time-
dependent similarity S(t) of the space R

d such that S(t)x(t) converges to some con-
figuration a �= 0.

1Given positive functions f and g, we write f ≈ g when there exist two positive constants α and β such

that α ≤ f
g ≤ β .
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In our case, there is a diagonal action of S(t), that is S(t)x = (S(t)r1, . . . , S(t)rN)

for x = (r1, . . . , rN ) ∈ X . In particular, the limit shape of a (half) hyperbolic motion
is its asymptotic velocity a = limt→+∞ x(t)

t
(it is a consequence of Theorem 2.5

below), while the limit shape (if it exists) of a (half) parabolic motion must be a
central configuration, that is, a critical point of the potential U constrained on the
inertial ellipsoid E = {x ∈ X : ‖x‖2

M = 1}.
In this paper, we are going to tackle the existence of half entire expansive solutions

for the Newtonian N -body problem from a unified perspective, using a global varia-
tional approach which involves a suitably renormalized Lagrangian action functional,
as the usual Lagrangian can not be integrable on the half line. In particular, referring
to Chazy’s classification, we will show a proof of existence of motions for each one
of the previous three classes of motions. As a first step, we shall revisit recent works
by E. Maderna and A. Venturelli about the existence of half hyperbolic and parabolic
trajectories from this new angle.

Theorem 1.6 (Maderna and Venturelli 2020, [20]) Given d ∈ N, d ≥ 2, for the New-
tonian N -body problem in R

d there is a hyperbolic motion x : [1,+∞) → X of the
form

x(t) = at − log(t)∇U(a) + O(1) as t → +∞,

for any initial configuration x0 = x(1) ∈ X and for any collisionless configuration
a ∈ �.

As far as the parabolic case is concerned, in addition to providing an alternative
proof, we will be able to extend the result of Maderna and Venturelli [19] by improv-
ing the estimate of the remainder as follows.

Theorem 1.7 Given d ∈ N, d ≥ 2, for the Newtonian N -body problem in R
d there is

a parabolic solution x : [1,+∞) → X of the form

x(t) = βbmt2/3 + o(t1/3+
) as t → +∞, (1.4)

for any initial configuration x0 = x(1) ∈X , for any minimal normalized central con-

figuration bm and for β = 3
√

9
2U(bm).

Here, a minimal central configuration is a minimizer of the potential U constrained
to the inertia ellipsoid E = {x ∈X : ‖x‖2

M = 1}.
As said, the existence of hyperbolic and parabolic solutions for the Newtonian N -

body problem has already been proved by Maderna and Venturelli in 2020 and 2009,
respectively. In [20], the authors proved the existence of hyperbolic motions for any
prescribed limit shape, and initial configuration of the bodies and any positive value
of the energy. Their approach is based on the construction of global viscosity solu-
tions for the Hamilton-Jacobi equation H(x,∇u) = h. In [19], for any starting con-
figuration, they proved the existence of parabolic arcs asymptotic to any prescribed
normalized minimal central configuration. More specifically, these solutions were ob-
tained as the limits of solutions of sequences of approximating two-point boundary
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value problems. To exclude collisions, both proofs in [20] and [19] invoke Marchal’s
Principle, which ensures the absence of collisions in action-minimizing paths (Theo-
rem 2.1).

Compared to Maderna and Venturelli’s articles, in this paper we show alternative
and simpler proofs for the existence of hyperbolic and parabolic solutions in a unified
framework, which is based on a straightforward application of the Direct Method of
the Calculus of Variations to minimize the renormalized Lagrangian actions associ-
ated to the problem. This approach has the advantage of allowing us to complement
the existence of parabolic arcs with their (almost exact) expansion (1.4).

Finally, after proving Theorems 1.6 and 1.7, we will extend our approach to sim-
ilarly prove the existence of hyperbolic-parabolic solutions for the N -body problem.
In order to state our main result we need to introduce the a-cluster partition associ-
ated with a collision asymptotic velocity a ∈ � \ {0}, where clusters are the equiva-
lence classes of the relation i ∼ j ⇐⇒ ai − aj = 0. Given a cluster K , we consider
the associated partial potential UK , where the sum in (1.3) is restricted to the cluster
K . The a-clustered potential Ua is the sum of all the cluster potentials of the partition.
Now we can state our main theorem:

Theorem 1.8 Given d ∈ N, d ≥ 2, for the Newtonian N -body problem in R
d there is

a hyperbolic-parabolic motion x : [1,+∞) → X of the form

x(t) = at + βbmt2/3 + o(t1/3+
) as t → +∞,

for any initial configuration x0 = x(1) ∈ X , for any collision configuration a ∈ �,
for any normalized minimal central configuration bm ∈ X of the a-clustered potential
and for any choice of the energy constant h > 0 (see Sect. 5 for the exact definition of
β and bm).

Intuitively, hyperbolic-parabolic motions are those expansive motions of the form
x(t) = at + o(t), as t → +∞, when their limit shapes have collisions, that is,
a ∈ � \ {0}. This means that hyperbolic-parabolic motions can be viewed as clus-
ters of bodies moving asymptotically with linear growth, while the distances of the
bodies inside each cluster grow with a rate of order t2/3 and, referred to its center
of mass, the cluster has a limit shape which is a prescribed minimal configuration
of the cluster potential UK . For the Newtonian N -body problem, the existence of
hyperbolic-parabolic solutions for any prescribed positive energy and any given ini-
tial configuration of the bodies has been tackled by Burgos in [6], where his proof
follows from and application of Maderna and Venturelli’s Theorem on the existence
of hyperbolic motions and a limiting procedure as the limit shape approaches the
collision set. With respect to Burgos’ result, we can provide a much wider class of
such hyperbolic-parabolic trajectories, associated with any asymptotic speed a ∈ �

and minimal a-clustered central configuration bm. Moreover, our approach provides
much more detailed information about the asymptotic behavior of the solution and
a better description of the motion of the bodies. Indeed, to prove Theorem 1.8, we
partition the set of bodies following the natural cluster partition that was presented
by Burgos and Maderna in [7] and is defined as follows: if x(t) = (r1(t), . . . , rN (t))
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Fig. 1 Example of a cluster partition of four bodies in a hyperbolic-parabolic motion. Supposing
a1 = a2 = a3 �= a4, the index set N = {1,2,3,4} is partitioned into the clusters K1 = {1,2,3} and
K2 = {4}, so |ri (t) − rj (t)| ≈ t2/3, ∀ i < j , i, j ∈ K1. This means that the point masses m1, m2, m3

move in a triangular parabolic expansion at infinity whose scale is t2/3 when is referred to the clusters’s
barycenter, while the escape of the mass m4 from the center of mass of the other three bodies, has a linear
growth at infinity

and a = (a1, . . . , aN), then ai = aj if and only if |ri(t) − rj (t)| = O(t2/3), and the
partition of the set of bodies is defined by this equivalence relation (see Fig. 1 for an
example of a cluster partition). Using this particular partition, we are able to decom-
pose the Lagrangian action into two terms: the first is related to the hyperbolic motion
of the clusters’ barycenters and the second is related to the parabolic motion of the
bodies inside the clusters. Through similar proofs to the ones in Theorems 1.6 and
1.7, we can thus apply the Direct Method of the Calculus of Variation and Marchal’s
Principle also to the case of hyperbolic-parabolic motions.

As a consequence of our variational setting, we also obtain the following corollary,
where the absence of collisions is guaranteed by Marchal’s Principle and the free-time
minimization property (see Definition 1.10 below) is proved in Corollary 6.3.

Corollary 1.9 The motions x(t) given by Theorems 1.6, 1.7 and 1.8 are continuous at
t = 1 and collisionless for t > 1. Moreover, they are free-time action minimizers at
their energy level.

As already pointed out by Maderna and Venturelli, a family of hyperbolic trajec-
tories that are minimal in free time is associated, via the Busemann function, with a
solution of the time-independent Hamilton-Jacobi equation. A further advantage of
the approach through the direct minimization of a renormalized action functional is
that a value function, dependent on the initial point, is directly defined. As we shall
outline in Sect. 7, a linear correction to the value function is, as expected from theory,
a solution of the Hamilton-Jacobi equation.

1.1 The renormalized action principle

Our general strategy in the proofs of Theorems 1.6, 1.7 and 1.8 consists in proving
the existence of free-time minimizers x(t), having the desired initial configuration
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and expansion at infinity, for the Lagrangian action associated to Newton’s equations
(1.2), which is defined as usual (cfr. (2.2)):

AL(x) =
∫ +∞

1
L(x(t), ẋ(t)) dt.

Definition 1.10 A curve γ : I → X is a free-time minimizer for the Lagrangian action
at energy h if ∀ [a, b], [a′, b′] ⊂ I and ∀ σ : [a′, b′] → X such that γ (a) = σ(a′) and
γ (b) = σ(b′), it holds

∫ b

a

L(γ, γ̇ ) dt + h(b − a) ≤
∫ b′

a′
L(σ, σ̇ ) dt + h(b′ − a′).

We seek hyperbolic, parabolic or hyperbolic-parabolic trajectories as free-time
minimizers having an a priori infinite Lagrangian action. This fact calls the intro-
duction of a Renormalized Action Principle as follows. In each of the three cases we
fix a background reference curve r0, taking the form at , βbmt2/3 or at + βbmt2/3 in
accordance with the statement of the corresponding Theorem, and we seek solutions
of the form

x(t) = r0(t) + ϕ(t) + x0 − r0(1),

for some ϕ belonging to the appropriate Sobolev space (cfr. (2.3)):

D = {ϕ : ϕ(1) = 0 and
∫ ∞

1
‖ϕ̇‖2

M < +∞},

which ensures ‖ϕ(t)‖ = o(t1/2) as t → +∞ (see §2 for details). So, x0 is the starting
point and r0 is definitely the guiding term of the sought curve for large t’s, as its
minimal growth rate in the three cases is t2/3. The correction term ϕ will be chosen
to minimize a Renormalized action.

Definition 1.11 (Renormalized Lagrangian action) Given r0 and x0, we define the
Renormalized Lagrangian action as

Aren(ϕ) =
∫ +∞

1

1

2
‖ϕ̇(t)‖2

M + U(ϕ(t) + r0(t) + x0 − r0(1))

− U(r0(t)) − 〈Mr̈0(t), ϕ(t)〉 dt.

(1.5)

In contrast to the usual Lagrangian action, the renormalized one is not positive
defined. Therefore, a major difficulty will consist in proving its coercivity which, to-
gether with weak lower semicontinuity, will yield the actual existence of minimizers.
Once done, we will conclude by exploiting the following principle:

Renormalized Action Principle Given x0, r0 and D as above, if ϕmin ∈ D is a mini-
mizer of the renormalized Lagrangian action, then the corresponding expansive mo-
tion

x(t) = r0(t) + ϕmin(t) + x0 − r0(1)
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is a free-time minimizer of the Lagrangian action and, in particular, is a solution of
Newton’s equations (1.2) for any t ∈ (1,+∞) (or for any t ∈ [1,+∞), if x0 ∈ �).

Proof Suppose that a curve ϕ ∈ D is a minimizer of the renormalized Lagrangian
action and consider the associated expansive motion x(t) = r0(t)+ϕ(t)+x0 − r0(1).
By Hamilton’s Principle of Least Action, since ϕ is a minimizer, it is a solution of
the Euler-Lagrange equations associated with Aren:

Mϕ̈(t) = ∇U(r0(t) + ϕ(t) + x0 − r0(1)) −Mr̈0(t) (1.6)

at any time t ∈ [1,+∞) such that x(t) ∈ �. Moreover, since Corollary 6.3 asserts
that x(t) is a free-time minimizer for the Lagrangian action, we can invoke Marchal’s
Principle (Theorem 2.1), to deduce that x(t) has no collisions for any t ∈ (1,+∞).
We can thus conclude that ϕ solves the above systems and, equivalently, that x(t) is
a solution of equations (1.2) for any t ∈ (1,+∞). �

In order to shorten the notation, throughout the paper we will usually write A
instead of Aren when there is no ambiguity in interpretation.

2 The variational setting

For the N -body problem, the Hamiltonian H is defined over � ×R
dN as

H(x,p) = 1

2
‖p‖2

M−1 − U(x), (2.1)

where the potential U is defined in (1.3), while the Lagrangian is defined over � ×
R

dN as

L(x, v) = 1

2
‖v‖2

M + U(x). (2.2)

This means, in particular, that L and H become infinite when x has collisions. Given
two configurations x, y ∈X and T > 0, we denote by C(x, y,T ) the set of absolutely
continuous curves γ : [a, b] → X going from x to y in time T = b − a and we
write C(x, y) = ⋃

T >0 C(x, y,T ). We define the Lagrangian action of a curve γ ∈
C(x, y,T ) as the functional

AL(γ ) =
∫ b

a

L(γ, γ̇ ) dt =
∫ b

a

1

2
‖γ̇ ‖2

M + U(γ ) dt.

Hamilton’s principle of least action implies that if a curve γ is a minimizer of the
Lagrangian action in C(x, y,T ), then γ satisfies Newton’s equations at every time
t ∈ [a, b] in which γ (t) has no collisions. However, as Poincaré already noticed in
[26], there are curves with isolated collisions and finite action, which means that
minimizing orbits may not always be true motions. The following theorem, ensuring
the absence of collisions for minimal arcs, represents a big step forward in this the-
ory, since it enabled the application of variational techniques to study the Newtonian
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N -body problem. The main idea to prove the theorem via averaged variations was
introduced by Marchal in [22], while more complete proofs are due to Chenciner in
[10] and Ferrario and Terracini in [12].

Theorem 2.1 (Marchal [22], Chenciner [10], Ferrario and Terracini [12]) Given x, y ∈
X , if γ ∈ C(x, y) is defined on some interval [a, b] and satisfies

AL(γ ) = min{A(σ ) | σ ∈ C(x, y, b − a)},

then γ (t) ∈ � for all t ∈ (a, b).

Marchal’s Theorem will be fundamental in our proofs, since it will guarantee that
the minimizers of the action (whose existence is the object of our proofs) are in fact
true motions of the N -body problem free of collisions. The Principle of Least Action,
jointly with Theorem 2.1, has been widely applied in the search for collisionless
periodic solutions to the N -body problem (cfr. e.g. [12, 24]). However, we must now
build a suitable variational framework for the search of expansive solutions.

Our minimization will take place on the functional space

D = D1,2
0 ([1,+∞),X ) = {ϕ ∈ H 1

loc([1,+∞),X ) : ϕ(1) = 0

and
∫ +∞

1
‖ϕ̇(t)‖2

M dt < +∞},
(2.3)

which is endowed with the norm

‖ϕ‖D =
(∫ +∞

1
‖ϕ̇(t)‖2

M dt

)1/2

.

Remark 2.2 Given a configuration ϕ = (ϕ1, . . . , ϕn) ∈ D1,2
0 ([1,+∞),X ), we will say

that its components belong to the space D1,2
0 ([1,+∞),Rd) and the D1,2

0 -norm of
each component is

‖ϕi‖D =
(∫ +∞

1
|ϕ̇i (t)|2 dt

)1/2

,

for i = 1, . . . ,N . We will write D1,2
0 (1,+∞) to denote both the spaces D1,2

0 ([1,

+∞),X ) and D1,2
0 ([1,+∞),Rd), since it will be trivial to distinguish them.

Proposition 2.3 (Cfr. Boscaggin-Dambrosio-Feltrin-Terracini, 2021 [5]) The space
D1,2

0 (1,+∞) is a Hilbert space containing the set C∞
c (1,+∞) as a dense subspace.

We recall here the following paramount Hardy-type inequality, which will be used
several times in the paper. It states that the space D1,2

0 (1,+∞) is continuously em-
bedded in a weighted L2-space with measure dt/t2.
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Proposition 2.4 (Hardy inequality, Cfr. Boscaggin-Dambrosio-Feltrin-Terracini, 2021
[5]) For every ϕ ∈ D1,2

0 (1,+∞), it holds that

∫ +∞

1

‖ϕ(t)‖2
M

t2 dt ≤ 4
∫ +∞

1
‖ϕ̇(t)‖2

M dt, (2.4)

and, moreover,

sup
t∈[1,+∞)

‖ϕ(t)‖2
M

t − 1
≤

∫ +∞

1
‖ϕ̇(t)‖2

M dt. (2.5)

In order to prove the existence of minima for the functional A on D1,2
0 (1,+∞),

we will properly renormalize the Lagrangian action and, after proving its coercivity
and weak lower semicontinuity, we will apply the Direct Method of the Calculus of
Variations.

To describe the asymptotic expansion of our motions, we will use the following
theorem and lemma. The former, applies to the cases of hyperbolic and hyperbolic-
parabolic motions, while the latter, which is typically known as Chazy’s Lemma,
states that the set of initial conditions in the phase space that generate hyperbolic
motions is an open set and that the map defined on this set that gives the asymptotic
velocity in the future is continuous.

Theorem 2.5 (Chazy, 1922 [9]) Let x(t) be a motion with energy constant h > 0 and
defined for all t > t0.

(i) The limit

lim
t→+∞

R(t)

r(t)
= lim

t→+∞
maxi<j |ri(t) − rj (t)|
mini<j |ri(t) − rj (t)| = L ∈ [1,+∞]

always exists.
(ii) If L < +∞, there are a configuration a ∈ � and some function P , which is

analytic in a neighborhood of (0,0), such that for every t large enough, we have

x(t) = at − log(t)∇U(a) + P(u, v),

where u = 1/t and v = log(t)/t .

Lemma 2.6 (Maderna-Venturelli, 2020 [20]) Working on an Euclidean space E,
which is endowed with an Euclidean norm ‖ · ‖, let U : EN → R ∪ {+∞} be
a homogeneous potential of degree −1 of class C2 on the open set � = {x ∈
EN | U(x) < +∞}. Let x : [0,+∞) → � be a given solution of ẍ = ∇U(x) sat-
isfying x(t) = at + o(t) as t → +∞ with a ∈ �. Then we have the following:

1. The solution x has asymptotic velocity a, meaning that

lim
t→+∞ ẋ(t) = a.
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2. (Chazy’s continuity of the limit shape). Given ε > 0, there are constants t1 > 0
and δ > 0 such that, for any maximal solution y : [0, T ) → � satisfying ‖y(0) −
x(0)‖ < δ and ‖ẏ(0) − ẋ(0)‖ < δ, we have

• T = +∞, ‖y(t) − at‖ < tε for all t > t1;
• there is b ∈ � with ‖b − a‖ < ε for which y(t) = bt + o(t).

3 Existence of minimal half hyperbolic motions

This section is devoted to the proof of Theorem 1.6. The class of hyperbolic motions
has the following equivalent definition, also due to Chazy (see [9]).

Definition 3.1 Hyperbolic motions are those motions such that each body has a differ-
ent limit velocity vector, that is, ṙi (t) → ai ∈ R

d , as t → +∞, and ai �= aj whenever
i �= j .

We consider the differential system
⎧
⎪⎨

⎪⎩

Mẍ = ∇U(x)

x(1) = x0

limt→+∞ ẋ(t) = a

, (3.1)

where x0 ∈ X and a ∈ �.
To prove the existence of hyperbolic motions to Newton’s equations (3.1), we will

look for solutions having the form x(t) = ϕ(t)+at +x0 −a, where ϕ : [1,+∞) → X
belongs to the space D1,2

0 (1,+∞). We can thus equivalently study the system

⎧
⎪⎨

⎪⎩

Mϕ̈ = ∇U(ϕ + x0 − a + at)

ϕ(1) = 0

limt→+∞ ϕ̇(t) = 0

. (3.2)

Taking advantage of the problem’s variational structure, we would be tempted to
prove the existence of hyperbolic motions through the minimization of the La-
grangian action associated to the system (3.2), that is, the functional

∫ +∞

1

1

2
‖ϕ̇(t)‖2

M + U(ϕ(t) + x0 − a + at) dt, (3.3)

where

U(ϕ(t) + x0 − a + at) =
∑

i<j

mimj

|(ϕi(t) + x0
i − ai + ait) − (ϕj (t) + x0

j − aj + aj t)|
.

In attempting to work with the action functional as above, the major problem we
encounter is that U(ϕ(t) + x0 − a + at) needs not to be integrable at infinity. In-
deed, when ϕ ∈ C∞

0 ([1,+∞)), U(ϕ(t) + x0 − a + at) decays as 1
t

for t → +∞.
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To overcome this problem, as we can add arbitrary functions to the Lagrangian with-
out changing the associated Euler-Lagrange equations, we can renormalize the action
functional in order to have a finite integral in the following way:

A(ϕ) = Aren(ϕ) =
∫ +∞

1

1

2
‖ϕ̇(t)‖2

M + U(ϕ(t) + x0 − a + at) − U(at) dt.

3.1 Coercivity

In order to apply the Direct Method of the Calculus of Variations, we start by proving
the coercivity of the functional, that is to say, that A(ϕ) → +∞ as ‖ϕ‖D → +∞.
From now on, we will use the notations ϕij = ϕi − ϕj , x0

ij = x0
i − x0

j and aij =
ai − aj . We observe that the action can be equivalently written as

A(ϕ) =
∫ +∞

1

1

2

N∑

i=1

mi |ϕ̇i (t)|2 + U(ϕ(t) + x0 − a + at) − U(at) dt,

where

U(ϕ(t) + x0 − a + at) − U(at)

=
∑

i<j

(
mimj

|(ϕi(t) + x0
i − ai + ait) − (ϕj (t) + x0

j − aj + aj t)|
− mimj

|ai − aj |t
)

=
∑

i<j

(
mimj

|ϕij (t) + x0
ij − aij + aij t |

− mimj

|aij |t
)

.

Since we are working in the space of configurations whose center of mass is null at
every time, we can use Leibniz’s formula

N∑

i=1

mi |ϕ̇i (t)|2 = 1

M

∑

i<j

mimj |ϕ̇i (t) − ϕ̇j (t)|2, (3.4)

where M = ∑N
i=1 mi . Indeed, it holds

∑

i<j

mimj |ϕ̇i (t) − ϕ̇j (t)|2

= 1

2

∑

i,j

mimj (|ϕ̇i (t)|2 + |ϕ̇j (t)|2 − 2〈ϕ̇i (t), ϕ̇j (t)〉)

= 1

2

(
M

N∑

i=1

mi |ϕ̇i (t)|2 + M

N∑

j=1

mj |ϕ̇j (t)|2 − 2〈
N∑

i=1

miϕ̇i(t),

N∑

j=1

mj ϕ̇j (t)〉
)

= 1

2

(
M

N∑

i=1

mi |ϕ̇i (t)|2 + M

N∑

j=1

mj |ϕ̇j (t)|2
)
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= M

N∑

i=1

mi |ϕ̇i (t)|2.

Using (3.4), we can then write the Lagrangian action as

A(ϕ) =
∫ +∞

1

∑

i<j

mimj

( |ϕ̇ij (t)|2
2M

+ 1

|ϕij (t) + x0
ij − aij + aij t |

− 1

|aij |t
)

dt.

Using again Leibniz’s formula (3.4), we also notice that ‖ϕ̇‖L2 → +∞ if and only
if there is i < j such that ‖ϕ̇i − ϕ̇j‖L2 → +∞. Thus, we can prove the coercivity of
the action by proving the coercivity of each term Aij , where

A(ϕ) =
∑

i<j

Aij (ϕ)

and

Aij (ϕ) =
∫ +∞

1
mimj

( |ϕ̇ij (t)|2
2M

+ 1

|ϕij (t) + x0
ij − aij + aij t |

− 1

|aij |t
)

dt.

Using the inequality

|ϕi(t)| ≤ ‖ϕi‖D
√

t, for every i = 1, . . . ,N, t ≥ 1 and ϕi ∈ D1,2
0 , (3.5)

which follows from (2.5), we have

U(ϕ(t) + x0 − a + at) − U(at)

≥
∑

i<j

(
mimj

‖ϕij‖D
√

t + |x0
ij − aij | + |aij |t

− mimj

|aij |t
)

;

We can then look for an upper bound for the integral
∫ +∞

1

(
1

|aij |t − 1

|aij |t + ‖ϕij‖D
√

t + |x0
ij − aij |

)
dt.

Using the change of variables t = s2, we obtain

2

|aij |
∫ +∞

1

(
1

s2 − 1

s2 + ‖ϕij ‖D
|aij | s + |x0

ij −aij |
|aij |

)
s ds. (3.6)

Since

s2 + ‖ϕij‖D
|aij | s + |x0

ij − aij |
|aij | =

(
s + ‖ϕij‖D

2|aij |
)2

− ‖ϕij‖2
D

4|aij |2 + |x0
ij − aij |
|aij |

= ‖ϕij‖2
D

4|aij |2
[(

2|aij |s
‖ϕij‖D + 1

)2

− 1 + 4|x0
ij − aij ||aij |
‖ϕij‖2

D

]
,
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(3.6) is equal to

2

|aij |
4|aij |2
‖ϕij‖2

D

∫ +∞

1

[
1

(
2|aij |s
‖ϕij ‖D

)2
− 1

(
2|aij |s
‖ϕij ‖D + 1

)2

− 1 + 4|x0
ij −aij ||aij |
‖ϕij ‖2

D

]
s ds. (3.7)

Changing variables again with τ = 2|aij |s
‖ϕij ‖D , we obtain that (3.7) is equal to

2

|aij |
∫ +∞

2|aij |
‖ϕij ‖D

[
1

τ 2 − 1

(τ + 1)2 − 1 + 4|x0
ij −aij ||aij |
‖ϕij ‖2

D

]
τ dτ.

Since we are interested in large values of ‖ϕij‖D , we can suppose that there is some

λ < 1 such that
4|x0

ij −aij ||aij |
‖ϕij ‖2

D
≤ λ. We then have

2

|aij |
∫ +∞

2|aij |
‖ϕij ‖D

[
1

τ 2
− 1

(τ + 1)2 − 1 + 4|x0
ij −aij ||aij |
‖ϕij ‖2

D

]
τ dτ

≤ 2

|aij |
∫ +∞

2|aij |
‖ϕij ‖D

[
1

τ 2
− 1

(τ + 1)2 − 1 + λ

]
τ dτ.

(3.8)

The integrand of the last integral is a positive function. We observe that it is asymp-
totic to 1

τ
as τ → 0 and to 1

τ 2 as τ → +∞. In particular, the integral exists at infinity,
uniformly in λ. Taking ‖ϕij‖D large enough, we can equivalently study the integral

∫ +∞

ε

[
1

τ 2
− 1

(τ + 1)2 − 1 + λ

]
τ dτ,

where ε = 2|aij |
‖ϕij ‖D < 1. Since the integrand is asymptotic to 1

τ
as τ → 0, it is equiva-

lent to consider the sum of integrals

∫ 1

ε

1

τ
dτ +

∫ +∞

1

[
1

τ 2
− 1

(τ + 1)2 − 1 + λ

]
τ dτ,

where the second integral is constant (we will call it C1) and does not depend on ε.
We have

∫ 1

ε

1

τ
dτ +

∫ +∞

1

[
1

τ 2
− 1

(τ + 1)2 − 1 + λ

]
τ dτ = log τ

∣∣∣∣
1

ε

+ C1 = − log ε + C1.

Then, as ‖ϕij‖D → +∞, we know that the integral on the right-hand side of (3.8)
behaves like

2

|aij |
(

− log
2|aij |

‖ϕij‖D + C1

)
= 2

|aij |
(

log‖ϕij‖D + C1 − log 2|aij |
)
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= 2

|aij | (log‖ϕij‖D + C2),

where C2 = C1 − log 2|aij |.
We have thus proved that

∫ +∞

1

(
1

|aij |t − 1

|aij |t + ‖ϕij‖D
√

t + |x0
ij − aij |

)
dt ≤ 2

|aij | (log‖ϕij‖D + C2).

This means that given R > 0, when ‖ϕij‖D ≥ R for R large enough, we have

Aij (ϕ) ≥ mimj

[‖ϕij‖2
D

2M
− 2

|aij | (log‖ϕij‖D + C2)

]

and we can conclude that Aij (ϕ) → +∞ as ‖ϕij‖D → +∞.

3.2 Weak lower semicontinuity

Now, we prove that the functional A is weakly lower semicontinuous. Since the ki-
netic term 1

2‖ϕ̇(t)‖M is convex, it is straightforward that the term
∫ +∞

1
1
2‖ϕ̇(t)‖2

M dt

is weakly lower semicontinuous. However, it is worthwhile noticing that Fatou’s
Lemma cannot be applied to the term

∫ +∞
1 U(ϕ(t) + x0 − a + at) − U(at) dt , since

the integrand is not a positive function, and we must proceed in a different way. We
know that there is at least a sequence of functions in D1,2

0 (1,+∞) that converges
uniformly on the compact subsets of [1,+∞). To show this, consider a bounded se-
quence (ϕn)n in D1,2

0 (1,+∞). We also know, by the definition of this space, that
‖ϕ̇n‖L2([1,+∞)) < +∞ and that ϕn(1) = 0, for every n. From the inequality

‖ϕ(t)‖M ≤ ‖ϕ̇‖L2

√
t − 1 ≤ ‖ϕ̇‖L2

√
t for every t ≥ 1, (3.9)

we have ‖ϕn(t)‖M ≤ ‖ϕ̇n‖L2
√

t for every t ≥ 1 and for every n, which means that
the L∞-norm in [1, T ] of ϕn is bounded, for every fixed T ≥ 1 and for every n. On
the other hand, we have

‖ϕn(t1) − ϕn(t2)‖M ≤ ‖ϕ̇n‖L2
√

t1 − t2,

for every t1, t2 ∈ [1,+∞) and for every n, which implies that the sequence (ϕn)n is
equicontinuous on each interval [1, T ], for T fixed. Then, by Ascoli-Arzelà’s Theo-
rem, we can say that for every fixed T ≥ 1 there is a subsequence (ϕnk )k that con-
verges uniformly on [1, T ] (and, consequently, it converges pointwise on each com-
pact). Besides, it can also be proved, through a diagonal procedure, that there is a
subsequence converging pointwise on [1,+∞).

Consider now a sequence (ϕn)n in D1,2
0 (1,+∞) converging weakly to some limit

ϕ ∈ D1,2
0 (1,+∞). By the properties of weak convergence we know that the sequence

is bounded on D1,2
0 (1,+∞) and, from the previous considerations, there is a sub-

sequence (ϕnk )k converging uniformly on compact subsets of [1,+∞) (and hence
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pointwise in [1,+∞)). We write

1

|x0
ij − aij + aij t + ϕn

ij (t)|
− 1

|aij t |

=
∫ 1

0

d

ds

[
1

|aij t + s(x0
ij − aij + ϕn

ij (t))|
]

ds.

(3.10)

However, this inequality holds only when the denominator of the integrand is not
zero, which happens for t sufficiently small. In particular, for all s ∈ (0,1) we have

|aij t + s(x0
ij − aij + ϕn

ij (t))| ≥ |aij |t − s(|x0
ij − aij | + ‖ϕn

ij‖D
√

t)

> |aij |t − (|x0
ij − aij | + ‖ϕn

ij‖D
√

t),

and, since |ϕn
ij (t)| ≤ k

√
t for k ∈ R

+ large enough, we have

|aij t + s(x0
ij − aij + ϕn

ij (t))| > |aij |t − (|x0
ij − aij | + k

√
t),

where the last term is larger than zero if t is larger than some T̄ = T̄ (k); it is easy
to compute T̄ by studying the function g(t) = |aij |t − [|x0

ij − aij | + k
√

t]. For these

reasons, it is better to study the potential term separately on the two intervals [1, T̄ ]
and [T̄ ,+∞).

We observe that U(x0 − a + at + ϕ) ∈ L1([1, T̄ ]), since

1

|x0
ij − aij + aij t + ϕn

ij (t)|
≤ 1

|x0
ij − aij | − |aij |t − ‖ϕn

ij‖D
√

t
.

Besides, since U is a positive function, we can use the pointwise convergence of the
sequence and Fatou’s Lemma to state that

∫ T̄

1

1

|x0
ij − aij + aij t + ϕij (t)|

dt ≤ lim inf
n→+∞

∫ T̄

1

1

|x0
ij − aij + aij t + ϕn

ij (t)|
dt.

Now, knowing that the sequence (ϕn)n is bounded, we wish to prove that the term
U(ϕn(t)+x0 −a +at)−U(at) converges in L1([T̄ ,+∞)). By using (3.10), we can
write

∫ +∞

T̄

1

|x0
ij − aij + aij t + ϕn

ij (t)|
− 1

|aij t | dt

=
∫ +∞

T̄

(∫ 1

0
−[aij t + s(x0

ij − aij + ϕn
ij (t))](x0

ij − aij + ϕn
ij (t))

|aij t + s(x0
ij − aij + ϕn

ij (t))|3
ds

)
dt.

Our goal is to find an upper bound for the term
∫ +∞

T̄

∣∣∣∣
1

|x0
ij − aij + aij t + ϕn

ij (t)|
− 1

|aij t |
∣∣∣∣ dt.
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To find the upper bound, we will need the inequality

|b + c|2
|b|2 − |c|2 ≥ 1

3
, for each b, c ∈ R

d such that |b| ≥ 2|c|, (3.11)

which can easily be proved by elementary calculus. By (3.11) and using the fact that
|x0

ij − aij | + ‖ϕn
ij‖D

√
t ≤ k′√t for k′ ∈ R

+ large enough, we thus have

∫ +∞

T̄

∣∣∣∣
∫ 1

0
− [aij t + s(x0

ij − aij + ϕn
ij (t))](x0

ij − aij + ϕn
ij (t))

|aij t + s(x0
ij − aij + ϕn

ij (t))|3
ds

∣∣∣∣ dt

≤
∫ +∞

T̄

(∫ 1

0

|x0
ij − aij + ϕn

ij (t)|
|aij t + s(x0

ij − aij + ϕn
ij (t))|2

ds

)
dt

≤
∫ +∞

T̄

(∫ 1

0
3

|x0
ij − aij | + ‖ϕn

ij‖D
√

t

|aij t |2 − s|x0
ij − aij + ‖ϕn

ij‖D
√

t |2 ds

)
dt

≤
∫ +∞

T̄

(∫ 1

0

3k′√t

|aij |2t2 − sk′t
ds

)
dt.

By choosing T̄ (k) � k′/|aij |2 so that |aij |2t > sk′ for all s ∈ (0,1) and for all t ∈
[T̄ ,+∞) (take k large enough), we have that the last integral is finite and we have
thus proved that there is a T̂ such that, for all T̄ ≥ T̂ ,

∫ +∞

T̄

∣∣∣∣
1

|x0
ij − aij + aij t + ϕn

ij (t)|
− 1

|aij t |
∣∣∣∣ dt < +∞.

From this result, the L1 convergence of the term U(ϕn(t) + x0 − a + at) − U(at)

follows: by the dominated convergence Theorem we have, in particular,

lim
n→+∞

∫ +∞

T̄

U(ϕn(t) + x0 − a + at) − U(at) dt

=
∫ +∞

T̄

U(ϕ(t) + x0 − a + at) − U(at) dt.

Thus, if we consider any sequence (ϕn)n in D1,2
0 (1,+∞) converging weakly to

some ϕ ∈ D1,2
0 (1,+∞), we have

A(ϕ) ≤ lim inf
n→+∞

∫ +∞

1

1

2
‖ϕ̇n(t)‖2

M + U(ϕn(t) + x0 − a + at) − U(at) dt,

which proves the weak lower semicontinuity of the renormalized Lagrangian action
in the space D1,2

0 (1,+∞).

Remark 3.2 The same reasoning leads to the continuity of the renormalized action
with respect to the strong topology, in all elements ϕ that do not give rise to collisions.
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3.3 Absence of collisions and hyperbolicity of the motion

Now, we can apply the Direct Method of the Calculus of Variations, which yields the
existence of a minimizer ϕ ∈ D1,2

0 (1,+∞) of the renormalized Lagrangian action,
and, consequently, the Renormalized Action Principle implies that ϕ is a solution of
equations

Mϕ̈(t) = ∇U(at + ϕ(t) + x0 − a).

It remains to prove that limt→+∞ ϕ̇(t) = 0. We already know that ϕ̇ ∈ L2 and that
there is some k ∈R

+ such that ‖ϕ(t)‖M ≤ k
√

t . By this last inequality, we have that

∑

i<j

mimj

1

|aij t + x0
ij − aij + ϕij (t)|

≤
∑

i<j

mimj

1

|aij |t − |x0
ij − aij | − k

√
t

and since |aij |t − |x0
ij − aij | − k

√
t → +∞ as t → +∞ for all i, j = 1, . . . ,N , we

obtain that limt→+∞ U(x(t)) = 0. Besides, since
∫ +∞

1 |ϕ̇ij (t)|2 dt < +∞, we have
that

lim inf
t→+∞ |ϕ̇ij (t)| = 0. (3.12)

Remark 3.3 A solution x(t) = at + ϕ(t) + x0 − a of the equation Mẍ = ∇U(x) has
positive energy. Indeed,

1

2
‖ẋ(t)‖2

M − U(x(t)) = 1

2

N∑

i=1

mi |ϕ̇i (t) + ai |2 − U(x(t)) = h,

and since by (3.12) there is some tk → +∞ such that limtk→+∞ ϕ̇i (tk) = 0, we have
h = 1

2‖a‖2
M.

By Remark 3.3, we can apply Chazy’s Lemma (Lemma 2.6), which implies that
the limit of ẋ(t) exists for t → +∞. Since, by (3.12), there is at least a sequence (tk)k
such that ẋ(tk) → a as tk → +∞, we can conclude that

lim
t→+∞ ẋ(t) = a.

Besides, we can apply Chazy’s Theorem (Theorem 2.5) to state that the minimizing
motion x has the asymptotic expansion

x(t) = at − log(t)∇U(a) + o(1) as t → +∞.

We have thus proved that x is a solution of the system
⎧
⎪⎨

⎪⎩

Mẍ = ∇U(x)

x(1) = x0

limt→+∞ ẋ(t) = a

,
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which means that there is a hyperbolic motion for the N -body problem, starting at
any initial configuration x0 and having prescribed asymptotic velocity a without col-
lisions.

4 Existence of minimal half completely parabolic motions

We now focus on the class of completely parabolic motions, that is, those motions that
have the form x(t) = at +O(t2/3) for t → +∞, with a = 0 and |ri(t)− rj (t)| ≈ t2/3

for i < j . Equivalently, we have the following definition.

Definition 4.1 An expansive solution x of the N -body problem is said to be parabolic
if the velocity of every body tends to zero.

In this section, we will prove Theorem 1.7. More specifically, we will prove, for
the N -body problem, the existence of orbits having the form

x(t) = βbt2/3 + o(t1/3+
), as t → +∞,

where β ∈R is a proper value and b is a minimal central configuration. The remainder
is o(t1/3+

) in the sense that it grows less than order γ for every γ > 1/3.

Definition 4.2 We say that b ∈ X is a central configuration if it is a critical point of
U when restricted to the inertial ellipsoid

E = {x ∈X : 〈Mx, x〉 = 1}.
A central configuration bm ∈ E is said to be minimal if

U(bm) = min
b∈E

U(b).

More precisely, we will work with normalized central configurations, that is, cen-
tral configurations b such that 〈Mb, b〉 = 1.

Remark 4.3 Obviously, as U is infinite on collisions, a minimal central configuration
bm has no collisions, i.e. bm ∈ �.

Given a Kepler potential U , we observe that from the definition of central config-
urations, it follows

∇U(b) = λMb,

where λ is a Lagrange multiplier. Besides, we have the equality

λ = λ〈Mb, b〉 = 〈∇U(b), b〉 = −U(b). (4.1)
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We first recall that there are self-similar solutions to Newton’s equations Mẍ =
∇U(x) having the form

x(t) = βbt2/3,

for a proper constant β and a central configuration b. Indeed

Mẍ = −2

9
Mβbt−4/3 = ∇U(x) = ∇U(βbt2/3) = 1

β2
t−4/3∇U(b) = 1

β2
t−4/3λMb

and, by (4.1), we also have

β3 = 9

2
U(b).

This means that, for β = 3
√

9
2U(b), x(t) = βbt2/3 is a homothetic solution of New-

ton’s equations.
Now, let us define

r0(t) = βbmt2/3,

where bm ∈ � is a normalized minimal central configuration. We wish to prove the
existence of solutions of the system

⎧
⎪⎨

⎪⎩

Mẍ = ∇U(x)

x(1) = x0

limt→+∞ ẋ(t) = 0

,

given x0 ∈X . We seek solutions having the form

x(t) = r0(t) + ϕ(t) + x0 − r0(1) = r0(t) + ϕ(t) + x̃0, (4.2)

where ϕ ∈ D1,2
0 (1,+∞). In this case, we have

∇U(x(t)) = Mẍ(t) = Mr̈0(t) +Mϕ̈(t) = ∇U(r0(t)) +Mϕ̈(t),

which means that

Mϕ̈(t) = ∇U(r0(t) + ϕ(t) + x̃0) − ∇U(r0(t)).

We can thus write the renormalized Lagrangian action as

A(ϕ) =
∫ +∞

1

1

2
〈Mϕ̇(t), ϕ̇(t)〉 + U(r0(t) + ϕ(t) + x̃0) − U(r0(t))

− 〈∇U(r0(t)), ϕ(t)〉 dt.

(4.3)

Besides the coercivity and weak lower semicontinuity of the Lagrangian action, we
have to verify that:



On the existence of minimal expansive solutions to the N -body problem

• ∀ ϕ ∈ D1,2
0 (1,+∞) such that r0(t) + ϕ(t) + x̃0(t) �= 0 for all t ≥ 1, A(ϕ) < +∞;

• the action is continuous and C1 on D1,2
0 \ {ϕ ∈ D1,2

0 : ∃ t such that r0(t) + ϕ(t) +
x̃0(t) = 0}.

4.1 Coercivity

To minimize the action on the set D1,2
0 (1,+∞), we start by proving its coercivity. We

do this by reconducting the problem to a Kepler problem, where we denote Umin =
minb∈E U(b). We notice that, for any orbit x,

U(x) ≥ Umin

‖x‖ ,

where ‖ ·‖ represents the Euclidean norm on R
dN . Indeed, because of the homogene-

ity of the potential,

U(x) = U

(
‖x‖ x

‖x‖
)

= 1

‖x‖U

(
x

‖x‖
)

≥ 1

‖x‖Umin. (4.4)

Besides,

∇U(r0) = ∇U(βbmt2/3) = 1

β2t4/3
∇U(bm) = 1

β2t4/3
λMbm

= − Umin

β2t4/3
Mbm.

(4.5)

Using (4.4) and (4.5), we can then write

A(ϕ) ≥
∫ +∞

1

1

2
〈Mϕ̇(t), ϕ̇(t)〉

+ Umin

‖r0(t) + ϕ(t) + x̃0‖ − Umin

‖r0(t)‖ + 1

β2t4/3
〈UminMbm,ϕ(t)〉 dt

=
∫ +∞

1

1

2
〈Mϕ̇(t), ϕ̇(t)〉 + Umin

‖r0(t) + ϕ(t) + x̃0‖ − Umin

‖r0(t)‖
+ 〈UminMr0(t), ϕ(t)〉

‖r0(t)‖3
dt.

We have

‖r0(t) + ϕ(t) + x̃0‖2 = ‖r0(t)‖2 + 2〈Mr0(t), ϕ(t)〉 + 2〈Mϕ(t), x̃0〉
+ 2〈Mr0(t), x̃

0〉 + ‖ϕ(t)‖2 + ‖x̃0‖2 = u + v,

where we define

u := ‖r0(t)‖2

v := 2〈Mr0(t), ϕ(t)〉 + 2〈Mϕ(t), x̃0〉 + 2〈Mr0(t), x̃
0〉 + ‖ϕ(t)‖2 + ‖x̃0‖2.
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Remark 4.4 The following equalities hold:

U(b + s) − U(b) =
∫ 1

0

d

dt
U(b + st) dt =

∫ 1

0
〈∇U(b + st), s〉 dt,

U(b + s) − U(b) − ∇U(b)s =
∫ 1

0

∫ 1

0
〈∇2U(b + st1t2)s, s〉t2 dt1 dt2.

Using Remark 4.4, we then have

‖r0(t) + ϕ(t) + x̃0‖−1 = (u + v)−1/2 = u−1/2 − 1

2
u−3/2v

+ 3

4

∫ 1

0

∫ 1

0
〈(u + stv)−5/2v, v〉s ds dt.

Since the integral in the last expression is positive, it follows

‖r0(t) + ϕ(t) + x̃0‖−1 = (u + v)−1/2

≥ u−1/2 − 1

2
u−3/2v

= ‖r0(t)‖−1 − 1

2‖r0(t)‖3
[2〈Mr0(t), ϕ(t)〉 + 2〈Mϕ(t), x̃0〉

+ 2〈Mr0(t), x̃
0〉 + ‖ϕ(t)‖2 + ‖x̃0‖2]

= ‖r0(t)‖−1 − 〈Mr0, ϕ(t)〉
‖r0(t)‖3 − 〈Mϕ(t), x̃0〉

‖r0(t)‖3

− 〈Mr0(t), x̃
0〉

‖r0(t)‖3 − 1

2

‖ϕ(t)‖2

‖r0(t)‖3 − 1

2

‖x̃0‖2

‖r0(t)‖3 .

(4.6)

At this point, we can use (4.6) to obtain

A(ϕ) ≥
∫ +∞

1

1

2
〈Mϕ̇(t), ϕ̇(t)〉 + Umin

‖r0(t) + ϕ + x̃0‖ − Umin

‖r0(t)‖
+ 〈UminMr0(t), ϕ(t)〉

‖r0(t)‖3 dt

≥
∫ +∞

1

1

2
〈Mϕ̇(t), ϕ̇(t)〉 − Umin

2

‖ϕ(t)‖2

‖r0(t)‖3 − 〈UminMϕ(t), x̃0〉
‖r0(t)‖3 dt + C3,

where C3 is a constant. By Hardy inequality (2.4) and the fact that, for β =
3
√

9
2U(bm),

Umin

‖r0(t)‖3 = Umin

‖βbmt2/3‖3 = Umin

β3t2‖bm‖3 = 2

9

1

t2 , (4.7)

we have

A(ϕ) ≥
∫ +∞

1

1

2

[
〈Mϕ̇(t), ϕ̇(t)〉 − 8

9
〈Mϕ̇(t), ϕ̇(t)〉

]
− Umin〈Mϕ(t), x̃0〉

‖r0(t)‖3
dt + C3
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=
∫ +∞

1

1

18
〈Mϕ̇(t), ϕ̇(t)〉 − Umin〈Mϕ(t), x̃0〉

‖r0(t)‖3
dt + C3.

Using again (4.7), we observe that

Umin〈Mϕ(t), x̃0〉
‖r0(t)‖3

= 2

9

〈Mϕ(t), x̃0〉
t2

.

By Cauchy-Scwartz and Hardy inequalities, it follows

∫ +∞

1
−Umin〈Mϕ(t), x̃0〉

‖r0(t)‖3
dt ≥ −

∫ +∞

1

2

9

|〈Mϕ(t), x̃0〉|
t2

dt

≥ −
∫ +∞

1

2

9

‖ϕ(t)‖M
t

‖x̃0‖M
t

dt

≥ −2

9

(∫ +∞

1

‖ϕ(t)‖2
M

t2
dt

)1/2

×
(∫ +∞

1

‖x̃0‖2
M

t2
dt

)1/2

dt

≥ −4

9
C4‖ϕ‖D,

where C4 is constant. This means that

A(ϕ) ≥ 1

18
‖ϕ‖2

D − 4

9
C4‖ϕ‖D + C3,

which proves the coercivity of the action.

4.2 Weak-lower semicontinuity

Now, we can focus on the proof of the weak lower semicontinuity of the ac-
tion. Consider a sequence of functions (ϕn)n ⊂ D1,2

0 (1,+∞) converging weakly

in D1,2
0 (1,+∞) to some ϕ, for n → +∞. It trivially follows that, for every n,

‖ϕ‖D < +∞ and ‖ϕn‖D < +∞. Let us divide the action in two parts:

A(ϕ) = A[1,T )(ϕ) +A[T ,+∞)(ϕ),

where

A[1,T )(ϕ) =
∫ T

1

1

2
‖ϕ̇(t)‖2

M + U(r0(t) + ϕ(t) + x̃0) − U(r0(t))

− 〈∇U(r0(t)), ϕ(t)〉dt,

A[T ,+∞)(ϕ) =
∫ +∞

T

1

2
‖ϕ̇(t)‖2

M + U(r0(t) + ϕ(t) + x̃0) − U(r0(t))

− 〈∇U(r0(t)), ϕ(t)〉 dt
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for some T ∈ (1,+∞). Using Ascoli-Arzelà’s Theorem, we can say that ϕn → ϕ uni-
formly on compact sets, which implies that 〈∇U(r0), ϕ

n〉 → 〈∇U(r0), ϕ〉 uniformly
in [1, T ], as n → +∞, for every T < +∞. Then, using Fatou’s Lemma, it easily
follows that the term A[1,T )(ϕ) is weak lower semicontinuous.

Concerning the term A[T ,+∞)(ϕ), we can write:

A[T ,+∞)(ϕ) =
∫ +∞

T

1

2
‖ϕ̇(t)‖2

M + 1

2
〈∇2U(r0(t))ϕ(t), ϕ(t)〉

+ U(r0(t) + ϕ(t) + x̃0) − U(r0(t)) − 〈∇U(r0(t)), ϕ(t)〉

− 1

2
〈∇2U(r0(t))ϕ(t), ϕ(t)〉 dt.

Claim: The map ϕ(t) �→
(∫ +∞

1
1
2‖ϕ̇(t)‖2

M + 1
2 〈∇2U(r0(t))ϕ(t), ϕ(t)〉 dt

)1/2

is an

equivalent norm to ‖ · ‖D . Indeed:

• By the homogeneity of the potential, it holds 〈∇2U(r0(t))ϕ(t), ϕ(t)〉 ≥ − 2
9

‖ϕ(t)‖2
M

t2

for each t ∈ [1,+∞) (see Remark 4.5). Then, by Hardy inequality, we have

∫ +∞

1

1

2
‖ϕ̇(t)‖2

M + 1

2
〈∇2U(r0(t))ϕ(t), ϕ(t)〉 dt ≥ 1

2

(
1 − 8

9

)
‖ϕ‖2

D = 1

18
‖ϕ‖2

D.

• Using the fact that, for some constant C5 > 0,

〈∇2U(r0(t))ϕ(t), ϕ(t)〉 ≤ C5
‖ϕ(t)‖M

t2

and Hardy inequality, we have

∫ +∞

1

1

2
‖ϕ̇(t)‖2

M + 1

2
〈∇2U(r0(t))ϕ(t), ϕ(t)〉 dt ≤ C6‖ϕ‖2

D,

for some constant C6 > 0.

From the equivalence between the two norms, we have that the term
∫ +∞
T

1
2 ×

‖ϕ̇(t)‖2
M + 1

2 〈∇2U(r0(t))ϕ(t), ϕ(t)〉 dt is weak lower semicontinuous.
Using Taylor’s series expansion, we can write

∫ +∞

T

U(r0(t) + ϕ(t) + x̃0) − U(r0(t)) − 〈∇U(r0(t)), ϕ(t)〉

− 1

2
〈∇2U(r0(t)), ϕ(t), ϕ(t)〉 dt

=
∫ +∞

T

∫ 1

0

∫ 1

0

∫ 1

0
〈∇3U(r0(t) + τ1τ2τ3(ϕ

n(t) + x̃0))(ϕn(t) + x̃0), ϕn(t)

+ x̃0, ϕn(t) + x̃0〉τ1τ
2
2 dτ1 dτ2 dτ3 dt.



On the existence of minimal expansive solutions to the N -body problem

Obviously there is a t̃ > 1 such that

‖r0(t) + τ1τ2τ3(ϕ
n(t) + x̃0)‖M > 0

for every t ≥ t̃ . We can then choose T ≥ t̃ and we have

〈∇3U(r0(t) + τ1τ2τ3(ϕ
n(t) + x̃0))(ϕn(t) + x̃0), ϕn(t) + x̃0, ϕn(t) + x̃0〉

≤ C7
‖ϕn(t) + x̃0‖3

M
t8/3 ≤ C8

‖ϕn‖3
Dt3/2

t8/3 ≤ C9

t7/6 ,

for every t ≥ T and for proper constants C7,C8,C9 > 0. This means that the term
〈∇3U(r0(t) + τ1τ2τ3(ϕ

n(t) + x̃0))(ϕn(t) + x̃0), ϕn(t) + x̃0, ϕn(t) + x̃0〉τ1τ
2
2 is L1-

dominated and the weak lower semicontinuity of A[T ,+∞) follows from the Domi-
nated Convergence Theorem.

4.3 The renormalized action is of class C1 over non-collision sets

Now, we prove that the action A is C1 over the set D1,2
0 ([1,+∞)) \ {ϕ ∈ D1,2

0 :
∃ t such that r0(t) + ϕ(t) + x̃0 = 0}. The term

∫ +∞
1

1
2 〈Mϕ̇(t), ϕ̇(t)〉 dt = 1

2‖ϕ‖2
D is

of course a smooth functional, so we focus on the potential term

A2(ϕ) :=
∫ +∞

1
K(t,ϕ(t)) dt,

where

K(t,ϕ(t)) := U(r0(t) + ϕ(t) + x̃0) − U(r0(t)) − 〈∇U(r0(t)), ϕ(t)〉.
We have

dA2(ϕ)[ψ] =
∫ +∞

1
〈∇K(t,ϕ(t)),ψ(t)〉 dt

=
∫ +∞

1
〈∇U(r0(t) + ϕ(t) + x̃0) − ∇U(r0(t)),ψ(t)〉 dt

for every ψ ∈ D1,2
0 (1,+∞). Given a sequence (ϕn)n ⊂ D1,2

0 (1,+∞) we have to

prove that if ϕn → ϕ in D1,2
0 (1,+∞), then

sup
‖ψ‖D≤1

∣∣∣∣
∫ +∞

1
〈∇K(t,ϕn(t)) − ∇K(t,ϕ(t)),ψ(t)〉 dt

∣∣∣∣ → 0.

Since

∇K(t,ϕ(t)) = ∇U(r0(t) + ϕ(t) + x̃0) − ∇U(r0(t)) =
∫ 1

0
∇2K(t, sϕ(t))ϕ(t) ds,
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we can estimate

‖∇K(t,ϕ(t))‖M ≤
∫ 1

0
‖∇2K(t, sϕ(t))‖M‖ϕ(t)‖M ds ≤ C10

‖ϕ(t)‖M
t2 , (4.8)

where C10 > 0 is a proper constant. Using the Cauchy-Schwartz inequality we can
then compute

sup
‖ψ‖D≤1

∣∣∣∣
∫ +∞

1
〈∇K(t,ϕn(t)) − ∇K(t,ϕ(t)),ψ(t)〉 dt

∣∣∣∣

≤ sup
‖ψ‖D≤1

∫ +∞

1
t‖∇K(t,ϕn(t)) − ∇K(t,ϕ(t))‖M ‖ψ(t)‖M

t
dt

≤ sup
‖ψ‖D≤1

(∫ +∞

1

‖ψ(t)‖2
M

t2 dt

)1/2

×
(∫ +∞

1
t2‖∇K(t,ϕn(t)) − ∇K(t,ϕ(t))‖2

M dt

)1/2

≤ 2

(∫ +∞

1
t2‖∇K(t,ϕn(t)) − ∇K(t,ϕ(t))‖2

M dt

)1/2

.

Now, using (4.8)

‖∇K(t,ϕn(t)) − ∇K(t,ϕ(t))‖2
M

=
∣∣∣∣
∫ 1

0
∇2K(t,ϕ(t) + σ(ϕn(t) − ϕ))(ϕn(t) − ϕ(t)) dσ

∣∣∣∣
2

≤
(∫ 1

0
‖∇2K(t,ϕ(t) + σ(ϕn(t) − ϕ(t)))(ϕn(t) − ϕ(t))‖M dσ

)2

≤
(∫ 1

0

‖ϕn(t) − ϕ(t)‖M
t2

dσ

)2

= ‖ϕn(t) − ϕ(t)‖2
M

t4
.

From this last computation, it follows that

(∫ +∞

1
t2‖∇K(t,ϕn(t)) − ∇K(t,ϕ(t))‖2

M dt

)1/2

≤
(∫ +∞

1

‖ϕn(t) − ϕ(t)‖2
M

t2
dt

)1/2

≤ 2

(∫ +∞

1
‖ϕ̇n(t) − ϕ̇(t)‖2

M dt

)1/2

= 2‖ϕn − ϕ‖D
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and since ‖ϕn − ϕ‖D → 0 as n → +∞, this proves our thesis.

4.4 Absence of collisions and parabolicity of the motion

We can now use an argument similar to that of Sect. 3: since the Direct Method of the
Calculus of Variations implies the existence of a minimizer ϕ ∈ D1,2

0 (1,+∞) of the
renormalized Lagrangian action, we can apply the Renormalized Action Principle to
state that ϕ is a solution of equations

Mϕ̈(t) = ∇U(βbmt2/3 + ϕ(t) + x0 − βbm) − 2

3

βbm

t1/3 .

To conclude, we observe that given

x(t) = ϕ(t) + βbmt2/3 + x̃0,

we have

ẋ(t) = ϕ̇(t) + 2

3
βbmt−1/3.

To prove that the motion x is indeed parabolic, we still have to prove that

lim
t→+∞ ẋ(t) = lim

t→+∞ ϕ̇(t) = 0.

Since
∫ +∞

1 |ϕ̇ij (t)|2 dt < +∞, we have

lim inf
t→+∞ |ϕ̇ij (t)| = 0.

Because of the conservation of the energy along the motion, we have

1

2
‖ẋ(t)‖2

M − U(x(t)) = 1

2

N∑

i=1

mi

∣∣∣∣ϕ̇i (t) + 2

3
βbmi

t−1/3
∣∣∣∣
2

− U(x(t)) = h.

Since there is at least a subsequence (tk)k , with tk → +∞, such that
limtk→+∞ ϕ̇i (tk) = 0, it follows that h = 0 and, consequently,

1

2
‖ẋ(t)‖2

M − U(x(t)) = 0.

From this, we have that limt→+∞ ẋ(t) = 0.

4.5 Asymptotic estimates for half parabolic motions

In order to give a better description of the asymptotic expansion of parabolic mo-
tions, we can improve inequality (3.5). In particular, we can show that, for any
ϕ ∈ D1,2

0 (1,+∞), it holds

‖ϕ(t)‖M ≤ ct
1
3 +ε, ∀ε > 0, (4.9)
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for a proper constant c ∈R. This section is devoted to the proof of this estimate.
Let us consider a half parabolic motion x(t) having the form (4.2), where ϕ ∈

D1,2
0 (1,+∞) is a solution of the equations of motion Mϕ̈(t) = ∇U(r0(t) + ϕ(t) +

x̃0) − ∇U(r0(t)). We can write:

Mϕ̈(t) = 1

β2t4/3

[
∇U

(
x(t)

βt2/3

)
− ∇U

(
r0(t)

βt2/3

)]

= 1

β2t4/3

[
∇U

(
bm + ϕ(t)

βt2/3
+ x̃0

βt2/3

)
− ∇U(bm)

]

= 1

β3t2

∫ 1

0
∇2U

(
bm + θ

(ϕ(t) + x̃0)

βt2/3

)
(ϕ(t) + x̃0) dθ

= 1

β3t2

[∫ 1

0
∇2U

(
bm + θ

(ϕ(t) + x̃0)

βt2/3

)
dθ

]
(ϕ(t) + x̃0),

where we can view the integral term as a matrix.
Fixing a real constant δ ∈ (1,2) and a sufficiently big constant k ∈ R, we define a

test function ψk :R → X as

ψk(t) = η2 min{k,‖ϕ(t)‖δ−1
M }ϕ(t)

where η : R →R is a C∞-class cut-off function having the form

η(t) =
{

0, t ∈ [1,R]
1, t ∈ [2R,+∞)

,

for R big enough, with 0 < η(t) < 1, ∀t ∈ (R,2R). We point out that k can be chosen
such that η ≡ 1 when ‖ϕ(t)‖δ−1

M > k, so that we have

ψ̇k(t) =
{

2ηη̇‖ϕ(t)‖δ−1
M ϕ(t) + η2δ‖ϕ(t)‖δ−2

M 〈ϕ(t), ϕ̇(t)〉M, t ∈ Ik

kϕ̇(t), t ∈ Îk

,

where Ik = {t ∈ [1,+∞) : ‖ϕ(t)‖δ−1
M ≤ k} and Îk = [1,+∞) \ Ik = {t ∈ [1,+∞) :

‖ϕ(t)‖δ−1
M > k}.

Multiplying the equations of motion for ψk(t) and integrating, we obtain

∫ +∞

R

−〈ϕ̈(t),ψk(t)〉M

+
〈

1

β3t2

[∫ 1

0
∇2U

(
bm + θ

(ϕ(t) + x̃0)

βt2/3

)
dθ

]
(ϕ(t) + x̃0),ψk

〉
dt

=
∫ +∞

R

〈ϕ̇(t), ψ̇k(t)〉M

+
〈

1

β3t2

[∫ 1

0
∇2U

(
bm + θ

(ϕ(t) + x̃0)

βt2/3

)
dθ

]
(ϕ(t) + x̃0),ψk

〉
dt.
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Recalling that ‖∇2U(r0 + θ(ϕ(t) + x̃0))‖M ≤ C11
t2 for a proper constant C11, for

every t > 1 and for every θ ∈ [0,1], we can use Hölder’s and Hardy’s inequalities to
estimate

∫ +∞

R

〈ϕ̇(t), ψ̇k(t)〉M +
〈[∫ 1

0
∇2U(r0(t) + θ(ϕ(t) + x̃0)) dθ

]
ϕ(t),ψk(t)

〉
dt

= −
∫ +∞

R

〈[∫ 1

0
∇2U(r0(t) + θ(ϕ(t) + x̃0)) dθ

]
x̃0,ψk(t)

〉
dt

≤ C11

∫ +∞

R

‖ψk(t)‖M
t2

dt

≤ C11

∫ +∞

R

‖ϕ(t)‖δ
M

t2
dt

= C11

∫ +∞

R

1

t2−δ

‖ϕ(t)‖δ
M

tδ
dt

≤ C11

(∫ +∞

R

1

t2 dt

)(2−δ)/2(∫ +∞

R

‖ϕ(t)‖2
M

t2 dt

)δ/2

≤ C12‖ϕ‖δ
D,

where C12 is a proper constant.

Remark 4.5 We recall that the Keplerian potential U is homogeneous of degree −1.
Then,

U(r0(t)) = U

(
‖r0(t)‖M r0(t)

‖r0(t)‖M
)

= U(bm)

‖r0(t)‖M .

The Hessian matrix of U(r0(t)) can then be written as

∇2U(r0(t)) = −U(bm)M
‖r0(t)‖3

M
+ 3

U(bm)

‖r0(t)‖5
M

Mr0(t) ⊗Mr0(t)

− 2
∇bmU(bm) ⊗Mr0(t)

‖r0(t)‖4
M

+ ∇2
bm

U(bm)

‖r0(t)‖3
M

,

where x ⊗ x denotes the symmetric square matrix with components (x ⊗ x)ij = xixj

for i, j ∈ 1, . . . ,N , and ∇bmU(bm) and ∇2
bm

U(bm) represent the gradient and the
Hessian matrix of U with respect to bm, respectively. Since bm is the minimum of the

restricted potential, we have ∇bmU(bm)⊗Mr0(t)

‖r0(t)‖4
M

= 0. Besides, since Mr0(t) ⊗Mr0(t)

and ∇2
bm

U(bm) are positive semidefinite quadratic forms, it holds

〈∇2U(r0(t))ϕ(t),ψ(t)〉 ≥ −U(bm)‖ϕ(t)‖M‖ψ(t)‖M
‖r0(t)‖3

M
, (4.10)

for ϕ,ψ ∈D1,2
0 (1,+∞).
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Using a continuity argument and (4.10), we can also say that for every μ > 0 there
is a T̄ > 0 such that, for every t > T̄ ,

1

β3t2 ∇2U

(
bm + θ

(ϕ(t) + x̃0)

βt2/3

)
≥ −2

9
(1 + μ)

M
t2

in the sense of quadratic forms. It follows

∫ +∞

R

〈ϕ̇(t), ψ̇k(t)〉M +
〈

1

β3t2

[∫ 1

0
∇2U

(
bm + θ

(ϕ(t) + x̃0)

βt2/3

)
dθ

]
ϕ(t),ψk(t)

〉
dt

≥
∫ +∞

R

〈ϕ̇(t), ψ̇k(t)〉M − 2

9
(1 + μ)

〈
ϕ(t)

t2
,ψk(t)

〉

M
dt.

To estimate the right-hand side of the last inequality, we study the integral separately
on the two complementary sets Ik and Îk . In Ik , we have

∫

Ik

〈ϕ̇(t), ψ̇k(t)〉M − 2

9
(1 + μ)

〈
ϕ(t)

t2
,ψk(t)

〉

M
dt

=
∫

Ik

2ηη̇‖ϕ(t)‖δ−1
M 〈ϕ̇(t), ϕ(t)〉M + η2δ‖ϕ(t)‖δ−1

M ‖ ˙ϕ(t)‖M

− 2

9
(1 + μ)η2 ‖ϕ(t)‖δ+1

M
t2

dt,

which implies

∫

Ik

η2δ‖ϕ(t)‖δ−1
M ‖ϕ̇(t)‖M − 2

9
(1 + μ)η2 ‖ϕ(t)‖δ+1

M
t2 dt

≤
∫

Ik

2ηη̇‖ϕ(t)‖δ
M‖ϕ̇(t)‖M dt + C12‖ϕ‖δ

D.

where the cut-off function makes sure that the last integral is finite. Besides, we also
have

∫

Ik

η2δ‖ϕ(t)‖δ−1
M ‖ϕ̇(t)‖M − 2

9
(1 + μ)η2 ‖ϕ(t)‖δ+1

M
t2

dt

=
∫

Ik

4δ

(δ + 1)2

(
η

d

dt
‖ϕ(t)‖

δ+1
2

M

)2

− 2

9
(1 + μ)η2 ‖ϕ(t)‖δ+1

M
t2 dt.

On the other hand, working on the interval Îk we obtain
∫

Îk

〈ϕ̇(t), ψ̇k(t)〉M − 2

9
(1 + μ)

〈
ϕ(t)

t2
,ψk(t)

〉

M
dt

=
∫

Îk

k‖ϕ̇(t)‖2
M − 2

9
(1 + μ)k

‖ϕ(t)‖2
M

t2 dt
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≥
∫

Îk

4δ

(δ + 1)2
k‖ϕ̇(t)‖2

M − 2

9
(1 + μ)k

‖ϕ(t)‖2
M

t2
dt,

where we used the fact that 4δ
(δ+1)2 < 1 for every δ ∈ (1,2).

Now, we define a function uk :R → R as

uk(t) = min{η‖ϕ(t)‖
δ−1

2
M , k1/2}‖ϕ(t)‖M.

Putting everything together, we can use Hardy’s inequality to say that

∫

Ik

4δ

(δ + 1)2

(
η

d

dt
‖ϕ(t)‖

δ+1
2

M

)2

− 2

9
(1 + μ)η2 ‖ϕ(t)‖δ+1

M
t2

dt

+
∫

Îk

4δ

(δ + 1)2 k‖ϕ̇(t)‖2
M − 2

9
(1 + μ)k

‖ϕ(t)‖2
M

t2 dt

=
∫ +∞

1

4δ

(δ + 1)2
‖u̇k(t)‖2

M − 2

9
(1 + μ)

‖uk(t)‖2
M

t2
dt

≥
∫ +∞

1

(
4δ

(δ + 1)2
− 8

9
(1 + μ)

)
‖u̇k(t)‖2

M dt.

In particular, we can choose μ such that 4δ

(δ+1)2 − 8
9 (1 + μ) > 0, which proves that

uk ∈ D1,2
0 (1,+∞).

Since the estimates we obtained do not depend on k, we can take k → +∞ so
that (3.5) leads us to the conclusion of our proof. We have thus shown that for any
ϕ ∈ D1,2

0 (1,+∞) and for any δ ∈ (1,2) there is a constant c, which depends on δ and
‖ϕ‖D , such that

‖ϕ(t)‖M ≤ ct
1

δ+1 , ∀t ≥ 1.

5 Existence of minimal half hyperbolic-parabolic motions

This section is devoted to the proof of Theorem 1.8. To prove the existence of
hyperbolic-parabolic solutions in the N -body problem, we will use the cluster de-
composition that we briefly introduced in Sect. 1 to decompose the Lagrangian ac-
tion, so that the minimization of the renormalized action over the set D1,2

0 (1,+∞)

can take place.

Definition 5.1 Given a configuration a ∈X and a motion x(t) = at +O(t2/3) as t →
+∞, its corresponding natural partition (a-partition) of the index set N = {1, . . . ,N}
is the one for which i, j ∈ N belong to the same class if and only if the mutual
distance |ri(t) − rj (t)| grows as O(t2/3). Equivalently, if a = (a1, . . . , aN), then the
natural partition is defined by the relation i ∼ j if and only if ai = aj . The partition
classes will be called clusters.
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We give now some definitions and basic notations related to a given partition P of
the set N = {1, . . . ,N}.

Definition 5.2 Let P be a given partition of N and consider a configuration x =
(r1, . . . , rN ) ∈X . For each cluster K ∈ P we define the mass of the cluster as

MK =
∑

i∈K

mi.

Definition 5.3 Let P be any given partition of N . Then, for every given curve x(t) =
(r1(t), . . . , rN (t)) in X and for each cluster K ∈ P , we define the cluster potential

UK(t) =
∑

i,j∈K, i<j

mimj

|ri(t) − rj (t)| .

which represents the restriction of the potential U to the cluster K .

The system we are studying now is

⎧
⎪⎨

⎪⎩

Mẍ = ∇U(x)

x(1) = x0

limt→+∞ ẋ(t) = a

,

where x0 ∈ X and a ∈ �. Since we are seeking solutions of the form x(t) = r0(t) +
ϕ(t) + x0 − r0(1), where r0 is a proper guiding curve and ϕ ∈ D1,2

0 (1,+∞), our
problem equivalently reads

⎧
⎪⎨

⎪⎩

Mϕ̈(t) = ∇U(r0(t) + ϕ(t) + x0 − r0(1)) −Mr̈0(t)

ϕ(1) = 0

limt→+∞ ϕ̇(t) = 0

.

We can thus apply the Renormalized Action Principle to prove the existence of solu-
tions to the last system.

Partitioning the indexes according to the natural cluster partition, we obtain a par-
tition of N of the form

K1 := {1, . . . , k1}, K2 := {k1 + 1, . . . , k2}, K3 := {k2 + 1, . . . , k3}...

For every Ki , we can choose a central configuration bKi which is minimal for that
particular cluster and we can define the configuration

b = (bK1 , bK2 , . . .) ∈X .

Using this particular definition of b, we can then look for solutions of the form

x(t) = at + βbt2/3 + ϕ(t) + x̃0, (5.1)
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where x̃0 = x0 − a − b. Here, β is a real vector with as many components as the
number of clusters. Precisely, we have

β = (βK1 , βK2 , . . .),

with

βK1 = 3

√
9

2
U

K1
min

and U
K1
min denotes the minimum of the potential U restricted to the first cluster;

βK2 = 3

√
9

2
U

K2
min

and U
K2
min denotes the minimum of the potential U restricted to the second cluster,

and so on... In this section, we write, with an abuse of notation, βb to denote the
configuration (βK1b

K1, βK2b
K2 , . . .) ∈X .

To apply the Renormalized Action Principle, we need to prove the existence of
minimizers of the renormalized Lagrangian action

A(ϕ) =
∫ +∞

1

1

2
‖ϕ̇(t)‖2

M + U(r0(t) + ϕ(t) + x̃0) − U(r0(t)) − 〈r̈0(t), ϕ(t)〉M dt,

where r0(t) = at +βbt2/3. In truth, the term U(r0) will be slightly reworded in order
to avoid possible collisions and to facilitate the computations in the proof of coerciv-
ity and weak-lower semicontinuity of the functional (of course this will not change
the associated Euler-Lagrange equations). To do that, we use the aforementioned
cluster partition of the bodies: the main idea is that the renormalized Lagrangian
action can be written as the sum of two terms, where the first term refers to the mo-
tion of the bodies inside each cluster and the second one refers to the interactions
between pairs of bodies that belong to different clusters. Referring to [7], we can see,
for example, that the Newtonian potential of a x = (r1, . . . , rN ) can be decomposed
as

U(x) =
∑

K∈P

( ∑

i,j∈K, i<j

mimj

|ri − rj |
)

+ 1

2

∑

K1,K2∈P, K1 �=K2

( ∑

i∈K1, j∈K2

mimj

|ri − rj |
)

.

For every ϕ ∈ D1,2
0 (1,+∞), we can thus write the renormalized Lagrangian action

as

A(ϕ) =
∑

K∈P
AK(ϕ) +

∑

K1,K2∈P, K1 �=K2

AK1,K2(ϕ)

=
∑

K∈P

( ∑

i,j∈K, i<j

Aij
K(ϕ)

)

+ 1

2

∑

K1,K2∈P, K1 �=K2

( ∑

i∈K1, j∈K2

Aij
K1,K2

(ϕ)

)
,

(5.2)
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where

Aij
K(ϕ) :=

∫ +∞

1

1

2M
mimj |ϕ̇ij (t)|2

+ mimj

|ϕij (t) + aij t + βKbK
ij t2/3 + x̃0

ij |
− mimj

|βKbK
ij t2/3|

+ 2

9

βK

M
mimj

〈bK
ij , ϕij (t)〉

t4/3 dt,

(5.3)

Aij
K1,K2

(ϕ) :=
∫ +∞

1

1

2M
mimj |ϕ̇ij (t)|2

+ mimj

|ϕij (t) + aij t + βK1,2b
K1,2
ij t2/3 + x̃0

ij |
− mimj

|aij t | dt.

(5.4)

Here, we used the notations:

bK1,2 = (bK1 , bK2)

βK1,2b
K1,2 = (βK1b

K1 , βK2b
K2)

Remark 5.4 We point out that, in the decomposition above, we made a small change
in the renormalization of the Lagrangian action functional. Indeed, if we used
−U(r0(t)) as the renormalization term, like we did for the hyperbolic and parabolic
case, the cluster decomposition would require us to write this term as

−U(at + βbt2/3) = −
∑

K∈P

( ∑

i,j∈K, i<j

mimj

|βKbK
ij t2/3|

)

− 1

2

∑

K1,K2∈P, K1 �=K2

( ∑

i∈K1, j∈K2

mimj

|aij t + βK1,2b
K1,2
ij t2/3|

)
.

However, we notice that, for small values of t , it may happen that aij t +βK1,2b
K1,2
ij ×

t2/3 = 0 for some indexes i ∈ K1, j ∈ K2, with K1,K2 ∈ P , K1 �= K2. To avoid
this small issue, and also to simplify our computations even more, we use a slight
variation of our usual renormalization term, which is given by

−Ũ (r0(t)) = −
∑

K∈P

( ∑

i,j∈K, i<j

mimj

|βKbK
ij t2/3|

)

− 1

2

∑

K1,K2∈P, K1 �=K2

( ∑

i∈K1, j∈K2

mimj

|aij t |
)

.

It is easy to prove that
∫ +∞

1 Ũ (r0(t)) − U(r0(t)) dt < +∞ and, since −Ũ (r0(t))

is still a fixed function of t , the minimization of the corresponding renormalized
Lagrangian action will still lead us to a solution of Newton’s equations.
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We also highlight that the term (5.3) is the part of the renormalized Lagrangian
action that refer to the (parabolic) motion of the bodies inside each cluster, while
the term (5.4) refers to the (linear) motion of the cluster. In the following sections,
we will study the two terms separately, in order to apply the Direct Method of the
Calculus of Variations and, consequently, the Renormalized Action Principle.

5.1 Coercivity of A(ϕ)

We start with the proof of the coercivity of the Lagrangian action when restricted
to a general cluster, where we denote by K the set of indexes related to this cluster.
Because of the natural cluster partition of the bodies, we have ai = aj for any i, j ∈
K . This means that for any ϕ ∈ D1,2

0 (1,+∞),

AK(ϕ) =
∑

i,j∈K, i<j

∫ +∞

1

1

2M
mimj |ϕ̇ij (t)|2

+ mimj

|ϕij (t) + βKbK
ij t2/3 + x̃0

ij |
− mimj

|βKbK
ij t2/3|

+ 2

9

βK

M
mimj

〈bK
ij , ϕij (t)〉

t4/3
dt.

Using the homogeneity of the potential and denoting by UK the potential U when
restricted to the cluster K , we apply the inequality

UK(x) ≥ UK(bK)

‖x‖M = Umin

‖x‖M
to every configuration x restricted to the cluster K . It follows

AK(ϕ) ≥
∫ +∞

1

∑

i,j∈K, i<j

(
1

2M
mimj |ϕ̇ij (t)|2

)

+ Umin

‖ϕ(t) + βKbKt2/3 + x̃0‖M − Umin

‖βKbKt2/3‖M
+ 2

9

βK

M
〈MKbK,ϕ(t)〉 dt,

where MK denotes the matrix of the masses of the cluster K . Using the inequality

1

‖ϕ(t) + βKbKt2/3 + x̃0‖M
≥ 1

‖βKbKt2/3‖M − 1

2‖βKbK‖3
Mt2

(2t2/3βK 〈MKbK,ϕ(t)〉

+ 2〈MKϕ(t), x̃0〉 + 2t2/3βK 〈MKbK, x̃0〉
+ ‖ϕ(t)‖2

M + ‖x̃0‖2
M),
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which holds because of the convexity of the norm, we obtain

AK(ϕ) ≥
∫ +∞

1

∑

i,j∈K, i<j

1

2M
mimj |ϕ̇ij (t)|2 + 2

9

βK

M
〈MKbK,ϕ(t)〉

− Umin

2β3
K‖bK‖3

Mt2
(2t2/3βK〈MKbK,ϕ(t)〉 + 2〈MKϕ(t), x̃0〉

+ 2t2/3βK 〈MKbK, x̃0〉 + ‖ϕ(t)‖2
M + ‖x̃0‖2

M) dt

=
∫ +∞

1

1

2
‖ϕ̇(t)‖2

M

− Umin

2β3
K‖bK‖3

Mt2
(2〈MKϕ(t), x̃0〉 + 2t2/3βK 〈MKbK, x̃0〉

+ ‖ϕ(t)‖2
M + ‖x̃0‖2

M) dt

We notice that the term

C13 :=
∫ +∞

1
− Umin

2β3
K‖bK‖3

Mt2
(2t2/3βK 〈MKbK, x̃0〉 + ‖x̃0‖2

M) dt

is constant and finite. Using Hardy and Cauchy-Schwartz inequalities we also have

−
∫ +∞

1

Umin

β3
K‖bK‖3

Mt2
〈MKϕ(t), x̃0〉 dt

= −2

9

∫ +∞

1

1

t2
〈MKϕ(t), x̃0〉 dt

≥ −2

9

(∫ +∞

1

‖ϕ(t)‖2
M

t2
dt

)1/2(∫ +∞

1

‖x̃0‖2
M

t2
dt

)1/2

≥ −C14‖ϕ‖D,

where C14 := 8
9

( ∫ +∞
1

‖x̃0‖2
M

t2 dt
)1/2

< +∞. Again by Hardy inequality, we obtain

AK(ϕ) ≥ 1

18
‖ϕ‖2

D − C14‖ϕ‖D + C13,

which implies that the functional AK is coercive.
We now focus on studying the terms

AK1,K2(ϕ) =
∑

i∈K1, j∈K2

∫ +∞

1

1

2M
mimj |ϕ̇ij (t)|2

+ mimj

|ϕij (t) + aij t + βK1,2b
K1,2
ij t2/3 + x̃0

ij |
− mimj

|aij t | dt.
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Remark 5.5 We notice that if two bodies of the configuration bK1,2 belong to different

clusters and have collisions, that is, if there are i ∈ K1 and j ∈ K2 such that b
K1,2
i =

b
K1,2
j , then the functional reads

AK1,K2(ϕ) =
∑

i∈K1, j∈K2

∫ +∞

1

1

2M
mimj |ϕ̇ij (t)|2 + mimj

|ϕij (t) + aij t + x̃0
ij |

− mimj

|aij t | dt.

Since ai �= aj when i ∈ K1, j ∈ K2 and K1 �= K2, we have already proved that in this
case the action functional A is coercive.

Assuming bK1,2 without collisions, we proceed in the following way. By the trian-
gular inequality, we have

∫ +∞

1

1

|ϕij (t) + aij t + βK1,2b
K1,2
ij t2/3 + x̃0

ij |
− 1

|aij t | dt

≥
∫ +∞

1

1

‖ϕij‖Dt1/2 + |aij |t + βK1,2 |bK1,2
ij |t2/3 + |x̃0

ij |
− 1

|aij |t dt.

Using the changes of variables s = ‖ϕ‖Du, we obtain

∫ +∞

1

1

‖ϕij‖Dt1/2 + |aij |t + βK1,2 |bK1,2
ij |t2/3 + |x̃0

ij |
− 1

|aij |t dt

= 2
∫ +∞

1

(
1

‖ϕij‖Ds + |aij |s2 + βK1,2 |bK1,2
ij |s4/3 + |x̃0

ij |
− 1

|aij |s2

)
s ds

= 2

‖ϕ‖D|aij |
∫ +∞

1

(
1

s2 + βK1,2 |bK1,2
ij |

|aij |
s4/3

‖ϕ‖2/3
D

+ s
|aij |‖ϕ‖D + |x̃0

ij |
|aij |‖ϕ‖D

− 1
s2

‖ϕ‖2
D

)
s ds

= 2

|aij |
∫ +∞

1/‖ϕ‖D

(
1

u2 + βK1,2 |bK1,2
ij |

|aij |
u4/3

‖ϕ‖2/3
D

+ u
|aij | + |x̃0

ij |
|aij |‖ϕ‖D

− 1

u2

)
u du.

We can observe that for ‖ϕ‖D → +∞, we have
βK1,2 |bK1,2

ij |
|aij |‖ϕ‖2/3

D
≤ 1 and

|x̃0
ij |

|aij |‖ϕ‖D ≤ 1.

So, for ‖ϕ‖D → +∞, it follows

2

|aij |
∫ +∞

1/‖ϕ‖D

(
1

u2 + βK1,2 |bK1,2
ij |

|aij |
u4/3

‖ϕ‖2/3
D

+ u
|aij | + |x̃0

ij |
|aij |‖ϕ‖D

− 1

u2

)
u du
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≥ 2

|aij |
∫ +∞

1/‖ϕ‖D

(
1

u2 + u4/3 + u
|aij | + 1

− 1

u2

)
u du

= 2

|aij |
∫ +∞

1/‖ϕ‖D
1

u

(
1

1 + u−2/3 + u−1

|aij | + u−1
− 1

)
du.

Since 1/‖ϕ‖D ≤ 1 when ‖ϕ‖D → +∞, we can study the integral separately on the
intervals [1/‖ϕ‖D,1] and [1,+∞). On the second interval, the integral is constant
(let us say that it is equal to a constant C15). On the other interval, we have

2

|aij |
∫ 1

1/‖ϕ‖D
1

u

(
1

1 + u−2/3 + u−1

|aij | + u−1
− 1

)
du ≥ 2

|aij |
∫ 1

1/‖ϕ‖D
−du

u
.

We have thus demonstrated that

∫ +∞

1

1

|ϕij (t) + aij t + βK1,2b
K1,2
ij t2/3 + x̃0

ij |
− 1

|aij t | dt

≥ 2

|aij | log
1

‖ϕ‖D + C15 = − 2

|aij | log‖ϕ‖D + C15,

which concludes the proof of the coercivity of the Lagrangian action.

5.2 Weak lower semicontinuity of A(ϕ)

In order to prove the weak lower semicontinuity of the Lagrangian action, we can use
the decomposition (5.2) and study the weak lower semicontinuity of the terms AK

and AK1,K2 separately, given arbitrary clusters K,K1,K2 ∈ P .
Concerning the term AK , we can refer to Sect. 4, since our choice of βKbK leads

us to the same computations.
For the proof of the weak lower semicontinuity of the terms AK1,K2 , let us con-

sider a sequence (ϕn)n ⊂ D1,2
0 (1,+∞) converging weakly in D1,2

0 (1,+∞) to some
ϕ, as n → +∞. It follows that there is a constant k ∈ R such that ‖ϕn‖D ≤ k and
‖ϕ‖D ≤ k for every n ∈ N. We would like to use the inequality

1

|ϕn
ij (t) + aij t + βK1,2b

K1,2
ij t2/3 + x̃0

ij |
− 1

|aij t |

=
∫ 1

0

d

ds

[
1

|aij t + s(ϕn
ij (t) + βK1,2b

K1,2
ij t2/3 + x̃0

ij )|

]
ds,

(5.5)
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which holds true when the denominator of the integrand is not zero. For all s ∈ (0,1)

we have

|aij t + s(ϕn
ij (t) + βK1,2b

K1,2
ij t2/3 + x̃0

ij )|
≥ |aij |t − s(‖ϕn

ij‖Dt1/2 + |βK1,2b
K1,2
ij |t2/3 + |x̃0

ij |)
> |aij |t − (‖ϕn

ij‖Dt1/2 + |βK1,2b
K1,2
ij |t2/3 + |x̃0

ij |),

and since ‖ϕn
ij‖D ≤ k, we have

|aij t + s(ϕn
ij (t) + βK1,2b

K1,2
ij t2/3 + x̃0

ij )| > |aij |t − (kt1/2 + |βK1,2b
K1,2
ij |t2/3 + |x̃0

ij |),

where the last term is larger than zero if t ≥ T̄ = T̄ (k), for a proper T̄ . We can
thus study the weak lower semicontinuity of the potential term separately on the two
intervals [1, T̄ ] and [T̄ ,+∞).

On [1, T̄ ], the weak lower semicontinuity easily follows from Fatou’s Lemma. On
[T̄ ,+∞), we can use (5.5):

∫ +∞
T̄

1

|ϕn
ij

(t) + aij t + βK1,2b
K1,2
ij

t2/3 + x̃0
ij

|
− 1

|aij t | dt

=
∫ +∞
T̄

(∫ 1

0
−

[aij t + s(ϕn
ij

(t) + βK1,2b
K1,2
ij

t2/3 + x̃0
ij

)](ϕn
ij

(t) + βK1,2b
K1,2
ij

t2/3 + x̃0
ij

)

|aij t + s(ϕn
ij

(t) + βK1,2b
K1,2
ij

t2/3 + x̃0
ij

)|3
ds

)
dt.

Using (3.11), we then have

∫ +∞

T̄

∣∣∣∣
1

|ϕn
ij (t) + aij t + βK1,2b

K1,2
ij t2/3 + x̃0

ij |
− 1

|aij t |
∣∣∣∣ dt

≤
∫ +∞

T̄

(∫ 1

0

|ϕn
ij (t) + βK1,2b

K1,2
ij t2/3 + x̃0

ij |
|aij t + s(ϕn

ij (t) + βK1,2b
K1,2
ij t2/3 + x̃0

ij )|2
ds

)
dt

≤
∫ +∞

T̄

(∫ 1

0

3(|kt1/2 + βK1,2b
K1,2
ij t2/3| + |x̃0

ij |)
|aij t |2 − s|kt1/2 + βK1,2b

K1,2
ij t2/3 + x̃0

ij |2
ds

)
dt

≤
∫ +∞

T̄

(∫ 1

0

3k′t2/3

|aij |2t2 − sk′t4/3
ds

)
dt,

where k′ ∈ R is big enough so that |kt1/2| + |βK1,2b
K1,2
ij t2/3 + x̃0

ij | ≤ √
k′t2/3. The

denominator of the last integral is positive when

t >

( |aij |2
k′

)2/3

=: T̂ .
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If we choose T̄ (k) � T̂ , the last integral is finite, which means that

∫ +∞

T̄

∣∣∣∣
1

|ϕn
ij (t) + aij t + βK1,2b

K1,2
ij t2/3 + x̃0

ij |
− 1

|aij t |
∣∣∣∣ dt < +∞.

This implies the L1-convergence of the potential term, which proves its weak lower
semicontinuity.

5.3 The action is of class C1 over non-collision sets

The last thing we have to prove is that the action is of class C1 over sets of motions
that don’t undergo collisions. We have already proved this result for the terms AK ,
so we can only focus on the terms AK1,K2 . In particular, denoting by A2

K1,K2
the

potential term, we wish to prove that the differential

dAK1,K2(ϕ)[ψ] =
∫ +∞

1
〈∇U(ϕ(t) + at + βK1,2b

K1,2 t2/3 + x̃0),ψ(t)〉 dt

is continuous, for every ϕ,ψ ∈ D1,2
0 (1,+∞), over the set of non-collisional config-

urations when the potential U is restricted to the clusters K1 and K2.
First of all, we have

‖∇U(ϕ(t) + at + βK1,2b
K1,2 t2/3 + x̃0)‖M

≤ C16

∑

i∈K1, j∈K2

1

|ϕn
ij (t) + aij t + βK1,2b

K1,2
ij t2/3 + x̃0

ij |2

for a proper constant C16, where the right-hand side term behaves like 1/t2 when t →
+∞. This, together with the Cauchy-Schwartz inequality, proves that the differential
is well-defined.

Now, given (ϕn)n ⊂ D1,2
0 (1,+∞) such that ϕn → ϕ in D1,2

0 (1,+∞) for some ϕ,
we wish to prove that

sup
‖ψ‖D≤1

∣∣∣∣
∫ +∞

1
〈∇U(t,ϕn(t)) − ∇U(t,ϕ(t)),ψ(t)〉 dt

∣∣∣∣ → 0, as n → +∞,
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where we write U(t,ϕ(t)) := U(ϕ(t) + at + βK1,2b
K1,2 t2/3 + x̃0) to lighten the no-

tation. Using Cauchy-Schwartz and Hardy inequalities, we have

sup
‖ψ‖D≤1

∣∣∣∣
∫ +∞

1
〈∇U(t,ϕn(t)) − ∇U(t,ϕ(t)),ψ(t)〉 dt

∣∣∣∣

≤ sup
‖ψ‖D≤1

∫ +∞

1
t‖∇U(t,ϕn(t)) − ∇U(t,ϕ(t))‖M ‖ψ(t)‖M

t
dt

≤ sup
‖ψ‖D≤1

(∫ +∞

1

‖ψ(t)‖2
M

t2 dt

)1/2

×
(∫ +∞

1
t2‖∇U(t,ϕn(t)) − ∇U(t,ϕ(t))‖2

M dt

)1/2

≤ 2

(∫ +∞

1
t2‖∇U(t,ϕn(t)) − ∇U(t,ϕ(t))‖2

M dt

)1/2

.

Now, we can write

∫ +∞

1
t2‖∇U(t,ϕn(t)) − ∇U(t,ϕ(t))‖2

M dt

=
∫ +∞

1
t2

∣∣∣∣
∫ 1

0
∇2U(ϕ(t) + at + βK1,2 b

K1,2 t2/3 + x̃0 + s(ϕn(t) − ϕ(t)))(ϕn(t) − ϕ(t)) ds

∣∣∣∣
2

dt

≤
∫ +∞

1
t2

(∫ 1

0
C16

∑

i∈K1, j∈K2

1

|ϕij (t) + aij t + βK1,2 b
K1,2
ij t2/3 + x̃0

ij + s(ϕn
ij (t) − ϕij (t))|3

‖ϕn(t) − ϕ(t)‖M ds

)2

dt

≤
∫ +∞

1

(∫ 1

0
C16

∑

i∈K1, j∈K2

1

|ϕij (t) + aij t + βK1,2 b
K1,2
ij t2/3 + x̃0

ij + s(ϕn
ij (t) − ϕij (t))|3

‖ϕn − ϕ‖D t3/2 ds

)2

dt

≤ C17‖ϕn − ϕ‖D

for a proper constant C17 ∈ R, where the last term goes to zero as n → +∞. This
concludes the proof.

5.4 Absence of collisions and hyperbolic-parabolicity of the motion

The existence of a minimizer ϕ ∈ D1,2
0 (1,+∞) of the renormalized Lagrangian ac-

tion follows from the Direct Method of the Calculus of Variations. Once again, the
Renormalized Action Principle, which exploits Hamilton’s Principle of Least Action
and Marchal’s Theorem, states that

x(t) = at + βbt2/3 + ϕ(t) + x̃0

is a solution of Newton’s equations (1.2) with x(1) = x0.
Given

x(t) = at + βbt2/3 + ϕ(t) + x̃0,
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we have

ẋ(t) = a + 2

3
βbt−1/3 + ϕ̇(t).

In this case, the conservation of the energy implies that the energy of the motion
h = ‖a‖2

M/2 > 0.

Remark 5.6 We observe that Chazy’s Theorem can be applied to the cases of hyper-
bolic and hyperbolic-parabolic motions, because for completely parabolic motions
the energy constant of the internal motion is null. In such cases, the limit shape of x(t)

is the shape of the configuration a and, moreover, L = limt→+∞
maxi<j |xij (t)|
mini<j |xij (t)| < +∞

if and only if x is hyperbolic. If the energy h > 0 and L = +∞, then either the motion
is hyperbolic-parabolic or it is not expansive.

In our case, it is trivial to prove that L = +∞, which implies that the motion is
hyperbolic-parabolic.

Remark 5.7 We can observe that if the indexes i, j belong to the same cluster, we
have ẋij (t) → 0 when t → +∞, while if i, j belong to different clusters, we have
ẋij (t) → aij when t → +∞.

5.5 Hyperbolic-parabolic motions’ asymptotic expansion

We have seen that a hyperbolic-parabolic motion x can be written in the form x(t) =
at + βbt2/3 + ϕ(t) + x̃0, as shown in (5.1), and that the bodies can be divided into
subgroups following the natural cluster partition introduced in Definition 5.1. In this
section, we will prove that the centers of mass of the clusters follow hyperbolic orbits.
Besides, we will show that inside each cluster, the bodies move with respect to the
center of mass of the cluster following a parabolic path.

We start with proving that the centers of mass of each cluster have a hyperbolic
expansion. For a cluster K , denoting the center of mass of K as

cK(t) = 1

MK

∑

i∈K

mixi(t),

we can compute the equations of motion of the center of mass as

MKc̈K(t) =
∑

i∈K

miẍi(t)

= −
∑

i∈K

∑

j �=i

mimj

xi(t) − xj (t)

|xi(t) − xj (t)|3

= −
∑

i∈K

∑

j /∈K

mimj

xi(t) − xj (t)

|xi(t) − xj (t)|3 .
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It is easy to see that the right-hand side of the equation is a O
( 1

t2

)
-term for t → +∞.

We also notice that

−
∑

i∈K

∑

j /∈K

mimj

xi(t) − xj (t)

|xi(t) − xj (t)|3 � − 1

t2

∑

i∈K

∑

j /∈K

mimj

ai − aj

|ai − aj |3 + O

(
1

t3

)
,

for t → +∞. We can define

∇̃U(aK) = −
∑

i∈K

∑

j /∈K

mimj

ai − aj

|ai − aj |3 ,

which can be seen as a restriction of ∇U(aK). Denoting with aK the restriction of
the configuration a to the cluster K , we can thus compute

lim
t→+∞

MKcK(t)

log t
= lim

t→+∞
MKċK(t)

1
t

= − lim
t→+∞

MKc̈K(t)

1
t2

= −∇̃U(aK).

This implies that the center of mass of the cluster K has the hyperbolic asymptotic
expansion

cK(t) = aKt − ∇̃U(aK) log t + o(log t),

for t → +∞.
Now, considering an index i ∈ K , we denote the motion of a body xi with respect

to the center of mass of its cluster as

yi(t) = xi(t) − cK
i (t).

We are going to show that its asymptotic expansion is a parabolic one.
If the cluster only has one element, we obviously have yi ≡ 0, so we consider the

case where K has two or more elements. The equation of motion reads

miÿi(t) = miẍi(t) − mic̈
K
i (t)

= −
∑

j∈K

mimj

xi(t) − xj (t)

|xi(t) − xj (t)|3 −
∑

j /∈K

mimj

xi(t) − xj (t)

|xi(t) − xj (t)|3 − mic̈
K
i (t).

Since we already know that −∑
j /∈K mimj

xi(t)−xj (t)

|xi (t)−xj (t)|3 − mic̈
K
i (t) = O

( 1
t2

)
for t →

+∞, we can then say that

miÿi(t) = −
∑

j∈K

mimj

yi(t) − yj (t)

|yi(t) − yj (t)|3 + O
( 1

t2

)
.

Using the definition of x(t) and the asymptotic expansion of cK(t) we found
above, we can easily see that

yi(t) = βKbK
i t2/3 + ϕi(t) − log t

∑

j /∈K

mimj

ai − aj

|ai − aj |3 + o(log t),
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for t → +∞, where βK = 3
√

9
2 minK U . Defining ψi(t) := ϕi(t) − ∑

j /∈K mimj ×
ai−aj

|ai−aj |3 + o(log t), it is easy to prove that ψi ∈ D1,2(1,+∞). We can then apply the

estimate (4.9) to say that

yi(t) = βKbK
i t2/3 + o(t

1
3 +),

for t → +∞.

6 Free-time minimization property

“Jacobi’s principle brings out vividly the intimate relationship which exists between
the motions of conservative holonomic systems and the geometry of curved space”
(C. Lanczos, [16, page 138]). Accordingly, trajectories of the N -body problem at en-
ergy h are geodesics of the Jacobi-Maupertuis’ metric of level h in the configuration
space, i.e.,

dσ 2 = (U + h)ds2
M,

being ds2
M the mass Euclidean metric in the configuration space.

Definition 6.1 A curve x : [1,+∞) → EN is said to be a geodesic ray from p ∈ EN

if x(1) = p and each restriction to a compact interval is a minimizing geodesic.

In [20], Maderna and Venturelli also proved the following theorem.

Theorem 6.2 (Maderna-Venturelli, 2020 [20]) Let E be an Euclidean space. For any
h > 0, p ∈ EN and a ∈ �, there is geodesic ray of the Jacobi-Maupertuis’ metric of
level h with asymptotic direction a and starting at p.

In facts, geodesic rays turn out to be unbounded free-time minimizer of the La-
grangian action at energy h as in Definition 1.10 (cfr. [2, 16]). Next, we show here that
our existence results of expansive motions through the minimization of the renormal-
ized action do indeed agree with Theorem 6.2. More precisely, we prove the following
corollary.

Corollary 6.3 Consider an expansive motion x : [1,+∞) → X of the Newtonian N -
body problem of the form

x(t) = r0(t) + ϕ(t) + x̃0,

where ϕ ∈D1,2
0 (1,+∞) minimizes the renormalized action (1.5) in any of the settings

of Theorems 1.6, 1.7 and 1.8. Then x is actually a free-time minimizer at its energy
level. Therefore it is a geodesic ray for the Jacobi-Maupertuis’ metric.
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Proof We consider a curve γ : [1,+∞) → X of the form γ (t) = r0(t) + ϕ(t) + x̃0

such that ϕ minimizes the renormalized Lagrangian action on D1,2
0 (1,+∞).

By contradiction, we suppose that there are T and T̄ , ε > 0 and there is some
curve σ̄ : [1, T̄ ] → X with γ (T ) = σ̄ (T̄ ) such that

∫ T

1
L(γ, γ̇ ) dt + hT >

∫ T̄

1
L(σ̄ , ˙̄σ) dt + hT̄ + ε. (6.1)

By a density and continuity argument, we can then define a compactly supported
function ϕ̃ such that ϕ̃(t) = ϕ(t) on [1, T̂ ], where T̂ � max{T , T̄ }, and ϕ̃ is close
enough to ϕ in the D1,2

0 -norm to have

A(ϕ̃) ≤ A(ϕ) + ε,

where A is the renormalized Lagrangian action. By the minimizing property of ϕ we
infer

A(ϕ̃) ≤ A(ψ) + ε, ∀ψ ∈D1,2
0 ([1,+∞)). (6.2)

Now, denoting γ̃ (t) = r0(t) + ϕ̃(t) + x̃0, we build a curve σ̃ : [1,+∞) → X such
that

σ̃ (t) =
{

σ̄ (t), t ∈ [1, T̄ ]
γ̃ (t − T̄ + T ), t ∈ [T̄ ,+∞)

.

Since we supposed that γ (T ) = σ̄ (T̄ ), we know for sure that σ̃ is continuous. More-
over, we define ϕ̄(t) = σ̄ (t) − r0(t) − x̃0, so that ϕ̄ ∈ D1,2

0 (1,+∞) and, by its defini-
tion, we have

ϕ̄(t) ≡ r0(t − T̄ + T ) − r0(t) = a(T − T̄ ) + o(1), ∀t � max{T , T̄ }, (6.3)

as ϕ̃ is compactly supported. We notice that we can write

A(ϕ̃) =
∫ +∞

1
L(γ̃ , ˙̃γ ) − L0(t) dt,

which easily follows from the fact that also L(γ̃ , ˙̃γ ) − L0(t) ∈ L1[1,+∞) and fur-
thermore, since ϕ̃ is compactly supported,

∫ +∞

1
−〈Mr̈0, ϕ̃〉 dt = −〈Mṙ0, ϕ̃〉

∣∣∣∣
+∞

1
+

∫ +∞

1
〈Mṙ0, ˙̃ϕ〉 dt =

∫ +∞

1
〈Mṙ0, ˙̃ϕ〉 dt.
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On the other hand, from (6.3), using ṙ0 � t−1/3, it follows that

∫ +∞

1
−〈Mr̈0, ϕ̄〉 dt = −〈Mṙ0, ϕ̄〉

∣∣∣∣
+∞

1
+

∫ +∞

1
〈Mṙ0, ˙̄ϕ〉 dt

= 〈Ma, a〉(T̄ − T ) +
∫ +∞

1
〈Mṙ0, ˙̄ϕ〉 dt

= 2h(T̄ − T ) +
∫ +∞

1
〈Mṙ0, ˙̄ϕ〉 dt,

where h = H(r0, ṙ0) is the energy of r0, which is positive equal to ‖a‖2
M/2 in the

hyperbolic and hyperbolic-parabolic case and zero in the completely parabolic case.
Consequently, we have

A(ϕ̄) = 2h(T̄ − T ) +
∫ +∞

1
L(σ̄ , ˙̄σ) − L0(t) dt.

Let us denote Lh = L − h and Lh
0(t) := L(r0(t)) − h. By (6.1), we can say that

∫ T

1
Lh(γ, γ̇ ) dt +

∫ +∞

T̄

Lh(σ̃ , ˙̃σ) − Lh
0(t − T̄ + T ) dt

>

∫ T̄

1
Lh(σ̄ , ˙̄σ) dt +

∫ +∞

T̄

Lh(σ̃ , ˙̃σ)

− Lh
0(t − T̄ + T ) dt + ε + 2h(T̄ − T ).

(6.4)

Working on left-hand side of equation (6.4), we obtain

∫ T

1
Lh(γ, γ̇ ) dt +

∫ +∞

T̄

Lh(σ̃ , ˙̃σ) − Lh
0(t − T̄ + T ) dt

=
∫ T

1
Lh(γ, γ̇ ) dt +

∫ +∞

T̄

Lh(γ̃ (t − T̄ + T ), ˙̃γ (t − T̄ + T )) − Lh
0(t − T̄ + T ) dt

=
∫ T

1
Lh(γ, γ̇ ) − Lh

0(t) dt +
∫ +∞

T

Lh(γ̃ , ˙̃γ ) − Lh
0(t) dt +

∫ T

1
Lh

0(t) dt

=
∫ +∞

1
Lh(γ̃ , ˙̃γ ) − Lh

0(t) dt +
∫ T

1
Lh

0(t) dt.

On the other hand, working on right-hand side of (6.4), we have

∫ T̄

1
Lh(σ̄ , ˙̄σ) dt +

∫ +∞

T̄

Lh(σ̃ , ˙̃σ) − Lh
0(t − T̄ + T ) dt + 2h(T̄ − T ) + ε

=
∫ T̄

1
Lh(σ̄ , ˙̄σ) − Lh

0(t) dt
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+
∫ +∞

T̄

Lh(σ̃ , ˙̃σ) − Lh
0(t − T̄ + T ) + Lh

0(t) − Lh
0(t) dt+

+
∫ T̄

1
Lh

0(t) dt + 2h(T̄ − T ) + ε

=
∫ T̄

1
Lh(σ̄ , ˙̄σ) − Lh

0(t) dt +
∫ +∞

T̄

Lh(σ̃ , ˙̃σ) − Lh
0(t) dt+

+
∫ T̄

1
Lh

0(t) dt +
∫ +∞

T̄

Lh
0(t) − Lh

0(t − T̄ + T ) dt

+ 2h(T̄ − T ) + ε

=
∫ +∞

1
Lh(σ̃ , ˙̃σ) − Lh

0(t) dt +
∫ T̄

1
Lh

0(t) dt +
∫ +∞

T̄

Lh
0(t) − Lh

0(t − T̄ + T ) dt

+ 2h(T̄ − T ) + ε.

It thus follows that
∫ +∞

1
Lh(γ̃ , ˙̃γ ) − Lh

0(t) dt

>

∫ +∞

1
Lh(σ̃ , ˙̃σ) − Lh

0(t) dt +
∫ T̄

T

Lh
0(t) dt

+
∫ +∞

T̄

Lh
0(t) − Lh

0(t − T̄ + T ) dt + 2h(T̄ − T ) + ε.

We recall the following property, which can be demonstrated as a simple exercise.

Proposition 6.4 Given a function f ∈ L1
loc(X ) such that f (t) → 0 as t → ±∞ and

such that f (t) − f (t − τ) ∈ L1 for some τ ∈R, then

∫ +∞

−∞
f (t) − f (t − τ) dt = 0.

Since

∫ T̄

T

Lh
0(t) dt +

∫ +∞

T̄

Lh
0(t) − Lh

0(t − T̄ + T ) dt

=
∫ +∞

−∞
Lh

0(t)X{t>T } − Lh
0(t − T̄ + T )X{t>T̄ } dt,

we can apply the Proposition 6.4 to the function Lh
0(t)X{t>T }. This eventually yields

∫ +∞

1
Lh(γ̃ , ˙̃γ ) − Lh

0(t) dt >

∫ +∞

1
Lh(σ̃ , ˙̃σ) − Lh

0(t) dt + 2h(T̄ − T ) + ε,
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and finally

A(ϕ̃) > A(ϕ̄) + ε,

in clear contradiction with (6.2). �

7 Hamilton-Jacobi equations

We now emphasize the dependence on the initial point x0 and define the function

v(x0) = min
ϕ∈D1,2

0 (1,+∞)

{∫ +∞

1

1

2
‖ϕ̇(t)‖2

M dt +

+
∫ +∞

1
U(ϕ(t) + r0(t) + x0 − r0(1)) − U(r0(t))

− 〈r̈0(t), ϕ(t)〉M dt

}
− 〈a, x0〉M.

(7.1)

We claim that v solves the Hamilton-Jacobi equation

H(x,∇v(x)) = h (7.2)

in the viscosity sense. This can be easily seen by taking a point x0 of differentiability,
and formally differentiate (7.1) with respect to x0, finding

∇v(x0) = −Mẋ(1)

where x(t) = r0(t) + ϕ(t) + x0 − r0(1) and ϕ is the minimizer of the renormalized
action associated with x0. Therefore M−1/2∇v(x0) = −M1/2ẋ(1) and we easily
obtain (7.2) from the expression of the Hamiltonian (2.1). Making this argument fully
rigorous goes beyond the scope of this paper. The interested reader can retrace step
by step the method explained in [20], also taking into account that it is known that
the singular set is contained in a locally countable union of smooth hypersurfaces of
codimension at least one (cfr. [8]).

Fixing x0 and T > 0, we now consider the boundary value problem
⎧
⎪⎨

⎪⎩

Mẍ = ∇U(x)

x(1) = x0

ẋ(T ) = ṙ0(T )

and introduce the associated value function

u(T , x0) = min
γ∈H 1([1,T ]), γ (1)=x0

∫ T

1

1

2
‖γ̇ (t)‖2

M + U(γ (t)) dt − 〈ṙ0(T ), γ (T )〉M.

It is a standard result of the theory of Hamilton-Jacobi equations (cfr. [8]) that u is a
viscosity solution of

− ∂u

∂T
= 1

2
‖∇u‖2

M−1 − U(x),
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where the gradient is taken with respect to the second variable.

Remark 7.1 Notice that, compared with [8], we have reversed time orientation.

Now, we define

v(T , x) = u(T , x) +
∫ T

1

1

2
‖ṙ0(t)‖2

M − U(r0(t)) dt

= u(T , x) +
∫ T

1
H(r0(t), ṙ0(t)) dt

and observe that

− ∂v

∂T
= 1

2
‖∇v‖M−1 − U(x) − H(r0, ṙ0).

Assume that v(T , x) converges uniformly to some v(x) as T → +∞. Then, v is a
stationary viscosity solution to the stationary Hamilton-Jacobi equation

1

2
‖∇v‖M−1 − U(x) = lim

T →+∞H(r0, ṙ0) = 1

2
‖a‖2

M.

To relate the modified value function v with the minimum of our renormalized action,
let us write

γ (t) = r0(t) + ϕ(t) + x̃0,

with x̃0 = x0 − r0(1), and compute

∫ T

1

1

2
‖ṙ0(t) + ϕ̇(t)‖2

M + U(r0(t) + ϕ(t) + x̃0) + 1

2
‖ṙ0(t)‖2

M

− U(r0(t)) dt − 〈ṙ0(T ), r0(T ) + ϕ(T ) + x0 − r0(1)〉M

=
∫ T

1

1

2
‖ϕ̇(t)‖2

M + U(r0(t) + ϕ(t) + x̃0) − U(r0(t))

− 〈r̈0(t), ϕ(t)〉M dt − 〈ṙ0(T ), x0〉M,

which follows from some integration by parts. Therefore, we have

v(T , x0) = min
ϕ∈H 1([1,T ]), ϕ(1)=0

Aren
[1,T ](ϕ) − 〈ṙ0(T ), x0〉M,

where we denoted

Aren
[1,T ](ϕ) =

∫ T

1

1

2
‖ϕ̇(t)‖2

M + U(r0(t) + ϕ(t) + x̃0) − U(r0(t))

− 〈r̈0(t), ϕ(t)〉M dt.
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Then, it becomes natural to let T → +∞ and define

v(x0) = min
ϕ∈D1,2

0 (1,+∞)

∫ +∞

1

1

2
‖ϕ̇(t)‖2

M + U(r0(t) + ϕ(t) + x0 − r0(1)) − U(r0(t))

− 〈r̈0(t), ϕ(t)〉M dt − 〈a, x0〉M.

We will prove in a forthcoming paper that

v(x) = lim
T →+∞v(T , x)

uniformly on compact sets of RdN (actually, in the Hölder norms), so that v solves

1

2
‖∇v‖M−1 − U(x) = 1

2
‖a‖2

M

in the viscosity sense. This justifies once again our choice for the renormalized action
functional.

It is worthwhile noticing that the uniqueness result in [21] ensures that, in the
hyperbolic case, our value function v is indeed the Busemann function. Moreover, it
may be interesting that the linear correction in (7.1) is itself the Busemann function
of the free particle.
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