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A B S T R A C T

This study investigates the metabolome of high-quality hazelnuts (Corylus avellana L.) by applying untargeted
and targeted metabolome profiling techniques to predict industrial quality. Utilizing comprehensive two-
dimensional gas chromatography and liquid chromatography coupled with high-resolution mass spectrometry,
the research characterizes the non-volatile (primary and specialized metabolites) and volatile metabolomes. Data
fusion techniques, including low-level (LLDF) and mid-level (MLDF), are applied to enhance classification per-
formance. Principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) reveal
that geographical origin and postharvest practices significantly impact the specialized metabolome, while
storage conditions and duration influence the volatilome. The study demonstrates that MLDF approaches,
particularly supervised MLDF, outperform single-fraction analyses in predictive accuracy. Key findings include
the identification of metabolites patterns causally correlated to hazelnut’s quality attributes, of them aldehydes,
alcohols, terpenes, and phenolic compounds as most informative. The integration of multiple analytical platforms
and data fusion methods shows promise in refining quality assessments and optimizing storage and processing
conditions for the food industry.

1. Introduction

The emergence of metabolomics marks a significant advancement in
biological exploration, offering deep insights into the complexity of
biological systems (Collins, Koo, Peters, Smith, & Patterson, 2021).
Metabolomics, a subset of systems biology, examines a vast array of over
40,000 metabolites with diverse properties, presenting both opportu-
nities and challenges. The metabolome’s diversity is particularly valu-
able in agricultural sciences, providing predictive markers for crop
quality (Balkir, Kemahlioglu, & Yucel, 2021; Li et al., 2021; Pedrosa

et al., 2021). As consumer demand for high-quality, nutrients-dense food
increases, metabolomics becomes crucial for enhancing crop breeding,
optimizing cultivation, reducing post-harvest losses, and improving
storage (Schmid et al., 2021). To fully harness the metabolome’s po-
tential, integrating various analytical platforms is essential for deriving
reliable markers that predict food quality at a molecular level and
monitor it over time (Caratti et al., 2024; Jacobs, van den Berg, & Hall,
2021; Mack et al., 2017; Romo-Pérez et al., 2020; Ulaszewska et al.,
2019).

Data fusion techniques play a pivotal role in metabolomics,
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combining information from diverse sources to make more accurate and
robust inferences. Similar to how the human brain integrates sensory
information, data fusion consolidates inputs from various analytical
methods to capture a system’s characteristics, aiding reliable decision-
making (Westerhuis, Kloet, & Smilde, 2019). This approach results in
more precise insights, improved classifications, and reduced prediction
errors compared to single techniques. However, integrating data from
different platforms is challenging due to their varied nature and
dimensionality (Azcarate, Ríos-Reina, Amigo, & Goicoechea, 2021;
Wang et al., 2023). Effective data fusion requires a thorough under-
standing of the data structure and appropriate merging strategies,
categorized into low-level, mid-level, and high-level fusion based on
how data or features are combined (Hassani, Dackermann, Mousavi, &
Li, 2024; Smolinska, Engel, Szymanska, Buydens, & Blanchet, 2019).

The study focuses on analyzing the metabolome of high-quality
hazelnuts used in confectionery to predict industrial quality. Using
comprehensive two-dimensional gas chromatography (GC×GC) and
liquid chromatography coupled with high-resolution mass spectrometry
(LC-HRMS), both non-volatile and volatile metabolites are mapped and
analyzed. The volatile metabolome, crucial for sensory quality, is
assessed using quantitative metabolomics. Data fusion techniques like
low-level data fusion (LLDF) and mid-level data fusion (MLDF) are
employed to enhance classification performance and information ca-
pacity. The study aims to predict industrial quality factors, including
harvest region, post-harvest practices, storage conditions, and sensory
quality, thereby providing a comprehensive approach to optimizing
hazelnut quality for industrial use.

2. Materials and methods

2.1. Reagents and chemicals

Pure standards of n-alkanes (from n-C9 to n-C27) for system evalu-
ation and linear retention index (IT) determination as well as α/β-tujone
for volatiles internal standardization (IS) were obtained from Merck
(Milan, Italy). The mixture of n-alkanes for the IT solution was prepared
in cyclohexane at a concentration of 100 mg/L; internal standard (IS)
α-thujone solution was prepared in diethyl phthalate (Sigma Aldrich 99
% of purity) at a concentration of 100 mg/L

Pure standards for identity confirmation of pyruvic acid, lactic acid,
malonic acid, succinic acid, glyceric acid, fumaric acid, malic acid, citric
acid, alanine-Ala, asparagine-Asn, aspartic acid-Asp, cysteine-Cys, glu-
tamic acid-Glu, glycine-Gln, isoleucine-Ile, leucine-Leu, lysine-Lys,
methionine-Met, ornithine-Orn, phenylalanine-Phe, proline-Pro,
serine-Ser, threonine-Thr, tryptophan-Trp, tyrosine-Tyr, valine-Val,
glycerol, xylitol, mannitol, myo-inositol, fructose, glucose, saccharose,
catechin, epicatechin, procyanidin B2, ellagic acid, and the internal
standards (ISs), 4-chlorophenylalanine (quality control − QC for deriv-
atization) and 1,4-dibromobenzene (QC for GC normalization), were
purchased from Merck.

Derivatization reagents and LC grade solvents: O-methylhydroxyl-
amine hydrochloride (MOX), (N, O-bis(trimethylsilyl)tri-
fluoroacetamide (BSTFA), methanol, acetone, pyridine, n-hexane,
dichloromethane, toluene and formic acid (FA) were from Merck, while
LC-MS grade acetonitrile (ACN) was obtained from ROMIL (Waterbeach
Cambridge, England).

2.2. Hazelnut samples

Raw hazelnuts, sourced from various geographical and botanical
origins, were supplied by Soremartec Italia Srl located in Alba, Cuneo,
Italy. The raw materials, which were uniformly ground into granella (i.
e., grain), were promptly stored at − 80 ◦C until analysis. Samples were
from four diverse cultivars/geographical origins: two Italian samples,
Tonda Gentile Trilobata (TGT), and Tonda Gentile Romana (TGR), and
two Turkish blends from Akçakoca (AKC) and Giresun (GIR) areas.

Moreover, the GIR sample was also simulated to undergo improper
postharvest handling, and thus simulated to be sun dried at 38–40 ◦C in a
high-humidity environment. All samples were stored up to 12 months,
with samples collected at 0, 4-, 6-, 9-, and 12-months intervals. Two
storage conditions were tested: under vacuum (UV) after modified at-
mosphere with 1%O2 and 99%N2, and standard atmosphere (SA). Both
conditions were maintained at 5 ◦C and kept below 65 % equilibrium
relative humidity.

2.2.1. QC and batch handling
QC samples, according to accepted practices, were appositely created

to monitor the analytical platforms performances, in particular retention
times (tR) stability and response fluctuations of the detector (Dudzik,
Barbas-Bernardos, García, & Barbas, 2018). For the primary and
specialized metabolites, which were all analyzed in a single analytical
batch, the QC sample was created by mixing aliquots of each biological
replicate. QCs were then analyzed once every 8 (randomized) samples.
Regarding the volatile fraction, where analyses were acquired punctu-
ally at every time point, QC samples were created by mixing the bio-
logically different T0 samples and stored at − 80 ◦C; aliquots were used
at each time point to check for system stability. In the latter case, given
the larger fluctuations in the detector given by the fact that samples were
acquired during the course of one year, the response was normalized on
the IS (α/β-Thujone mixture), which was pre-loaded onto the SPME
device before exposing the fiber to the sample.

2.3. Volatilome analysis by GC×GC-qMS/FID

Sampling consisted of SPME on 100 mg of hazelnut raw grain at 50
◦C for 50 min under constant agitation with a 2 cm Divinylbenzene/
Carboxen/Polydimethylsiloxane (DVB/CAR/PDMS) df 50/30 μm fiber.
The fibers utilized were sourced from Merck, and prior to their appli-
cation, they underwent the manufacturer’s recommended conditioning
process; this involved thermal desorption at 270 ◦C for a duration of 60
min in a split/splitless injector, maintained under a continuous carrier
gas flow. The analyses were conducted using an Agilent 7890B unit
coupled with an Agilent 5977B high efficiency source (HES) MS (Agilent
Technologies, Little Falls, DE, USA). The MS operated in EI mode at 70
eV, with a scan range from 40 to 250 m/z (mass-to-charge ratio) at
10,000 amu/s resulting in a 28 Hz acquisition frequency. The MS source
temperature was set at 230 ◦C, and the transfer line temperature was
maintained at 280 ◦C. Modulation was achieved through a reverse-inject
differential-flow modulator (Agilent Technologies, Little Falls, DE,
USA). Additionally, parallel detection was accomplished using a flame
ionization detector (FID) set at 300 ◦C, with an H2 flow of 40mL/min, an
air flow of 450 mL/min, and a sampling frequency of 200 Hz. The split-
splitless injector, operating in pulsed-split mode at 250 kPa until 2.5 min
with a 1:5 split ratio, was set at 250 ◦C. Helium was used as the carrier
gas, with a flow rate of 0.4 mL min− 1 and 10 mL min− 1 in the first
dimension (1D) and the second dimension (2D), respectively. The mod-
ulation period (PM) was set at 2.5 s with a sampling time of 0.25 s. The
column configuration consisted of a 1D DB-HeavyWax™ column (100 %
polyethylene glycol − PEG; 20 m × 0.18 mm dc × 0.18 μm df) coupled
with a 2D DB17 column ((50 %-phenyl)-methylpolysiloxane; 1.8 m ×

0.18 mm dc× 0.18 μm df), both from Agilent Technologies (Wilmington,
DE, USA). After the 2D column, the flow was split using a three-way
unpurged capillary microfluidic splitter (G3181B, Agilent, Little Falls,
DE, USA). The connections toward the MS and FID consisted of deacti-
vated silica capillaries (Agilent Technologies, Wilmington, DE, USA) of
dimensions 0.5 m × 0.1 mm dc and 1.1 m x 0.18 mm dc, respectively,
resulting in a split ratio of 70:30 FID/MS. The bleeding capillary, con-
sisting of deactivated silica with dimensions of 5.81 m × 0.1 mm dc, was
dimensioned using a validated calculator to obtain a minimal flow in-
crease of 10 % (Giardina et al., 2018). The oven temperature program
was as follows: 40 ◦C (2 min) to 130 ◦C (0 min) @ 4 ◦Cmin− 1, and to 260
◦C (10 min) @ 8 ◦C min− 1. Data were acquired by MassHunter version
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10.0 (Agilent Technologies, Wilmington, DE, USA), and processed using
GC Image ver. 2022r1 (GC Image LCC, Lincoln, Nebraska, USA).

Analytes putative identification was by comparing the experimental
EI 70 eV spectrum (option peak spectrum from the highest modulation)
with those collected in commercial and in-house databases. The NIST
similarity search algorithm was used and the direct match factor (DMF)
threshold was set at 950; the 1D IT tolerance was at ± 10.

2.4. Primary metabolome analysis by GC×GC-TOF MS

The extraction/derivatization protocol applied in this study was
optimized from previous research (Cialiè Rosso et al., 2020; Cialiè
Rosso, Stilo, Bicchi, et al., 2021). Specifically, 0.5 g of hazelnuts granella
were defatted with n-hexane (5 mL x 7 times) in an ultrasonic bath for
15 min at ambient temperature. 100mg of the defatted grain was further
extracted with 5.0 mL of H2O/CH3OH (98:2 V/V) in an ultrasonic bath
for 15 min. After centrifugation for 5 min at 5,000 RPM at 4 ◦C, the
supernatant was collected and filtered with Nylon HPLC filters with 20
μm pores. One mL of extract was then freeze-dried overnight after the
addition of 15 μL of 4-chlorophenylalanine solution (4 mg/mL in
methanol) (process internal standard − IS). To prevent the formation of
multiple derivatives from sugar enols during the silylation steps, 45 μL of
MOX (20 g/L in pyridine) was added and the mixture was allowed to
react for two hours at 60 ◦C under agitation. Then, 60 μL of BSTFA were
introduced, and the solution was maintained at 60 ◦C for 1 h. To serve as
analytical IS, 20 μL of 1,4-dibromobenzene in dichloromethane at a
concentration of 1 g/L were added and further diluted with 75 μL of
dichloromethane, reaching a final volume of 200 μL. The prepared
samples were promptly stored at − 18 ◦C and analyzed within 24 h after
the derivatization process.

GC×GC analyses were conducted using an Agilent 7890B coupled
with a Markes BenchTOF Select™ mass spectrometer featuring Tandem
Ionization™ (Markes International, Llantrisant, UK). The system incor-
porated a two-stage KT 2004 loop-type thermal modulator (Zoex Cor-
poration, Houston, TX), cooled with liquid nitrogen and controlled by
Optimode v2.0 (SRA Instruments, Cernusco sul Naviglio, Milan, Italy).

The column setup and operative conditions were as follows: 1D DB5
(95 % polydimethylsiloxane, 5 % phenyl; 60 m × 0.25 mm dc × 0.25 μm
df), 2D DB17MS (equivalent to (50 %-phenyl)-methylpolysiloxane; 2.0
m × 0.1 mm dc × 0.10 μm df) from J&W (Agilent, Little Falls, DE, USA).
The first 0.80 m of the 2D column, connected in series to the 1D column
by a silTite μ-union (Trajan Scientific and Medical, Ringwood, Victoria,
Australia), was utilized as a loop-capillary for cryogenic modulation.
The carrier gas, helium, was maintained at a flow rate of 1.3 mLmin− 1 in
constant flow mode. The PM was 3.0 s, operating in multi-step mode
from 0 to 15 min. The hot jet pulse time duration was 250 ms during the
first 15 min, and 350 ms during the period 15–63 min. The cold jet flow
was programmed for a linear decrease from 35 % of the Mass Flow
Controller (MFC) maximum flow (40 L min− 1) to 5 % at the end of the
run. The injector temperature was held at 280 ◦C, operating in split
mode with a split ratio of 1:20. The oven temperature ramp was: 60 ◦C
(2 min) to 120 ◦C at 10 ◦C min− 1, then to 300 ◦C (10 min) at 4 ◦C min− 1;
the injection volume was 1 μL. TOF MS acquisition parameters included
tandem ionization™ at 70 and 12 eV, with an acquisition rate of 50 Hz
per channel within the mass range 45–650m/z; the filament voltage was
set at 1.8 V. The ion source and transfer line temperatures were both set
at 290 ◦C. Data were processed using GC Image ver. 2022r1 (GC Image
LCC, Lincoln, Nebraska, USA).

Analytes putative identification was by comparing the experimental
EI 70 eV spectrum (option peak spectrum from the highest modulation)
with those collected in commercial and in-house data bases. The NIST
similarity search algorithm was used and the direct match factor (DMF)
threshold was set at 950; the 1D IT tolerance was at ± 10. Where
available, reference standards were also used to confirm the analytes
identity.

2.5. Specialized metabolome analysis via LC-MS

Sample preparation followed the protocol reported by Ghirardello et
al. (Ghirardello et al., 2014), with slight modifications. 1 ± 0.005 g of
granella were weighted in a 15 mL vial and extracted with 10 mL of an
acetone: water: formic acid mixture (75:24.5:0.5, V/V/V) in an ultra-
sonic bath for two hours at room temperature. Subsequently, samples
were centrifuged at 6,000 RPM for 10min and the supernatant collected.
The extracts were washed with n-hexane (3 x 5 mL), the organic phase
was removed using a separation funnel, and the aqueous phase recov-
ered in a 10 mL vial. The acetone contained in the aqueous phase was
evaporated under a gentle nitrogen stream, while water was subse-
quently removed using a VirTis BenchTop Pro freeze dryer (SP Scienti-
fic, NY USA) overnight. Freeze-dried extracts were stored at − 18 ◦C
away from UV exposure, and prior to analysis dissolved in 200 µL of
water:methanol:formic acid mixture (66.6:33.3:0.1, V/V/V), filtered
(0.22 µm), and immediately analyzed.

Analyses were carried out using an Acquity ultra-high-pressure
liquid chromatography (UHPLC) system hyphenated to a photodiode
array (PDA) detector (500 nL flow cell, 10 mm path length) and a
Synapt-G2 quadrupole time-of-flight (q-TOF) mass spectrometer equip-
ped with an electrospray ionization (ESI) source operating in negative
ionization mode (Waters, Milford, MA, USA). The PDA acquisition
ranged from 200 to 500 nm at a scan rate of 20 Hz. The MS scan ranged
from 120 to 1500 amu (40 to 1500 for the high collision energy data) at
a scan time of 0.2 s, with a capillary voltage of − 3.0 kV, a cone voltage
of 20 V, a source temperature of 120 ◦C, and an extraction cone voltage
of 4.0 V. The desolvation gas was nitrogen with a flow rate of 650 L h− 1

at a temperature of 275 ◦C, and the cone gas flow (N2) 50 L h− 1. Low and
high collision energy data were acquired alternately in a single analysis
in MSE mode, using collision energies of 6 eV and a ramp of 15 – 65 eV,
respectively. Accurate mass calibration was carried out via a sodium
formate solution, while leucine enkephalin (m/z = 554.2615) was used
as mass calibrant. The separation was achieved on a Kinetex (RP-18,
150 mm × 2.1 mm, 1.7 μm) superficially porous column (Phenomenex,
Torrance, USA) using as mobile phase a combination of A (0.1 % FA in
H20, V/V) and B (0.1 % FA in ACN, V/V) at a constant flow rate of 0.3 mL
min− 1; the elution gradient was as follows: 1 % B held for 3 min (0–3
min), a linear gradient from 1% to 8 % B (3–16min), from 8% to 14% B
(16–22 min), from 14 % to 25 % B (22–38 min), from 25 % to 95 % B
(38–44 min), held at 95 % B for 2 min (44 – 46 min), and followed by a
re-equilibration step of 10 min at the initial conditions. The injection
volume was 5 μL with the injector loop set in partial fill mode. Data were
acquired using MassLynx (v4.2). Raw data files were converted to *.abf
format using Reifycs Abf converter, and further processed using MS-
DIAL (Tsugawa et al., 2015; Tsugawa et al., 2016, 2020), MS-Finder
(Lai et al., 2018; Tsugawa et al., 2019), the Global Natural Product
Social Molecular Networking (GNPS) website, and MassLynx (v4.2)
(Waters).

Analytes putative identifications were based on relative retention,
UV spectra and low- and high collision energy HR-MS data (Confidence
level 3) (Schrimpe-Rutledge, Codreanu, Sherrod, & McLean, 2016).
Exact mass error was below 5 ppm. This approach is aligned to the
recently introduced scoring system for non-targeted screenings by LC-
HRMS by Alygizakis et al. (Alygizakis et al., 2023).

2.6. Data analysis software and tools

Data fusion and chemometrics were performed using Matlab R2021a
(The MathWorks, Inc., Natick, Massachusetts, United States) with the
following packages: PCA toolbox (v1.5) (Ballabio, 2015) and Classifi-
cation toolbox (v6.0) (Ballabio & Consonni, 2013).

LLDF involved merging data matrices from various techniques into a
single matrix after scaling and centering each original block. For unsu-
pervised MLDF (UMLDF), principal component analysis (PCA) was
conducted on each scaled and centered data matrix. The first principal
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components that collectively explained at least 80 % of the total vari-
ance were then merged into a new matrix. In contrast, supervised MLDF
(SMLDF) used partial least-squares discriminant analysis (PLS-DA) on
each data matrix, and the first three latent variables (LVs) from each
model were merged into a new matrix.

The resultant data matrices, each comprising 130 samples, had di-
mensions of 442, 674, and 44 variables for volatilome, primary
metabolome, and non-volatile metabolome, respectively. To assess
classification performance, Monte Carlo cross-validation was performed
with an 80–20 % dataset split over 1,000 iterations, using a maximum
assignation criterion for all three fusion levels. Quality metrics for
classification models include classification accuracy, R2 and Q2.

3. Results and discussion

3.1. Metabolite fractions informative potential: Targeted features

3.1.1. Primary metabolome and volatilome
The hazelnut primary metabolome and volatilome GC×GC

chromatograms were processed using the Untargeted – Targeted (UT)
fingerprinting approach, as outlined in previous studies (Cordero et al.,
2019; Stilo, Liberto, Reichenbach, et al., 2021), with established pro-
cessing parameters for constructing an UT template (Squara, Manig,
et al., 2023) comprehensively covering untargeted (unknown) and tar-
geted (known) components. Optimized parameters for UT fingerprinting
include a signal-to-noise (S/N) threshold of 50 data points (dp) to
include a peak or peak-region into a template, a distance threshold of 10
data points in theMass Spectrometry (MS) channel as search space in the
retention times domain, along with a direct match factor (DMF)
threshold of 700 to reliably align UT features across all chromatograms
(Squara, Manig, et al., 2023; Stilo et al., 2019) and to limit false positive
matches for features with inconsistent MS spectral signatures vs a tem-
plate reference. Given that the volatilome fraction was analyzed on a
dual detector instrumentation (i.e., GC×GC–MS/FID), the FID response
was used to generate the features data matrix; it was chosen to minimize
the bias caused by the detector performance fluctuations over one year
of sample analysis and acquisitions. The MS trace, in its turn, was
exploited for identification/identity confirmation purposes and to guide

Fig. 1. (A) GC×GC-FID chromatogram illustrating the volatilome fraction of a TGT sample. (B) GC×GC–MS chromatogram illustrating the primary metabolome
fraction of a TGT sample. (C) LC-MS chromatogram illustrating the specialized metabolome fraction of a TGT sample.
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template realignment between the analyzed batches. The primary and
specialized metabolome datasets were analyzed in a single batch, thus
without relevant detector fluctuation bias. Fig. 1 shows the chromato-
grams of the three fractions of one exemplary sample, while Table 1
reports the list of targeted compounds, together with retention times and
retentions indices (experimental and tabulated).

Within the volatilome many different chemical classes were detec-
ted. This fraction is correlated to hazelnut aroma quality due to the
presence of key-aroma compounds in specific amounts; these odorants
evoke the peculiar aroma profile and qualify aroma identity of the
product (Caratti et al., 2023; Dunkel et al., 2014; Kiefl, Pollner, &
Schieberle, 2013; Squara, Stilo, Cialiè Rosso, Liberto, Spigolon, et al.,
2022). Moreover, the volatilome brings information about fat quality
since it includes secondary products of lipid oxidation such as linear
saturated aldehydes. These analytes in suitable amounts and relative
ratios can be considered decision-makers for storage conditions and time
(Ortega-Gavilán, Squara, Cordero, Cuadros-Rodríguez, & Bagur-
González, 2023; Squara, Caratti, et al., 2022; Squara, Caratti, et al. 2023;
Squara, Stilo, Cialiè Rosso, Liberto, Bicchi, et al., 2022). In addition,
microbial development and related metabolism, enzymatic activation of
the seeds in non-optimal post-harvest and storage, contribute to nuts
spoilage and loss of industrial quality. These phenomena are detectable
through the clear chemical signature of short chain fatty acids, lactones
and primary alcohols (Stilo, Liberto, Spigolon, et al., 2021). Within the
selected samples, covering two harvest countries (Italy and Turkey) and
many cultivars/blends [Tonda Gentile Trilobata (TGT), Tonda Gentile
Romana (TGR), Akçakoca (AKC), and Giresun (GIR)], optimal and sub-
optimal post-harvest storage conditions [5 ◦C under vacuum (UV) or in
standard atmosphere (SA)], it was expected to find information about all
these quality traits, on the basis of which industry plans supplies and
strategies, accompanied by the required sensory profile with perceivable
positive attributes (nutty, malty, fresh, sweet floral, and fruity) and the
absence of defects (rancid, mushroom like, metallic, stale, and solvent)
(Kiefl et al., 2013; Squara, Stilo, Cialiè Rosso, Liberto, Spigolon, et al.,
2022). The impact of post-harvest drying and storage conditions was
extensively studied in previous research, interested readers can refer to
available literature (Alasalvar, Shahidi, Ohshima, et al., 2003; Cialiè
Rosso et al., 2018; Squara, Caratti, et al., 2023; Squara, Stilo, Cialiè
Rosso, Liberto, Spigolon, et al., 2022).

About the volatilome known with its direct impact on aroma quality,
the ketones class, and in particular 5-methyl-(E)-2-hepten-4-one,
commonly known as filbertone, emerged as the most impactful odorant,
characterized by a typical nutty and hazelnut-like aroma. Moreover,
various aldehydes, including 2-methylpropanal, 2- and 3-methylbuta-
nal, were also detected; they are associated with fruity, malty, nutty,
and chocolate-like odors. Additionally, linear saturated and mono-
unsaturated aldehydes were linked to perceptions of green, fatty, sweet
floral, and fruity notes. The detection of five alcohols in raw hazelnuts
further enriched the understanding of hazelnut aroma, with correlations
between specific alcohols and distinctive sensory attributes such as dark
chocolate, pungent, sweet, rancid, burnt, and wine-like notes. Aromatic
hydrocarbons, although more abundant in roasted kernels, were also
detected in raw hazelnuts, showcasing the method’s sensitivity and
improvement in mapping raw hazelnut volatilome (Alasalvar, Shahidi,
& Cadwallader, 2003; Cialiè Rosso et al., 2018; Pedrotti et al., 2021;
Squara, Stilo, Cialiè Rosso, Liberto, Spigolon, et al., 2022; Stilo et al.,
2022).

The chemical dimensionality of primary metabolites includes a set of
chemical classes, such as mono- and disaccharides, amino acids, low-
molecular weight acids, and amines. Targeted analytes are reported in
Table 1 in the form of derivatives together with retention times and ITs.
Among the primary metabolites identified in hazelnuts are glucose,
fructose, sucrose, glutamine, alanine, and citric acid, alongside various
amines. These constituents play pivotal roles in the nutritional compo-
sition and metabolic pathways of hazelnuts, contributing to their overall
profile and potential health benefits. Moreover, this fraction is crucial in

understanding the odorant formation during roasting (Cialiè Rosso,
Stilo, Bicchi, et al., 2021; Squara, Stilo, Cialiè Rosso, Liberto, Spigolon,
et al., 2022; Stilo et al., 2020) or informing about the stability of kernels
against germination or bad post-harvest practices that do not properly or
efficiently reduce moisture (Cialiè Rosso et al., 2020; Squara, Stilo,
Cialiè Rosso, Liberto, Bicchi, et al., 2022; Squara, Stilo, Cialiè Rosso,
Liberto, Spigolon, et al., 2022). Notably, while filbertone emerges as the
primary odorant in roasted hazelnuts, the precursor(s) and formation
pathway(s) remain elusive. Nonetheless, literature highlights various
reactions occurring during thermal treatment, yielding potent odorants
from primary metabolites, as a consequence of Maillard’s reaction be-
tween reducing sugars and amino acids – especially lysine and arginine.
A positive correlation between primary metabolites and odorous com-
ponents developed during roasting was demonstrated by Cialiè Rosso
et al. (Cialiè Rosso et al., 2020), which proposed the concept of aroma
potential for hazelnut quality assessment.

3.1.2. Specialized non-volatile metabolome
The bioactive specialized metabolites found in hazelnut kernels and

related plant portions were putatively identified (confidence level 3)
based on relative retention, UV spectra and low- and high collision en-
ergy HR-MS data (Table 1).. Phenolic compounds emerged as the pre-
dominant class of metabolites. Within this category, phenolic acids – i.e.,
phenols featuring one carboxylic acid functional group, such as
hydroxybenzoic and hydroxycinnamic acids as subcategories − emerged
as the more abundant. In hazelnut kernels, several phenolic acids
including mono-, di- and tri-hydroxybenzoic acids and their methoxy-
lated and glycosylated derivatives were identified. This class of com-
pounds has been demonstrated to possess antimicrobial activity,
inhibiting the growth of pathogenic bacteria and fungi by disrupting
their cell membranes and metabolic processes, thus inhibiting the
growth of spoilage microorganisms and prolonging the product shelf life
(Alasalvar & Bolling, 2015; Bottone et al., 2019; Jakopic et al., 2011;
Pelvan, Olgun, Karadağ, & Alasalvar, 2018; Shahidi, Alasalvar, &
Liyana-Pathirana, 2007). Moreover, it was found to correlate with
geographical origin of samples likely because of the local pedo-climatic
conditions impacting on the phenotype/chemotype expression (Ghisoni
et al., 2020; Pelvan et al., 2018).

Flavonoids, polyphenolic compounds found abundantly in nature,
exhibit diverse forms including aglycones, glycosides, and methylated
derivatives. In the context of C. avellana, small quantities of aglycones
are commonly present and occasionally contribute to the overall flavo-
noid content within the plant. The flavonols quercetin and myricetin
were detected in hazelnut kernels and shells, while myricetin was also
present in shells and skins. Flavonoid glycosides observed in hazelnuts
are primarily O-glycosides, characterized by a sugar portion comprising
one or two units. In hazelnuts, tannins are particularly abundant.
Condensed tannins exist as oligomers or polymers classified into pro-
cyanidins and propelargonidins based on the flavan-3-ol unit. Specif-
ically, hazelnut kernels were found to contain dimeric procyanidins with
B- and A-type linkages, along with a series of B-type trimers. These
compounds are present in the kernels and skins and possess antioxidant
activity in addition to their antimicrobial activity. They help protect the
kernels from oxidative damage caused by environmental stressors such
as ultraviolet radiation and reactive oxygen species (ROS). By scav-
enging free radicals, flavonoids maintain the integrity of cellular struc-
tures and preserve the quality of the kernels during growth and
maturation (Bottone et al., 2019; Fanali et al., 2018; Ghisoni et al.,
2020).

Lastly, diarylheptanoids, compounds characterized by the 1,7-diphe-
nylheptane skeleton, are also commonly found in hazelnuts. Cyclic
diarylheptanoids, called giffonins, were isolated from various parts of
hazelnut plants including leaves, leaf covers, flowers, and shells
(Bottone et al., 2019; Ngouta et al., 2021; Singldinger et al., 2018).
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Table 1
Identified metabolites in the volatile metabolome, primary and specialized non-volatile metabolites listed together with their average retention times (1tR min, 2tR sec),
experimental and tabulated IT. For specialized metabolites, retention times (1tR min), accurate mass, molecular formula, mass accuracy (ppm) and the main MSE

fragment ions are listed.

Volatile metabolome (GC£GC–MS/FID and differential-flow modulation)

Targeted features 1tR min 2tR min Experimenal IT Literature IT

Aldehydes and Ketones
Propanal, 2-methyl 4.53 0.83 817 808
Butanal 5.42 0.74 881 875
2-Butanone 5.96 0.75 901 905
Butanal, 2-methyl- 6.25 0.84 913 915
Butanal, 3-methyl- 6.38 0.80 918 922
Pentanal 8.00 0.81 980 978
2,3-Butandione 8.21 0.64 988 982
2-Pentanone, 4-methyl 8.92 0.89 1011 1010
2-Pentanone, 3-methyl 9.25 0.95 1020 1016
3-Hexanone 10.42 0.98 1053 1051
3-Pentanone, 2,4-dimethyl- 11.00 1.09 1069 −

Hexanal 11.50 0.93 1083 1080
4-Heptanone 13.04 1.05 1124 1131
3-Penten-2-one 13.04 0.76 1124 1131
2-Hexanone, 5-methyl- 13.67 0.97 1141 1142
4-heptanone, 3-methyl 13.96 1.17 1149 1178
2-Heptanone 15.13 0.97 1180 1175
Heptanal 15.25 0.98 1183 1186
Hexanal, 2-ethyl- 15.33 1.14 1185 1197
4-Heptanone, 2,6-dimethyl 15.92 1.02 1201 1189
2-Heptanone, 6-methyl- 17.21 1.02 1237 1228
2-Octanone 18.75 1.12 1279 1281
Acetoin 19.00 0.55 1286 1283
Octanal 19.08 1.01 1288 1289
5-methyl-(E)-2-hepten-4-one 19.1 1.12 1290 1290
2-Hexenal, 2-ethyl- 19.42 1.01 1301 1310
(E)-2-Heptenal 20.29 0.85 1322 1332
2-Nonanone 22.54 1.01 1387 1390
Nonanal 22.75 1.03 1393 1390
2-Decanone 25.92 0.76 1491 1495
Decanal 26.13 0.91 1497 1496
Benzaldehyde 26.92 0.64 1527 1530
(E)-2-Nonenal 27.17 0.77 1538 1543
(E)-2-Decenal 29.75 0.66 1632 1630
Tetradecanal 34.75 0.68 1920 1919
Alcohols
2-Butanol 9.38 0.58 1024 1022
1-Propanol 9.83 0.55 1037 1037
1-Propanol, 2-methyl- 11.75 0.56 1090 1086
2-Pentanol 12.71 0.59 1115 1115
1-Butanol 13.58 0.56 1139 1146
2-Pentanol, 3-methyl- 15.54 0.65 1196 1202
1-Butanol, 2-methyl- 15.88 0.57 1201 1208
2-Hexanol 16.38 0.63 1214 1211
1-Pentanol 17.42 0.58 1242 1244
4-Heptanol 18.67 0.68 1277 1281
2-Heptanol 19.92 0.65 1312 1318
1-Hexanol 21.08 0.60 1345 1340
1-Hexanol, 2-ethyl- 25.67 0.61 1483 1484
4-Heptanol, 2,6-dimethyl 26.25 0.67 1502 1509
2,3-Butanediol 27.00 0.43 1530 1545
Ethanol, 2-butoxy- 22.92 0.62 1397 1405
2,3-Epoxyhexanol 23.96 0.74 1430 1428
(E)-p-2-Menthen-1-ol 27.38 0.64 1544 1563
1-Octanol 27.50 0.55 1549 1546
2,3-Butanediol 27.92 0.42 1565 1570
Menthol 29.54 0.58 1632 1626
Ethanol, 2-(2-butoxyethoxy)- 32.58 0.50 1786 1786
2-Phenylethanol 34.54 0.45 1906 1915
Carboxylic acids
Acetic acid 24.50 0.41 1447 1449
Formic acid 26.29 0.45 1503 1510
Propanoic acid 27.13 0.41 1535 1534
Butanoic acid 29.29 0.38 1621 1637
Butanoic acid, 3-methyl- 30.21 0.38 1663 1666
Pentanoic acid 31.54 0.39 1729 1733
Hexanoic acid 33.42 0.38 1836 1839
Heptanoic acid 35.08 0.38 1943 1946
Octanoic acid 36.58 0.36 2048 2046
Nonanoic acid 38.00 0.38 2154 2144

(continued on next page)
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Table 1 (continued )

Volatile metabolome (GC£GC–MS/FID and differential-flow modulation)

Decanoic acid 39.29 0.35 2258 2265
Esters
Allyl acetate 4.33 0.62 839
Butyl acetate 11.25 1.04 1076 1075
Butanoic acid, butyl ester 16.54 1.18 1218 1221
Butyrolactone 29.50 0.51 1630 1626
2-Octynoic acid, methyl ester (ISTD) 29.92 0.64 1650
γ-Hexalactone 31.08 0.55 1704 1703
Butyl benzoate 33.92 0.59 1866 1856
γ-Octalactone 34.79 0.51 1923 1916
γ-Nonalactone 36.21 0.42 2021 2028
Hexanedioic acid, bis(2-methylpropyl) ester 37.63 0.56 2125 2119
Terpenes
α-Pinene 9.29 1.67 1022 1022
α-Thujene 9.54 1.55 1028 1010
α-Pinene 9.29 1.67 1022 1022
α-Thujene 9.54 1.55 1028 1010
Camphene 10.71 1.66 1061 1066
β-Pinene 12.17 1.69 1101 1110
Sabinene 12.75 1.52 1117 1120
δ-Carene 13.79 1.61 1144 1147
β-Myrcene 14.42 1.32 1161 1159
α-Terpinene 15.04 1.37 1178 1178
Limonene 15.63 1.43 1193 1199
β-Phellandrene 16.00 1.47 1203 1205
γ-Terpinene 17.38 1.45 1241 1243
p-Cymene 18.33 1.23 1268 1268
α-Terpinolene 18.75 1.46 1279 1280
cis-Sabinene hydrate 24.96 0.77 1461 1451
Terpinen-4-ol 28.67 0.65 1593 1600
Others
Hexane 2.67 0.66 600 600
Octane 4.08 1.14 800 800
1-Octene 4.75 1.14 855 837
Cyclohexane, ethyl- 5.54 1.32 885 885
Nonane 5.92 1.57 900 900
Furan, 2,5-dimethyl- 7.33 0.86 955 952
n-Butyl ether 7.67 1.49 967 974
Decane 8.71 1.91 1000 1000
Furan, 2-ethyl-5-methyl- 9.75 1.04 1034 1028
Toluene 9.96 0.96 1040 1036
1-Decene 10.08 1.68 1043 1052
Furan, 2,3,5-trimethyl- 10.54 1.00 1056 1051
Undecane 12.00 2.11 1100 1100
Ethylbenzene 13.54 1.05 1138 1134
p-Xylene 13.54 1.05 1138 1134
Undecane, 5-methyl- 13.96 1.97 1149 1157
Dodecane 15.75 2.12 1200 1200
Furan, 2-pentyl- 16.96 1.12 1230 1230
Styrene 17.83 0.99 1254 1251
Benzene, 1,2,4-trimethyl- 18.75 1.12 1279 1275
Hexanenitrile 19.42 0.88 1297 1303
Hexane, 1,1′-oxybis- 21.63 1.68 1360 1367
α-Thujone (ISTD) 23.79 1.06 1424 1429
β-Thujone (ISTD) 24.46 1.04 1445 1451

Primary metabolome (GC£GC-TOF MS and loop-type thermal modulation)
Targeted features 1tR min 2tR min Experimenal IT Literature IT

Amino acids
Alanine 2TMS 10.08 1.45 1103 1110
Valine TMS 10.33 1.59 1111 1105
Glycine 2TMS 11.10 1.63 1136 1149
Isoleucine TMS 13.25 1.89 1201 1189
Valine 2TMS 14.17 2.31 1231 1221
Leucine 2TMS 15.95 1.85 1288 1299
Serine 2TMS 16.04 1.95 1275 1267
Proline 2TMS 16.42 1.79 1300 1308
Isoleucine 2TMS 16.75 1.75 1311 1302
Glycine 3TMS 16.92 1.75 1316 1317
Serine 3TMS 17.33 2.21 1328 1342
Methionine TMS 20.47 2.19 1431 1420
Methionine 2TMS 23.42 1.95 1526 1534
Phenylalanine TMS 24.25 2.35 1554 1554
Cysteine 3TMS 24.87 1.93 1575 1568
Ornithine 3TMS 26.08 1.90 1617 1624
Phenylalanine 2TMS 27.00 2.07 1649 1649
Ornithine 4TMS 31.92 1.85 1828 1814

(continued on next page)
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Table 1 (continued )

Volatile metabolome (GC£GC–MS/FID and differential-flow modulation)

Tyrosine 2TMS 33.83 3.48 1903 1901
Tryptophan 2TMS 41.08 1.77 2236 2236
Sugars
Glycerol 3TMS 15.83 1.61 1282 1284
Threitol 4TMS 22.92 1.63 1509 1502
Erythritol 4TMS 23.17 1.63 1517 1508
Arabinose 4TMS ether ethyl oxime 27.50 2.27 1666 1662
1-Tridecanol TMS 27.92 1.62 1673 1661
Ribose 4TMS 27.92 1.78 1680 1668
Xylitol 5TMS 29.17 1.73 1723 1710
Fructofuranoside, methyl 1,3,4,6tetrakis-O-TMS 30.95 1.81 1786 1799
Fructofuranose, pentakis(trimethylsilyl) ether (a) 31.33 1.71 1797 1800
Fructofuranose, pentakis(trimethylsilyl) ether (b) 31.58 1.71 1816 1836
Fructose 5TMS (anti) 32.83 1.79 1862 1867
Fructose 5TMS (syn) 33.33 1.77 1881 1875
Glucose 5TMS 33.75 1.79 1900 1902
Mannitol 6TMS 34.81 1.73 1941 1928
Glucopyranose 5TMS derivative 35.63 1.74 1978 1971
Scyllo-Inositol 6TMS 36.99 1.77 2076 2090
Myo-Inositol 6TMS 38.25 1.87 2086 2096
Sucrose 8TMS 50.15 1.91 2620 2610
Maltose 8TMS 50.97 1.87 2686 2693
Organic acids
Lactic acid 2TMS 9.17 1.55 1071 1068
Glycolic acid 2TMS 9.96 1.73 1099 1085
Pyruvic acid 2TMS 10.00 1.60 1100 1108
Oxalic acid 2TMS 11.42 1.97 1145 1150
Pyruvic acid oxime 2TMS 11.50 1.79 1147 1149
Succinic acid 2TMS 17.03 1.98 1321 1314
Fumaric acid 2TMS 18.50 1.92 1368 1358
Lactic acid dimer 2TMS 19.67 2.07 1405 1394
Glutaric acid 2TMS 20.25 1.97 1424 1413
Malic acid 2TMS 22.05 1.77 1481 1478
Malic acid 3TMS 22.05 1.99 1481 1478
Pyroglutamic acid TMS 22.58 3.67 1504 1511
Adipic acid 2TMS 23.58 1.99 1531 1522
2-Hydroxyglutaric acid 3TMS 25.33 1.95 1591 1589
2-Hydroxyadipic acid 3TMS 25.38 2.01 1593 1589
Glutamic acid 3TMS 25.67 1.81 1603 1612
3-Hydroxy-3-methylglutarate 26.08 1.91 1617 1619
Tartaric acid 4TMS 27.00 1.93 1656 1665
Pantothenic acid 3TMS 35.85 2.33 1987 1985
Galactonic acid 6TMS 35.87 1.85 1988 1981
Gluconic acid 6TMS 35.92 2.39 1984 1997
Galactaric acid 6TMS 36.25 1.95 2003 2014
Galacturonic acid 5TMS 36.42 1.93 2011 2010

Specialized non-volatile metabolome (LC-(HR)TOF MS)
Targeted features tR min [MH]- Formula (ppm) Fragments
Phenolic acids
Trihydroxybenzoic acid-O-hexoside (a) 3.93 331.0657 C13H15O10 (− 2.4) 169.0138, 125.234
Hydroxybenzoic acid-O-hexoside 5.82 299.0755 C13H15O8 (− 4.0) 137.0248, 93.0344
Dihydroxybenzoic acid-O-hexoside (a) 6.77 315.0715 C13H15O9 (− 0.3) 152.0119, 108.0201
Trihydroxybenzoic acid-O-hexoside (b) 7.76 331.0653 C13H15O10 (− 3.6) 169.0140, 125.239
Hydroxytyrosol-O-hexoside 8.98 315.1083 C14H19O8 (1.0) 153.0552
Hydroxy-methoxybenzoic acid-O-hexoside (a) 9.18 329.0875 C14H17O9 (0.6) 123.0442
Hydroxy-methoxybenzoic acid-O-hexoside (b) 10.67 329.0865 C14H17O9 (− 2.4) 165.0538
Hydroxy-methoxycinnamic acid-O-hexoside 15.57 355.1016 C16H19O9 (− 3.7) 193.0515,134.0360
Hydroxymethoxybenzoic acid-O-pentosyl hexoside 20.66 461.1299 C19H25O13 (0.9) 167.0349,123.0451
Flavan-3-ols
Procyanidin trimer (a) 8.37 865.1974 C45H37O18 (− 0.6) 575.1229,407.0750,287.0522,125.0240
Catechin 14.42 289.0705 C15H13O6 (− 2.4) 125.0241
Procyanidin dimer (a) 14.44 577.1323 C30H25O12 (− 4.0) 425.0859,407.0740,289.0718,125.0238
(Epi)gallocatechin 16.54 305.0681 C15H13O7 (6.6) 125.0237
Procyanidin trimer (b) 17.38 865.1992 C45H37O18 (1.4) 125.0242
Procyanidin dimer (b) 17.68 577.1334 C30H25O12 (− 2.1) 425.0891,407.0757,289.0735,125.0242
Procyanidin trimer (c) 18.42 865.1986 C45H37O18 (0.7) 125.0244
Epicatechin 19.27 289.0717 C15H13O6 (1.7) 125.0236
Procyanidin trimer (d) 19.38 865.1978 C45H37O18 (− 0.2) 407.0710,287.0535,125.0245
Procyanidin trimer (e) 19.72 865.1993 C45H37O18 (1.5) 577.1387,407.0734,289.0702,125.0236
Procyanidin trimer (f) 22.17 865.1965 C45H37O18 (− 1.7) 407.0810,289.0726,125.0245
Procyanidin dimer (c) 22.62 577.1351 C30H25O12 (0.9) 425.0996,407.0798,289.0717,125.0239
(Epi)catechin gallate 24.98 441.0845 C22H17O10 (5.2) 289.0692,169.0155,125.0240
Procyanidin trimer (a) 8.37 865.1974 C45H37O18 (− 0.6) 575.1229,407.0750,287.0522,125.0240
Flavonols
Myricetin-O-deoxyhexoside 25.64 463.0877 C21H19O12 (1.9) 316.0923
Quercetin di-O-glucoside 26.63 625.1415 C27H29O17 (1.6) 463.0882

(continued on next page)

S. Squara et al. Food Research International 194 (2024) 114873 

8 



3.2. Untargeted and targeted features signatures in the metabolome:
Information potential of single fractions

Results were firstly explored by independently analyzing each
metabolome fraction. Data matrices had the following dimensions: 130
samples × 442 variables (volatilome), 130 samples × 674 variables
(primary metabolites), and 130 samples × 44 variables (specialized
metabolites).

PCA was firstly performed on each dataset independently. Results
illustrated as score plots are reported in Electronic Supplementary Ma-
terial – Supplementary Figure 1 SF1. The score plots for each dataset

with samples colored according to biological variables impacting the
dataset are reported to have a comprehensive understanding. Supple-
mentary Figure 1 –SF1 A, B, C illustrate the showcase samples colored
according to their geographical origin. Within the three, the specialized
metabolome fraction mainly represented by phenolic compounds
(Fig. 2A) is the one with a better defined clustering. The five clusters that
are reported in the plot represent the different cultivars/blends exam-
ined, and the two sub-clusters in the top-left quadrant are the Giresun
samples (Turkey) with a different postharvest treatment. On the other
hand, the primary metabolome (Supplementary Figure 1 –SF1B)
shows the lowest diversity among the samples. Postharvest practices are

Table 1 (continued )

Volatile metabolome (GC£GC–MS/FID and differential-flow modulation)

Chalcones
Phloretin-O-hexoside 30.20 435.1289 C21H23O10 (− 0.5) 273.0760
Diarylheptanoids
Giffonin T 19.18 505.1721 C25H29O11 (2.2) 343.1198
Giffonin P (a) 21.25 361.1281 C19H21O7 (− 1.7) −

Giffonin P (b) 25.54 361.1294 C19H21O7 (1.9) −

Giffonin O 27.48 343.1174 C19H19O6 (− 2.3) −

Giffonin S 33.67 321.1119 C20H17O4 (− 2.5) 306.0860
Others
Dioxindole-3-acetic acid-O-hexoside 7.35 368.0982 C16H18NO9 (0.0) 144.0452
Tryptophan 8.76 203.0821 C11H11N2O2 (0.0) 116.0499
Dioxindole-3-acetic acid-O-hexoside-2-(2-oxoindolinyl)acetate (a) 26.80 541.1467 C26H25N2O11 (1.7) 292.0818,190.0502,146.0604
Dioxindole-3-acetic acid-O-hexoside-2-(2-oxoindolinyl)acetate (b) 26.95 541.1475 C26H25N2O11 (3.1) 292.0822,190.0500,146.0609
Dioxindole-3-acetic acid-O-hexoside-2-(2-oxoindolinyl)acetate (c) 27.25 541.1456 C26H25N2O11 (− 0.4) 292.0821,190.0512,146.0609
Hazelnutin D 28.59 540.1714 C24H30NO13 (− 0.6) 488.1216,189.0764,144.0447
1,7-bis(hydroxyphenyl)heptane-3,5-diol-O-hexoside 30.31 477.2122 C25H33O9 (− 0.6) 315.1616
Hydroxy-1,7-bis(hydroxyphenyl)heptan-3-one-O-hexoside 31.11 475.1971 C25H31O9 (0.6) 315.1616
1,7-bis(hydroxyphenyl)heptane-3,5-diol (a) 33.82 315.1604 C19H23O4 (2.5) 149.0587
1,7-bis(hydroxyphenyl)heptane-3,5-diol (b) 34.63 315.1596 C19H23O4 (0.0) 149.0606
Dimethoxy coumaryl alcohol-O-pentosyl hexoside 35.76 503.1774 C22H31O13 (1.8) 209.0819
Hydroxy-1,7-bis(hydroxyphenyl)heptan-3-one 36.29 313.1442 C19H21O4 (0.6) 149.0609
Dimethoxy-ellagic acid 36.56 329.0300 C16H9O8 (0.9) 314.0078,298.9829,270.9879

Fig. 2. PCA score plot illustrating natural samples clusters according to the detectable metabolome fractions and functional variables. 2A refers to specialized
metabolome comprising 130 samples and 44 variables describing harvest region; 2B refers to the primary metabolome comprising 130 samples and 442 variables as a
function of post-harvest practices (bad PH and good PH); 2C and 2D refer to the volatilome comprising 130 samples and 674 variables as a function of storage
conditions (2C) and storage time (2D). The data is presented after Z-score normalization.
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visualized in Supplementary Figure 1 –SF1 D, E, F. Similar to the
geographical origin, the phenolic fraction offers the clearer discrimi-
nation, but satisfactory results are also achieved with the other two
datasets with primary metabolome showing a fairly differentiation of
samples along PC3 as shown in Fig. 2B. Storage conditions and storage
months are highlighted in Supplementary Figure 1 –SF1 G, H, I and J,
K, L, respectively; in contrast to geographical origin and postharvest
practices, the phenolic fraction (Supplementary Figure 1 –SF1 I) is not
influenced by the industrial shelf life. On the other hand, the most
varying fraction according to the storage conditions (Fig. 2C) and time is
the volatilome, which has a clear trend on PC1 reflecting the storage
months as shown in Fig. 2D.

PLS-DA classification models with three LVs were created and cross-
validated to better understand the prospective of each of these fractions
to be used as a predictive tool. The choice of using no more than three
LVs was made to avoid overfitting and to draw fallacious conclusions,
since a different dataset for blind validation was not available. Monte
Carlo (80–20 % dataset split) with 1,000 iterations and maximum
assignation criteria was used as the cross-validation strategy. Table 2
reports the confusion matrices of each classification model with their
overall accuracy, expressed as percentage ratio of the correctly assigned

predictions and the total number of predictions. As previously
mentioned, the predictive capabilities are in line with the PCA obser-
vations. Geographical origin and postharvest practices present greater/
higher accuracy percentage over all the investigated fractions, with the
specialized metabolome being the one with optimal prediction, and the
primary metabolome being the worst performing (≈ 88 % overall ac-
curacy) with regard to geographical origin. Overall, satisfactory results
were achieved. Regarding the prediction of storage time and conditions,
the general accuracy achieves lower results. The volatilome is the best
performing fraction among the three for storage conditions and months
with ≈ 94 % and ≈88 % of overall accuracy, respectively. The special-
ized metabolome is the fraction that is less influenced by the latter
external variables: its prediction accuracy is the worst among the three,
indeed achieving only ≈ 57 % and 20 % of overall accuracy for storage
conditions and duration, respectively.

VIP scores were calculated for each model; in PLS-DA, the VIP score
for each variable quantifies its contribution to the model’s ability to
discriminate between classes. Higher VIP scores indicate greater
importance in explaining the differences between classes. The variables
with the average 15 highest VIPs for each fraction are reported in the
Electronic Supplementary Material – Supplementary Figure 2 SF2.

Table 2
Performance evaluation, expressed as confusion matrices, % overall accuracy, R2, and Q2, of the classification models created after separately processing volatilome,
primary metabolome, and specialized metabolome datasets.

Real/
predicted

Turkey Italy Overall
accuracy

R2 Q2

Volatile metabolome Turkey 15229 341 98.35% 0.890 0.715
Italy 89 10341

Primary metabolome Turkey 13981 1570 87.73% 0.610 0.474
Italy 1620 8829

Specialized
metabolome

Turkey 15517 0
100.00% 0.967 0.744Italy 0 10483

Real/
predicted

Bad PH Standard PH Overall
accuracy

R2 Q2

Volatile metabolome
Bad PH 5232 0

99.35% 0.842 0.727Standard PH 170 20598

Primary metabolome Bad PH 4789 356 97.36% 0.574 0.393
Standard PH 330 20525

Specialized
metabolome

Bad PH 5271 0 100.00% 0.899 0.808
Standard PH 0 20729

Real/
predicted

Bad Storage Good Storage Time 0 Overall
accuracy

R2 Q2

Volatile metabolome
Bad Storage 11175 855 6

93.53% 0.842 0.727Good Storage 790 11135 22
Time 0 10 0 2007

Primary metabolome
Bad Storage 5513 5174 1281

53.44% 0.396 0.294Good Storage 2862 7524 1712
Time 0 431 645 858

Specialized
metabolome

Bad Storage 8253 2596 1112
56.77% 0.422 0.226Good Storage 3836 6223 1995

Time 0 273 1429 283

Real/
predicted

12 months 9 months 6 months 4 months 0 months Overall
accuracy

R2 Q2

Volatile metabolome

12 months 5244 501 0 224 0

88.19% 0.669 0.586
9 months 413 4739 292 22 0
6 months 132 267 6018 74 0
4 months 21 38 126 5581 556
0 months 0 0 0 404 1348

Primary metabolome

12 months 3417 1262 314 0 1009

48.37% 0.209 0.153
9 months 3055 1910 286 83 661
6 months 330 315 3202 2185 0
4 months 30 14 2621 3313 31
0 months 803 347 1 76 735

Specialized
metabolome

12 months 1265 1615 957 950 1144

19.85% 0.309 0.024
9 months 1120 1682 1298 1367 615
6 months 978 1648 1230 1368 714
4 months 1012 1894 1530 720 898
0 months 688 337 482 224 264
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Within the volatilome fraction, analytes that on average perform better
in discriminating the external/functional variables are aldehydes, al-
cohols, and terpenes; within them, aldehydes such as hexanal, heptanal,
and octanal have higher VIPs with the storage months model, terpenes
such as δ-carene and α-terpinolene are relevant with the storage con-
ditions model, alcohols such as 1-pentanol, 2-pentanol, and 4-heptanol
have higher scores when it comes to discriminating geographical
origin, and last but not least ketones such as 5-methyl-2-heptanone have
higher scores when discriminating post-harvest practices.

Within the primary metabolome, carbohydrates are those more
capable to differentiate both geographical origin and post-harvest
practices, the former due to the different cultivars and pedoclimatic
conditions of the investigated samples, and the latter likely because of an
enzymatic activation caused by the higher moisture levels in the early

stages after harvest (Cialiè Rosso et al., 2020; Cialiè Rosso, Stilo, Bicchi,
et al., 2021; Cialiè Rosso, Stilo, Mascrez, et al., 2021). Since the
discrimination capabilities of the remaining models were not successful,
the VIPs on the remaining models will not be further explored. Lastly,
within the specialized metabolome, diaryl heptanoids (i.e., giffonins)
show the strongest contributions to the geographical origin and post-
harvest models.

The distribution of the mentioned analytes in the different classes is
illustrated in Fig. 3. Regarding storage times and conditions, a general
increase in the saturated aldehydes is due to the lipid oxidation process
that naturally occurs on the hazelnut lipid fraction, while an increase in
the amount of terpenoids in the unproperly stored samples is likely
associated to a direct expression of the plant phenotype/chemotype,
informing for the presence of bacteria and molds (Squara, Caratti, et al.,

Fig. 3. Distribution of target analytes belonging to the different fractions: Volatilome (A, B, C, D), specialized metabolome (E, F), and primary metabolome (G, H).
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2023; Stilo, Liberto, Spigolon, et al., 2021). When analyzing the
specialized metabolome, giffonins are more abundant in samples that
underwent a standard post-harvest procedure; these analytes serve as
natural antioxidants and are likely being depleted in badly-dried sam-
ples, as well as carbohydrates (primary metabolome) that are probably
consumed by the plant due to their higher metabolic activity induced by
the higher moisture levels.

3.3. Data fusion improves quality prediction

LLDF can be achieved by placing datasets next to each other,
studying different variables of the same set of samples, or coupling them
across variables, measuring the same variables on samples from
different batches. Often referred to as data augmentation or multi-block
analysis, LLDF retains all original information from diverse sources but
may introduce noise and redundant information, impacting modeling

precision (Dankowska & Kowalewski, 2019; de Juan & Tauler, 2019).
Different classical variable normalization methods, such as autoscaling
or Pareto scaling, needs to be applied to each data matrix preemptively
to equalize variance while preserving the variance ratio between vari-
ables within a block. Other normalization methods can be also chosen,
such as mean-centering, root square scaling, and log scaling. This pre-
liminary operation avoids that one matrix block prevails among the
others (Azcarate et al., 2021). Moreover, given that the number of
variables is much higher than the number of observations, the risk of
creating models that are prone to overfitting exist. To try to minimize
such risk, one of the key aspects is choosing the appropriate classifica-
tion algorithm. Different classification algorithms were tested in the past
with similar data matrix(Ortega-Gavilán et al., 2023), where, for
instance, SIMCA, PLSDA, and SVM were tested. Between the three,
SIMCA was the one performing the worse, while SVM was overfitting;
PLS-DA, on the other hand, achieved satisfactory results but at the same

Fig. 4. Schematic flowchart representing low-level, unsupervised and supervised mid-level data fusion steps.
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time was less prone to overfitting given that the model was created by
using only three latent variables. Moreover, to be aware of possible
overfitting, the similarity between R2 and Q2 was monitored.

MLDF is a two-step methodology: initially, pertinent features from
individual data sources are extracted. Secondly, these extracted features
are concatenated to generate a unified matrix for further processing.
This approach necessitates a thorough evaluation of results in terms of
raw variables, determining the connection between each feature’s
salience in the final model and its corresponding pattern in the original
variables. The first step of MLDF involves calculating LVs or selecting
features independently obtained from each analytical data matrix. This
could be performed either via unsupervised or supervised algorithms,
such as PCA and PLS-DA, respectively. Compared to LLDF, MLDF often
results in improved classification performances due to the feature
reduction step, which accounts for non-informative variance. For
explanatory purposes the MLDF steps with a supervised algorithm are
presented: PLS is employed on each matrix block for dimension reduc-
tion, and the scores corresponding to selected LVs are concatenated.
Subsequently, another supervised technique (e.g., PLS-DA, SVM, SIMCA
etc.) is applied to the concatenated score matrix to derive the final model
(Alamar, Caramês, Poppi, & Pallone, 2020; Silvestri et al., 2014).

High-level data fusion (HLDF) operates at the decisions level. The
classification of samples is conducted on each matrix block

independently. Predictions from these independent models are then
combined using different strategies. The consensus strategies applied to
the predictions obtained from the single-block models include majority
voting, which involves directly merging the predictions of single models,
and Bayesian consensus with discrete probability distributions, that
estimates the probability that samples belong to a specific class for each
information source and combines these preliminary identity declara-
tions to provide a fused probability (Ballabio et al., 2018; Fernández
et al., 2012). HLDF approaches are less prevalent in the field of
analytical chemistry, likely due to their higher complexity compared to
LLDF and MLDF approaches. Many studies (Di Anibal, Callao, &
Ruisánchez, 2011; Márquez, López, Ruisánchez, & Callao, 2016;
Rodionova & Pomerantsev, 2023) highlight that this level primarily
contributes to enhancing predictive accuracy compared to those ob-
tained from individual models, but it does not provide pertinent infor-
mation about biological variables. The three approaches are visually
summarized in flowcharts in Fig. 4.

To achieve better classification performance, different data fusion
levels were tested: low-level data fusion, mid-level unsupervised data
fusion, and mid-level supervised data fusion. With LLDF, data matrices
from the different techniques were merged in a single data matrix after
each original block was centered and scaled. With unsupervised MLDF
(UMLDF), a PCA was performed on each original data matrix after

Table 3
Performance evaluation, expressed as confusion matrices, % overall accuracy, R2, and Q2, expressed as confusion matrices, of the classification models created after
different data fusion techniques combining information from all metabolome fractions.

Real/predicted Turkey Italy Overall accuracy R2 Q2

LLDF
Turkey 15534 98

99.61% 0.888 0.674Italy 3 10365

UMLDF Turkey 15642 2 99.99% 0.923 0.670
Italy 1 10355

SMLDF Turkey 15546 0 100.00% 0.938 0.774
Italy 1 10453

Real/predicted Bad PH Standard PH Overall accuracy R2 Q2

LLDF
Bad PH 5149 0

100.00% 0.934 0.778Standard PH 0 20851

UMLDF
Bad PH 15642 2

99.99% 0.932 0.817Standard PH 1 10355

SMLDF
Bad PH 5206 0

100.00% 0.949 0.763
Standard PH 0 20794

Real/predicted Bad Storage Good Storage Time 0 Overall accuracy R2 Q2

LLDF
Bad Storage 10032 1920 13

83.40% 0.557 0.315Good Storage 2162 9763 68
Time 0 26 126 1890

UMLDF
Bad Storage 11094 695 17

94.15% 0.835 0.495Good Storage 709 11433 0
Time 0 32 67 1953

SMLDF
Bad Storage 11965 0 0

99.91% 0.865 0.651Good Storage 0 11972 0
Time 0 1 23 2039

Real/predicted 12 months 9 months 6 months 4 months 0 months Overall accuracy R2 Q2

LLDF

12 months 5286 367 219 116 9

83.47% 0.497 0.279
9 months 307 5301 434 14 1
6 months 651 621 4704 0 0
4 months 348 74 13 5335 219
0 months 50 116 0 738 1077

UMLDF

12 months 5687 10 0 0 284

93.12% 0.687 0.416
9 months 5 5495 0 11 455
6 months 2 1 5917 132 3
4 months 67 1 3 5863 38
0 months 199 555 0 23 1249

SMLDF

12 months 5817 57 0 10 0

97.78% 0.851 0.614
9 months 190 5835 1 15 0
6 months 4 16 5935 55 0
4 months 14 33 148 5817 0
0 months 1 32 2 0 2018
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scaling and centering, and the first n Principal Components that
explained at least 80 % of the total variance were merged into a separate
matrix. Lastly, supervised MLDF (SMLDF) was achieved by performing a
PLS-DA on each data matrix, and the first 20 LVs from each model were
merged into a new data matrix. The resulting data matrices consisted of
130 samples each x 1160 variables, 28 variables, and 60 variables for
LLDF, UMLDF, and SMLDF, respectively.

PLS-DA classification performances expressed as confusion matrices
after cross validation via Monte Carlo (80–20% dataset split) with 1,000
iterations and maximum assignation criteria for the three levels are
presented in Table 3. Interestingly, the average performance of LLDF
over the four impacting variables (i.e., harvest region, post-harvest
conditions, storage time and temperature) is lower than the volatilome
fraction on its own, 91.62 % vs 94.85 %, while both UMLDF and SMLDF
classification models outperformed the single fractions on their own.
The relatively poor results obtained with LLDF are attributable to the
noisiness of the data from the primary and specialized metabolome with
the storage times and conditions classification models. The resulting
data matrix contained 10 times more variables than the number of
samples. A model of such nature is prone to overfitting due to its
excessive flexibility relative to the extent of the training dataset. As the
model’s flexibility increases, exemplified by the inclusion of additional
variables in a regression model, and the number of samples remains the
same, the likelihood increases that the model will accommodate random
fluctuations within the training data that fail to adequately represent the
genuine underlying distribution. The purpose of reduction algorithms is
to mitigate the challenges related to dimensionality by simplifying data
complexity, thereby enhancing data quality. Historically, PCA has been
the prevailing method for dimensionality reduction. In this study,
principal components were employed as an unsupervised technique for
compressing data dimensions when integrating the three matrices. The
selection of the number of components was based on evaluating the
cumulative explained variance, which threshold was arbitrarily set to
80 %. With this approach, a general increase in the classification per-
formances was achieved (average accuracy ≈ 97 %); as expected, the
lower scores were achieved with storage conditions and duration clas-
sifications, despite achieving satisfactory results (≈ 93 % and ≈ 94 %,
respectively). The last improvement was achieved through SMLDF,
averaging 99.42 % classification accuracy, with the lowest performance
being ≈ 98 % accuracy for storage months.

4. Conclusions

This research demonstrated the potential of using combined untar-
geted and targeted metabolomics with GC×GC–MS and UHPLC-HRMS
to investigate metabolic signatures among C. avellana samples from
different geographical origins, post-harvest processing methods, and
one year of industrial shelf life under two storage conditions. Unlike
modeling data individually, MLDF showed significant improvements in
data analysis and classification accuracy. This approach has proven that
adopting a suitable multivariate analysis strategy for authenticity testing
yields highly reliable results. These findings offer promising prospects
for enhancing the detection of mislabeling and increasing the reliability
of defining the authenticity of plant-based products in the food industry,
such as hazelnuts.

The remarkable capability of data fusion to integrate diverse sources
of information and refine analytical insights underscores its crucial role
in identifying chemical markers for selective monitoring and improving
predictive capacity. The combination of these research outcomes and
the description of the aroma blueprint serves as a valuable decision-
making tool to guide and align strategic investments and value chains
across the industry.

CRediT authorship contribution statement

Simone Squara: Writing – original draft, Visualization,

Methodology, Investigation, Formal analysis, Data curation, Conceptu-
alization. Andrea Caratti:Writing – review & editing, Formal analysis,
Data curation. Angelica Fina: Writing – review & editing, Data cura-
tion. Erica Liberto: Writing – review & editing, Supervision. Nemanja
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Cialiè Rosso, M., Mazzucotelli, M., Bicchi, C., Charron, M., Manini, F., Menta, R., &
Cordero, C. (2020). Adding extra-dimensions to hazelnuts primary metabolome
fingerprinting by comprehensive two-dimensional gas chromatography combined
with time-of-flight mass spectrometry featuring tandem ionization: Insights on the
aroma potential. Journal of Chromatography A, 1614(460739), 1–11. https://doi.org/
10.1016/j.chroma.2019.460739
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