
J
H
E
P
0
6
(
2
0
2
0
)
0
9
2

Published for SISSA by Springer

Received: March 28, 2020

Accepted: May 26, 2020

Published: June 15, 2020

Colour-twist operators. Part I. Spectrum and wave

functions
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6.1.1 One-wheel diagram 38
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1 Introduction

Twist operators play an important role in two-dimensional conformal field theories. They

are defined by the action of a symmetry as one goes around the operator [1–3]. Twist

operators also exist in quantum field theories in higher dimensions. As in the two-

dimensional case, these co-dimension two surface-operators are defined by the action of

a symmetry transformation as one goes around the surface in the two-dimensional trans-

verse space [2–7].1 In this paper, we study a new type of twist operators in the ’t Hooft

large-N limit that we call “colour-twist operators”. They may be defined as a generalisation

of single-trace operators, where the colour-trace is accompanied by a symmetry transfor-

mation. In this picture, going around the operator takes place in colour space instead of

spacetime.2 In holographic theories, we expect our field theory definition to coincide with

twisted vertex operators in the two-dimensional worldsheet CFT of the dual string.

Our motivation for considering these somewhat exotic operators comes from studying

correlation functions in N = 4 SYM. The aim of this program is to compute planar

correlation functions of single-trace operators at finite ’t Hooft coupling. The most efficient

way for computing their conformal dimensions is called Quantum Spectral Curve (QSC).

This integrability based method yields not only the quantum spectrum of operators, but

also their wave functions in the so-called separation of variables (SoV) basis. Hence, one

expects that this method can be further developed for computing correlation functions.3

The twisting procedure we study in this paper turns out to be essential for building such

a coordinate system where the degrees of freedom become independent [13]. Our strategy

then is to first compute correlation functions between colour-twist operators in terms of

the SoV wave functions and, in the end, send the twist parameters to zero.

1Such operators were studied in the context of entanglement entropy. In that case, the relevant symmetry

acts in the replicated theory by interchanging between the replica copies.
2In general, colour-twist operators are different from the large-N limit of the twist operators mentioned

above. However, in some special cases they turn out to be the same [8].
3This expectation was partly confirmed for the case of the cusp correlation function in the ladders

limit [9, 10] and in the near-BPS limit [11, 12].
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To make progress in this hard problem, it is often useful to first study simplified limits.

One such limit is the strongly γ-deformed limit of [14]. It leads to a much simpler integrable

planar CFT called the fishnet model. Correspondingly, in the bulk of this paper, we will

focus on colour-twist operators in the fishnet model. In [15] we will study the correlation

functions between these operators using the corresponding SoV wave functions.

This paper is organised as follows. In section 2, we start with a perturbative definition

of colour-twist operators in any large-N QFT. In section 3, we focus on colour-twist

operators in N = 4 SYM theory and the fishnet model. In particular, the γ-deformation

can be obtained as a particular case of the colour-twist and so the fishnet model can be

obtained from N = 4 SYM using colour-twist operators. In section 4, we study twist

operators in the fishnet model that consist of one scalar. We map the computation of their

scaling dimensions and wave functions to a Schrödinger problem of one degree of freedom

and use it to analyse the spectrum. In section 5, we consider colour-twist operators with two

orthogonal scalars (i.e. the one-magnon case). We study their spectrum at one-loop order

and also at finite coupling in a certain case. In section 6, we study the spectrum using

integrability. We explicitly construct the Baxter equation and generalised quantisation

condition for the Q-functions of colour-twist operators. We then reproduce and extend

the direct field theory results of sections 4 and 5. In section 6.5, we give an explicit map

between the Q-function and the CFT wave function for colour-twist operators with one

scalar. Under this map, the Baxter equation of section 6 becomes the Schrödinger equation

of section 4. We end in section 7 with a short discussion.

2 Colour-twist operators

In this section, we define a new type of colour-twist operators, which are continuously linked

to the operators in the theory without the twist. These colour-twist operators are a certain

generalisation of single-trace operators in which the cyclic permutation of the fields in the

trace is accompanied by a symmetry transformation. To give a more precise definition of

these operators, we will use the perturbative expansion. The perturbation theory in planar

limits is usually convergent, and thus this definition extends to finite coupling, too. Below,

we describe the prescription for computing correlation functions between twisted operators,

by directly twisting the Feynman diagrams contributing to the correlator. Throughout this

paper we will sometimes refer to these operators in short as twisted operators.

2.1 Perturbative definition

Twist symmetry. To twist an operator, one may use any global symmetry of the theory.

This symmetry transformation, which will be denoted by R, can be an internal symmetry

acting on fields, a spacetime rotation, translation, or even a conformal transformation in

a CFT. In this paper, we will only consider global symmetries that have fixed points and

will place the corresponding twisted operator at one of these points. More generally, one

may also consider non-local twist operators, see for instance [16]. A useful example to keep

in mind is when R is a spacetime rotation around the insertion point of a local operator.

– 2 –
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Twisted field. A fundamental field twisted by a symmetry transformation R is simply

defined to be the transformed field. For example, a scalar field in four dimensions, twisted

by a conformal transformation R, is given by

R : φ(x) → φ	(x) =

∣∣∣∣∂x	∂x
∣∣∣∣ 1

4

φ (x	) , (2.1)

where x	 ≡ R(x) denotes the image of a space-time point under the transformation R, and

where the factor |∂x	∂x | is the determinant of the Jacobian. We will call φ	 in (2.1) a twisted

scalar. Similarly, twisted fermions and gauge fields are fields that have been transformed

covariantly under the symmetry transformation R. In the case when R is a rotation, the

Jacobian is trivial and we simply have φ	(x) = φ(x	).

Twisted propagator. A twisted propagator is a propagator between a twisted and an

un-twisted field. For scalar fields it takes the form

φ(y)φ	(x) =

∣∣∣∣∂x	∂x
∣∣∣∣ 1

4

φ(y)φ(x	) . (2.2)

In the case where the twist is by a rotation and the scalars are N×N matrices, this twisted

propagator is simply

. (2.3)

Here, we have drawn the propagator in the double line notation. The twist is represented

by the dashed blue line and the arrows indicate the direction upon which it acts.

Twisted Feynman diagram. We now show how to construct twisted Feynman dia-

grams and define correlators of twisted operators. Consider the two-point function of two

single-trace operators, 〈O(x)O†(y)〉. Working in double line notation, every planar Feyn-

man diagram that contributes to this correlator can be drawn on a cylinder. To twist the

operators, we add an oriented non self-intersecting cut on the cylinder starting from O(x)

and ending at O†(y); see figure 1. On the way, the cut crosses a set of propagators. We

then replace every propagator that crosses the cut by a twisted propagator connecting the

twisted and un-twisted fields as is indicated by the arrow on the cut. Propagators that do

not cross the cut are left unchanged.4 By definition, we say the diagram contributes to the

correlator involving O(x) twisted by the transformation R, and the operator O†(y) twisted

by the transformation R−1.

Importantly, for the consistency of this definition we can verify that the result for an

integral represented by a diagram is unchanged if we reverse the orientation of the cut

4Note that here we assume that the theory is orientable. Namely, the matrix fields are Hermitian,

the colour-traces have a distinct orientation along which R is acting. This definition can be extended for

symmetric groups. In such cases we would have to symmetrise (automatically) between R and R−1.

– 3 –
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γ′

Tr
(
φ3
)

(x) Tr
(
φ3
)†

(y)

φ3(x)

φ1(x)

φ2(x)

γ

φ†1(y)

φ†2(y)

φ†3(y)

Figure 1. A Feynman diagram that contributes to the two-point functions of twisted operators of

length L = 3. The dashed lines indicate different possible choices for the cut used in the perturbative

definition. Every propagator crossing the cut is replaced by a twisted propagator as explained in

the text. The red dashed line wraps around the cylinder once more than the blue one does, and

correspondingly the result differs by the action of the symmetry transformation, R, on the external

operator Tr(φ3)†(y).

(i.e., flip the direction of the arrows), and simultaneously replace R → R−1. This follows

from a simple identity for the twisted propagators

φ(y)φR(x) = φ(x)φR−1(y) , (2.4)

where we are denoting the field twisted by the transformation R (R−1) as φR (φR−1),

respectively. The relation (2.4) is a consequence of the covariance of the propagator (which

is a two-point function) under a conformal transformation. This useful relation can be

written as

1

(x− y)2
=

∣∣∣∂x	∂x ∣∣∣ 1
4
∣∣∣∂y	∂y ∣∣∣ 1

4

(x	 − y	)2
. (2.5)

Changing y → R−1(y), (2.5) implies∣∣∣∂R−1(y)
∂y

∣∣∣ 1
4

(x−R−1(y))2
=

∣∣∣∂R(x)
∂x

∣∣∣ 1
4

(R(x)− y)2
, (2.6)

which is precisely the property (2.4).

Local cut deformations. So far, our definition involves the choice of a cut for any di-

agram. For consistency, the resulting correlator must be independent of these arbitrary

choices. For simplicity, we assume that each interaction term in the Lagrangian is inde-

pendently invariant under the transformation.5 In this case, consider a local deformation

5This is not always the case, for instance in the case of the conformal symmetry. However, provided

that the Lagrangian is invariant under the transformation R, one can use the Lagrangian insertion tech-

nique [17, 18] which only generates symmetric loop integrals (e.g. conformal integrals in a CFT). Namely,

one should group the diagrams into integrated correlators with the Lagrangian, symmetrise over the inser-

tion points, and take the twist cut in between the Lagrangian insertions.

– 4 –
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y1

γ1

γ2

y
y3

y2

x

Figure 2. Local cut deformation. Corresponding to the cuts γ1 and γ2, the Feynman integral is

modified as in (2.7) and (2.8), respectively. The two choices are equivalent.

of the twist cut across an interaction vertex, such as the one from the blue to the green

dashed lines in figure 1. Such a deformation can be recast as the action of the symmetry

transformation on that integrated vertex and hence, modulo possible subtleties due to the

regularisation scheme, does not change the result for the diagram.

Let us consider a simple example of this for a conformal scalar integral. Suppose we

have a diagram with a four-scalar interaction vertex that is connected by four propagators

to the rest of the diagram. We start from a twist cut that is crossing only one of these

four propagators, see γ1 in figure 2. This part of the diagram will result in the following

expression

Mγ1 = · · · ×
∫
d4y

∣∣∣∂x	∂x ∣∣∣ 1
4

(x	 − y)2(y − y1)2(y − y2)2(y − y3)2
, (2.7)

where the dots stand for the rest of the diagram that is independent of y. For the same

diagram but with the deformed cut γ2 we get

Mγ2 = · · · ×
∫
d4y

∣∣∣∂y	∂y ∣∣∣ 3
4

(x− y)2(y	 − y1)2(y	 − y2)2(y	 − y3)2
. (2.8)

The equivalence of the two expressions can be proven using the identity (2.5) for the

propagator. Plugging (2.5) into (2.8), and using d4y
∣∣∣∂y	∂y ∣∣∣ = d4y	 to change the integration

variable from y to y	 = R(y), the expression (2.8) becomes

Mγ2 = · · · ×
∫
d4y	

∣∣∣∂x	∂x ∣∣∣ 1
4

(x	 − y	)2(y	 − y1)2(y	 − y2)2(y	 − y3)2
, (2.9)

which is exactly the expression we got for the initial contour Mγ1 in (2.7) after renaming

the variable of integration y	 to y. This demonstrates that any local deformation of the

cut does not affect the resulting correlator.

– 5 –
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Non-local cut deformations. In order to ensure self-consistency of the twisting proce-

dure, we also have to require that the result for the deformed diagram (or sum of diagrams)

stays the same even under topologically non-trivial deformations of the contour. This re-

quirement, however, imposes a constraint on the combination of a symmetry transformation

and a local operator. Namely, the operator O should be invariant under the action of R.

Indeed, the difference between two topologically inequivalent cuts, such as the blue and

the red cuts in figure 1, is a closed loop which has a non-trivial winding number around

the operator O. Each winding has the effect of acting on the operator with the twist

transformation, O(x) → O	(x). Therefore, for consistency of the definition, the twisted

operators O(x) must be invariant under R.6 This requirement implies that local operators

can be twisted only by spacetime transformations that admit fixed points. Local twisted

operators are constrained to sit at a fixed point of R. In general, one may also consider

non-local twist operators that are supported on a region of spacetime that is mapped to

itself under R, but not necessarily point by point (for instance a line, invariant under a

translation [16]).

A particularly important class of twists is when R is an internal symmetry, such as

the R-symmetry in N = 4 SYM. In this case, the whole R4 is invariant and there is no

constraint on the positions of the twisted local operators. However, the quantum numbers

of the operators should be such that they are invariant under this internal symmetry

transformation. In section 3 we will consider such a case explicitly.

Marked point. Every single-trace twist operator comes with a marked point where the

twist cut begins/ends. The dependence on this point drops out of any physical computation,

once the operator is properly normalised. For example, for the operator in figure 1 we

choose that point to lay between φ1 and φ2. Deforming that point to start between φ2 and

φ3 differs by the action of the twist transformation on φ2(x)→ φ2	(x). Since x	 = x, this

difference is just a linear transformation of the basis of operators.

Possible issues and ambiguities. Even though the construction of the colour-twist

described above is very general, potential ambiguities could arise in particular theories.

The first source of potential problems is the regularisation of the Feynman graphs, which

may break the contour deformation symmetry under the local deformations. Similarly,

local operators need to be regularised and renormalised. One should make sure that the

regularisation is compatible with the invariance, or it could result in additional subtleties.

Finally, in gauge theories we have to worry about gauge invariance of our prescription

and potential new anomalies. At the technical level, one should make a gauge fixing choice

before proceeding to the diagrams, and we have to ensure the result does not depend

on that choice. In particular, some gauge choices could break explicitly the global twist

symmetry and may lead to a restriction on the allowed gauges.

All these cases require further study of our procedure.7 In this paper, we will mostly

concentrate on the simple bi-scalar fishnet theory, but we believe that this definition can be

6An analogous projection is familiar from the construction of twist operators in 2d CFTs.
7The twisted diagrams in a gauge theory have already appeared in the literature before in [8] for the

case of planar N = 4 SYM theory on S3 × S1 in the confined phase under the name Inheritance principle.

– 6 –
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Figure 3. The monodrony condition (2.10) ensures that the cuts can cancel each other at a face

of the diagram. It allows us to drag the meeting point freely across the propagators.

applied in a much wider context. In particular, in the case of N = 4 SYM, we believe that

our definition should lead to the spectrum described by the deformed Quantum Spectral

Curve of [19, 20]. In this paper, we will give support to this claim, by matching the

resummation of twisted Feynman diagrams in the fishnet model with the corresponding

QSC prediction. Another piece of evidence comes from considering a Wilson loop with a

cusp instead of the single-trace operators. In that case, the same prescription reduces to a

simple shift in the cusp angles and therefore agrees with the QSC of [21] by construction.

Higher point functions. Similar to the way we compute two-point functions of twisted

single-trace operators by twisting the corresponding Feynman diagrams, we may also con-

sider higher point functions. Planar diagrams that contribute to an n-point correlation

function have the topology of a sphere with n punctures, one for each operator. For

twisted operators, we have a set of oriented non-intersecting cuts on the Feynman diagram

that emerge from the operators and meet at one of the faces of the diagram. As for the

two-point function, the propagators along the cuts are twisted by the corresponding sym-

metry transformation. When two twist cuts meet, they join to a new twist that is given by

the ordered product of the two symmetry transformations. At the face where all the twist

cuts meet, they must satisfy the monodromy condition:

R1 ·R2 · · ·Rn = 1 . (2.10)

This condition ensures that the twist cuts can cancel each other at the face of the diagram.

The same condition also allows us to deform the cuts so that they meet at any face of the

diagram without affecting the result, see figure 3.

Notice that for more than two operators, this definition requires a particular ordering

of the twist transformations in (2.10). This ordering determines the order in which the

corresponding twist cuts meet at a face. While this definition is self-consistent for any fixed

ordering, for some applications one may need to sum over contributions corresponding to

all possible permutations.

The condition (2.10) ensures that the result does not depend on where we choose the

cuts to meet. It can be thought of as a sort of conservation of twist. For example, in the

case of the two-point function this condition simply becomes R2 = R−1
1 , which ensures

that the arrow along the cut goes from one operator to another.

– 7 –
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R1

R2

R3

(a)

R1

R2

R3

(b)

R1 ·R2 ·R3 = 1 R1 ·R3 ·R2 = 1

Figure 4. Two different ordering of twist transformations that can contribute to the correlator of

three twisted operators with twists R1, R2 and R3. For a given ordering σ to contribute, the three

twist transformations have to satisfy the monodromy condition Rσ(1).Rσ(2).Rσ(3) = 1.

In figure 4a we draw a twisted Feynman diagram that contributes to the three-point

function of three twisted operators. In figure 4b we have a different ordering of the twists

for the same three-point function. Each ordering gives a separate different deformation to

the planar correlator and may be considered in its own right.8

Our definition of correlation functions of twist operators can, in principle, be extended

order by order in the 1/N expansion. However, we will not study this type of corrections

in this paper. In the non-planar case, one needs to deal also with possible splittings of

the cuts along the diagram surface, making the structure more involved. This question

definitely deserves to be addressed in future studies.

Note that for the case of the two-point function, one does not need to require the

invariance under the twist transformation of both operators. In this case, the general

definition of a correlation function still remains independent of the choice of the twist cuts

ambiguity. The reason is that a twist cut that winds around the cylinder can always be

unwound through the invariant operator in the correlator. In other words, if one of the

two operators is not invariant under the twist, the two-point function is only sensitive to

the projection of that operator to the set of invariant twist operators. In section 4, we will

use this fact to define the so-called “CFT wave function”.

Finally, the case of correlation function of cusp operators on a piecewise circular Wilson

loop that was recently studied in [9–12] has an equivalent description in terms of a circular

Wilson loop without the cusps. In this description, the effect of the cusp angles is accounted

for by including colour-twist operators inserted along the loop, see figure 5.

8There is a certain analogy with the colour decomposition of a planar scattering amplitude in terms

of colour-ordered partial amplitudes. There, one has to sum together all possible orderings to find the

physical result.

– 8 –
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Figure 5. (a) A circular Wilson loop with three colour-twist insertions at three points along

the loop x0, y0, and z0. The three twist transformations map the plane of the loop to itself.

They have two fixed points each, given by (x0, x0̄), (y0, y0̄), and (z0, z0̄). Near these points,

they act as rotations by three angles θ1, θ2, and θ3, respectively. The points along the loop

and the angles are arbitrary. The points x0̄, y0̄, and z0̄ are fixed by the monodromy condition

R(z0, z0̄, θ3).R(y0, y0̄, θ2).R(z0, z0̄, θ1)=1. This correlator is equivalent to a Wilson loop with three

cusps of angles θ1, θ2, θ3 and no colour-twists insertions that is plotted in (b). It is built from three

circular arcs. One arc (say, the arc connecting z0 and x0) can be chosen to be a part of the initial cir-

cle, the other two are obtained as a result of the action of R(z0, z0̄, θ1) and R(z0, z0̄, θ1).R(y0, y0̄, θ2)

on arcs of the initial circle (the ones connecting x0 with y0 and y0 with z0, respectively). The set-up

on the figure (b) was studied in [9, 10] in the ladders limit.

2.2 Kinematics of twisted correlators

Twist operators transform covariantly under a global symmetry transformation K. In

particular, the twist map R transforms as

R→ R̃ = K ·R ·K−1 . (2.11)

In this paper, we will focus on the case where using this transformation law, R can be

mapped to a simple rotation matrix times an internal symmetry transformation. Such

a rotation matrix commutes with dilatations and some other rotations. Correspond-

ingly, local operators in a conformal theory that are twisted by such a transformation

R can be characterised by a scaling dimension ∆, some spins ~S, and internal charges ~J ,

Oi = ORi,∆i,~Si, ~Ji
(xi). The correlation function between n of them transforms covariantly.

For example, in the case of scalar operators (~S = ~J = 0), the correlator transforms as

〈OR1,∆1(x1) . . .ORn,∆n(xn)〉 =

∣∣∣∣∂x̃1

∂x1

∣∣∣∣
∆1
4

. . .

∣∣∣∣∂x̃n∂xn

∣∣∣∣∆n
4

〈O
R̃1,∆1

(x̃1) . . .O
R̃n,∆n

(x̃n)〉, (2.12)

where x̃i ≡ K(xi). In the case where Ri are all internal symmetries and K is a conformal

transformation, R̃i = Ri, and this transformation law reduces to the standard one of

un-twisted local scalar operators.

– 9 –
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A special case is that of the two-point function 〈OR1,∆1(x1)OR2,∆2(x2)〉 of such scalar

twist operators. Due to the constraint (2.10), R1 = R−1
2 ≡ R, and thus both points x1 = x0

and x2 = x0̄ are fixed points of R. The two-point function is invariant under conformal

transformations that leave x0, x0̄ fixed. Therefore it can be written purely as a function

of these points. Further, it is invariant under translations and rotations which act on R as

in (2.11). Hence, it is only a function of the distance |x0 − x0̄|. For operators with fixed

scaling dimensions ∆ and ∆′, such a correlator must take the standard form9

〈OR,∆(x0)OR−1,∆′(x0̄)〉 ∝
δ∆,∆′

|x0 − x0̄|2∆
. (2.13)

The functional form of three and higher point functions is not fixed by the conformal

symmetry. The reason is that in these cases there exist conformally invariant functions of

the twist maps and positions. We will see some examples below in section 4.

2.3 The holographic dual of twist operators

We end this section with a short discussion about the holographic dual of twisted operators.

We postpone a more detailed investigation and explicit checks to future study. We consider

some examples below in section 4.5.

Consider a single-trace operator in the planar limit of N = 4 SYM theory. Such an

operator is dual to a single closed string state in AdS5 × S5. In particular, this duality

maps the periodicity of the trace to the periodicity of the closed string.

Recall that an operator can only be twisted by a symmetry transformation that leaves

it invariant. Global symmetries of N = 4 SYM theory are dual to isometries of AdS5×S5.

Hence, in the holographic dual picture, we are considering a string state with zero charge

or momentum along this isometry direction in the bulk.

As we discussed above, twisting such a single-trace operator amounts to dressing the

periodicity of the trace with a symmetry transformation. Hence, it is natural to expect

that the periodicity of the dual closed string is modified in an analogous way. Namely, we

expect the string dual of a twisted operator to be described by a map from a cylindrical

worldsheet to AdS5 × S5 that is no longer single valued. As we go around the cylinder,

we end at two different points in AdS5 × S5 that are related to each other by the twist

transformation. In the target space the string will not be closed, but will have an extension

in the twist-isometry direction. Essentially, it becomes periodic with period given by the

twist transformation, so that both coordinates and all derivatives are matched by the twist

transformation, see figure 6.10 For example, for the γ-deformation, we end up with a string

that is extended along the equator of S5.11

9The orthogonality follows from (2.12), when acting with the conjugate dilatation operator, which keeps

x0 and x0̄ invariant, whereas the coordinate dependence follows from (2.12) for K(x) = x−ηx0
|x−ηx0|2

− x0̄−ηx0

|x0̄−ηx0|2

and taking η → 1.
10Such strings were considered in [16] in the context of non-planar scattering amplitudes.
11One way of studying such twisted string states is using T-duality. The reason is that T-duality along

the twist isometry direction maps a twisted string to a normal un-twisted closed string. At the same time,

this closed string propagates in the T-dual background and carries non-zero momentum. For the case of

the γ-deformation one should get the closed string moving in the Lunin-Maldacena [22] background.
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σ

τ twist

twist transformation
(a) (b)

Figure 6. (a) A closed string in AdS5×S5 that is dual to a single-trace operator in the boundary

N = 4 SYM theory. (b) After twisting of the single-trace operator, the dual string is no longer

closed. Instead, it is described by a map from the worldsheet to AdS5×S5 that is not single valued.

As we go around the worldsheet, we end at two different points in spacetime that are related to

each other by the twist isometry transformation.

3 Twisted operators in planar N = 4 SYM theory and the fishnet model

In this section, we study twisted operators in N = 4 SYM theory. This theory enjoys a

PSU(2, 2|4) symmetry, and one may study operators twisted by any element of that group.12

We focus on two types of such twist transformations, which are of particular relevance for

the rest of the paper. The first type is a twist by an element of the SU(4) R-symmetry. As

we discuss in more detail below, a subset of correlators between operators twisted by this

symmetry coincides with the ones arising in the γ-deformed theory [24, 25]. In particular,

the correlators in the strongly γ-deformed fishnet model of [14] can be interpreted as a

double scaling limit of correlation functions of colour-twist operators. Our alternative

interpretation, where we deform the operators, rather than the theory, affords us more

freedom in choosing the twist parameters for different operators, and results in a more

general class of correlation functions. For example, in the fishnet limit, we can assign an

independent coupling to each of the operators. The second type of twists is by spacetime

symmetries with two fixed points. Operators twisted by this type of symmetry still have a

well-defined scaling dimension; however, the degeneracy between primaries and descendants

is lifted.

3.1 R-symmetry twist and relation to γ-deformed N = 4 SYM theory

In general, we may consider the correlation functions between operators twisted by any

set of SU(4) transformations, subject to the monodromy condition (2.10). We will now

prove that correlation functions between operators in N = 4 SYM theory that are twisted

by a certain family of such transformations coincide with the correlation functions of the

γ-deformed N = 4 SYM theory [22, 24, 25].

12The twisted ABA equations that correspond to such twisted operators were studied in [23].
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The γ-deformation twist. Consider a general operator of N = 4 SYM, O ~J , carrying

charge ~Φ · ~J under the three-parameter family of commuting transformations

G(~Φ) ◦ (Z,X, Y ) = (eiΦ1Z, eiΦ2X, eiΦ3Y ) . (3.1)

Such an operator is left invariant under the transformations G(~γ × ~J), where (~γ × ~J)i =

εijkγjJk and ~γ is an arbitrary three-vector. Hence, it can be twisted accordingly. We

denote such an operator O ~Ja
that has been twisted by G(~γ× ~Ja), a γ-twisted operator. As

we will now show, correlation functions between γ-twisted operators coincide with those of

the γ-deformed theory.

The γ-deformed N = 4 SYM theory. The γ-deformed theory is defined starting

with the Lagrangian of the N = 4 SYM theory and deforming the coefficients in front of

the interaction vertices by the phase factors

(vertex) → e
i
2

∑
n<m

~Qn? ~Qm × (vertex) , (3.2)

where ~Qn · ~Φ is the charge of the n-th field in the single-trace vertex under G(~Φ), (3.1),

and the star product between two vectors is defined as

~v ? ~u = −~γ · (~v × ~u) = −εijkγivjuk . (3.3)

Matching the correlators. To show the equivalence between the correlators of the

γ-deformed theory and the γ-twisted ones, we will use a result developed in the context of

non-commutative field theory [26] known as the planar equivalence theorem. This theorem

states that planar Feynman graphs with a disk topology in the star-deformed theory (3.2)

are the same as those in the un-deformed theory, up to an overall phase factor

[deformed disk diagram] = e

i
2

∑
i<j

~Qi? ~Qj
× [undeformed disk diagram] , (3.4)

where ~Qi is the incoming charge of the i-th external leg. The legs are cyclically ordered

according to the colour-trace along the boundary of the disk.

Now consider a planar diagram in the γ-deformed theory that contributes to the two-

point function between two single-trace operators, 〈O ~J O
′
− ~J
〉. As discussed above, such

a diagram has the topology of a cylinder. To apply the planar equivalence theorem to

it we first cut it open into a disk along a set of internal propagators, see figure 7. We

label the charges of these ordered internal propagators by ~q1, . . . , ~ql and the charges on

the external lines by ~Q1, . . . , ~Qm and ~Qm+1, . . . , ~Qn for the propagators that connect to

the two operators correspondingly. In total, the charges on the propagators around the

resulting disk diagram belong to four ordered groups of charges

{ ~Q1, . . . , ~Qm} ∪ {−~q1, . . . ,−~ql} ∪ { ~Q′1, . . . , ~Q′n} ∪ {+~ql, . . . ,+~q1} . (3.5)

Due to charge conservation on the external legs, we have

~J =

m∑
i=1

~Qi = −
n∑
i=1

~Q′i . (3.6)
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Q1

Q2

Q3

q1 q2 q3

γ

Figure 7. A planar diagram with cylinder topology, cut open into a disk along a set of internal

propagators. The non-trivial effect of the ∗-deformation of the diagram (3.2) localises on the

propagators crossing the cut.

When plugging these ordered charges into the phase factor in (3.4) we find a lot of cancel-

lations. In total, we remain with the simple phase factor

[
cut-cylinder diagram

deformed

]
= e

i
2

∑
i<j

~Qi? ~Qj+
i
2

∑
i<j

~Q′i?
~Q′j−i

∑
j

~J?~qj
×

[
cut-cylinder diagram

undeformed

]
.

(3.7)

The first (second) phase factors depend only on the charges of the legs that are attached to

the first (second) external operator. Each of these factors depends on the location on the

trace where we have chosen the cut to start (end). It reproduces the dependence on the

marked point for the twist cut and can be absorbed in the normalisation of the operator.

The third phase factor, −i ~J?~qj , precisely reproduces the effect of the twist cut G(~γ× ~J)

in (3.1) on the j-th internal propagator crossing the twist cut. Hence, the two-point function

in the theory deformed by (3.2) is the same as the one between γ-twisted operators in the

undeformed theory.

The same proof generalises in a straightforward way to higher point correlation func-

tions. When considering, for example, a three-point function, we have to cut a pants

diagram open into a disk. This can be done along the same twist cuts as in figure 4.

Importantly, the twist G(~γ × ~Ja) for different ~Ja’s commute with each other. As a result,

the monodromy condition (2.10) is satisfied trivially and does not depend on the ordering,

provided that the total charge is conserved. We conclude that all planar correlation func-

tions in the γ-deformed theory are the same as those between operators twisted by (3.1)

in the un-deformed N=4 SYM theory. This equivalence can also be generalised order by

order in the 1/N expansion as will be discussed briefly in section 7.13

13Strictly speaking the twisted theory could, in principle, get new type of divergences, which require

regularisation in perturbation theory. For the γ-deformed theory, the presence of such divergences, which

require double trace counterterms, was pointed out in [27]. However, it was noticed in [28] that in the

fishnet model those divergences disappear after the resummation of the perturbation theory and can be

ignored at any finite non-zero coupling.
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3.2 The limit that selects the fishnet diagrams

The fishnet model was obtained in [14] by starting with the γ-deformed theory and taking

a double scaling limit. Hence, it is no surprise that the same scaling limit of a correlation

function between γ-twisted operators results in those of the fishnet model. In fact, our

picture where we twist the operators instead of the theory results in a more general set of

fishnet-type correlators.

For simplicity, we choose to focus on operators that consist of only two out of the

three complex scalars of the N = 4 SYM theory, Z and X, and an arbitrary number of

derivatives

O ~J(x) = tr
(
Z(x)J1DnX(x)J2

)
+ permutations. (3.8)

We choose the vector ~γ to be proportional to the unit vector γ̂ ≡ (0, 0, 1) and consider

the correlation function between a set of operators of the type (3.8), {O ~Ja
(xa)}, each

twisted by G(γa) = G(γa γ̂) with different γa’s but the same γ̂. Next, we take the following

double scaling limits

λ = g2
YMNc → 0 , e−iγi →∞ , with ξ2

i ≡ λ e−iγi = fixed , (3.9)

where ξi are n independent parameters. This limit has the effect of projecting out all

Feynman diagrams that contribute to the correlation functions of the γ-twisted operators

{Oγa~Ja(xa)}, except those of fishnet type. It is analogous to the limit that selects ladder

diagrams for a Wilson loop with a cusp [29].14

To see how the projection onto fishnet diagrams results from the limit (3.9), consider

for example the two-point function

〈tr
(
ZJ(x)G(γ)

)
tr
(
Z̄J(y)G(−γ)

)
〉 . (3.10)

These operators have J2 = J3 = 0 and since γ̂ = (0, 0, 1), we have γ̂× ~J ∝ (0, 1, 0), namely

the twist transformation G(γ) only acts on the X fields. For any twisted Feynman diagram,

it measures the U(1)X charge of all propagators that cross the twist cut, but not the U(1)Z
or U(1)Y ones. At tree-level there is a single diagram that contributes to (3.10). It consists

of J free Z− Z̄ propagators connecting the two operators. These propagators are not

affected by the twist, which leaves the diagram invariant. Next, consider loop diagrams.

In order to maximise the contribution of a diagram, we have to ensure that the maximal

amount of the U(1)X charge crosses the cut. Otherwise, the diagram is projected out, as

in (3.9) the ’t Hooft coupling is sent to zero. For example, a gluonic exchange between two

scalar lines is suppressed since gluon propagators are not affected by the twist G(γ). For a

U(1)X charge q that crosses the cut, we get a factor of e−iJqγ from the twist. The unique

diagram where this factor is weighted by exactly Jq powers of λ is that of the fishnet wheels

made of the X scalar. All other diagrams come with a power of λ that is higher than Jq

and are projected out in the fishnet limit (3.9). For example, a fermion running around

the operator only carries a half unit of charge (q = 1/2) but is still weighted by at least

14The twist here plays the analogous role to the one played by the internal cusp angle in [29]. Also in that

context, one can build correlation functions of different cusps, each with its own effective coupling [9, 11].
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λJ . Similarly to (3.10), for any other correlator one can easily check that in the limit (3.9)

we remain with the fishnet diagrams only.15

In conclusion, in the limit (3.9) we remain with exactly the same Feynman diagrams

that are generated by the fishnet Lagrangian [14]

L = Nctr
(
∂µX̄∂µX + ∂µZ̄∂µZ + (4π)2ξ2X̄Z̄XZ

)
. (3.11)

In these fishnet type Feynman diagrams, different scalars are circulating around different

operators and are weighted by different effective couplings, ξ2
i .16

3.3 Twist by rotation

The second type of twist we consider is by a spatial rotation. We start with a general dis-

cussion of this type of twist in a four-dimensional CFT and then apply these considerations

to the fishnet theory.

3.3.1 General discussion

The most general four-dimensional rotation can be decomposed as a simultaneous rotation

in two orthogonal planes by two rotation angles, ~θ = (θ1, θ2). This transformation rotates

points as

x	 = R~θ ◦ x = (eiθ1z1, e
−iθ1 z̄1, e

iθ2z2, e
−iθ2 z̄2) , (3.12)

where z1 = x1+ix2 and z2 = x3+ix4 parametrise the two planes. The transformation (3.12)

has two fixed points, the origin and infinity. More generally, we will consider the case where

R is any spacetime conformal symmetry transformation related to the one in (3.12) by a

conjugation with a conformal transformation K ∈ SO(5, 1),

R̃~θ = K ◦R~θ ◦K
−1, (3.13)

which in this case has fixed points x0 = K(0) and x0̄ = K(∞). We will focus on the study

of such twists in the case of the fishnet theory, but the discussion of this section applies to

any four dimensional CFT.

15Note that in (3.9), we have taken the twist angle to be complex. It may be a little subtle how to

complexify the symmetry. While G(γ) for such complex γ is not an element of SU(4), the action and the

corresponding Feynman diagrams are invariant under G(γ). For example, X and X̄ have the opposite

charge and therefore the kinetic term, tr(DµXD
µX̄), is invariant under the opposite rescaling

X −−−→
G(γ)

(
ξ2

λ

)J
X , X̄ −−−→

G(γ)

(
λ

ξ2

)J
X̄ .

Importantly, here we act on X̄ with the same transformation G(γ) and not with G(γ∗). As a result, the

transformed fields are no longer hermitian conjugate to each other. Twisted operators with complex γ

are still well-defined operators because in our definition in the previous section, where we only used the

invariance of the action and the corresponding invariance of the propagators and interaction vertices under

the action of G(γ).
16This is in analogy to the case of cusp correlators in the ladders limit studied in [9, 11].
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Symmetry breaking pattern. For generic rotation angles, the type of conformal trans-

formations in (3.13) commute with a

U(1)1︸ ︷︷ ︸
rotation in plane (1,2)

× U(1)2︸ ︷︷ ︸
rotation in plane (3,4)

× Rdilatations × (Z2)inversion (3.14)

subgroup of the conformal group SO(5, 1). Operators that are twisted by R̃~θ in (3.13) are

localised at x0 and are characterised by their conformal dimension ∆ and two spins (S1, S2)

in the two planes of rotation. We will denote such twisted operators as T~θ;S1,S2,∆
(x0).

Note that the translation symmetry is totally broken by the twist. This implies that the

notion of primary and descendant operator is no longer applicable. In the presence of the

twist, all states are on an equal footing and the degeneracies of conformal multiplets are

completely lifted.

Special cases. There are a few special points in the space of rotation angles ~θ = (θ1, θ2)

where the residual symmetry is enhanced. One line of such points is given when the two

angles are equal, θ1 = θ2. In this case, the subgroup of conformal transformations that

commutes with the twist is (see appendix A)

SO(1, 5) −−−−−−−−−−→
twist with θ1=θ2

(U(1)L × SU(2)R) /Z2 × Rdilatations × (Z2)inversion . (3.15)

Another special case is when one of the two angles vanishes, where the twist transformation

leaves invariant a two-dimensional plane. In this latter case, we recover a part of the

structure of the descendants spectrum, associated to the translations in this plane.

3.3.2 State invariance

Local single-trace operators are classified by their irreducible representations of the rotation

symmetry SO(4) ' (SU(2)L × SU(2)R) /Z2. They are characterised by their spins (jL, jR)

and two angular momenta, (mL,mR) = ((S1 + S2)/2, (S1 − S2)/2), where (S1, S2) are the

angular momenta in the two planes (x1, x2) and (x3, x4). In appendix A we present a

detailed construction of these representations.

Under the rotation (3.12), such an operator transforms by a phase ei
~θ.~S , where

~S = (S1, S2) = (mL +mR,mL −mR). Hence, it can only be twisted by (3.12) if ~θ.~S is

a multiple of 2π. We notice, however, that one can relax this condition while keeping all

spins integer, by compensating for this phase by adding an internal symmetry twist. We

will now implement this in the fishnet model.

Single-trace operators in the fishnet model are built out of the two complex scalars

and derivatives. They take the schematic form

O(x) = tr
(
Z(x)J1DS1

z1 D
S2
z2 X(x)J2 . . .

)
+ permutations , (3.16)

where the dots stand for any neutral combination of derivatives and scalars, Dz1Dz̄1 ,

Dz2Dz̄2 , XX̄, and ZZ̄. Such operators can carry arbitrary U(1)X × U(1)Z charges and

integer angular momentum in the two planes, (J1, J2, S1, S2). They are invariant under the

combined action of

R~θ ≡ R~θ .H(~θ.~S) , where H(η) ◦ (Z,X) = (e−iη/J1Z,X) . (3.17)
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Above, H is our choice of compensating internal rotation making the state invariant. Im-

portantly, here the θi’s are arbitrary continuous parameters. As it was with the R-symmetry

twist G(~γ× ~J), also here the twist transformation is tailored to the charges of the operator,

Ji and ~S.17

Alternative prescription for twisting fishnet diagrams. It turns out that in the

fishnet model we can introduce a simpler twisting prescription that is equivalent to (3.17)

for operators of fixed spin. Without loss of generality, we consider an operator with |J1| ≥ 0

and pick a marked point along the trace from which the twist cut will emerge. For any

Feynman diagram that contributes to a correlation function of this operator with some

other operators, we pick the unique cut that does not cross the Z lines. Because this

choice is well-defined at all orders, we do not need to consider the effect of topologically

non-trivial deformations of the cut. Therefore, we do not need to require that the operator

is invariant under the twist.

For operators of the type (3.16), this prescription is equivalent to (3.17) because the

Z−Z̄ propagators are not cut and therefore H(~θ.~S) in (3.17) does not play a role. Since

the operators (3.16) form a complete basis, the two twisting prescriptions are equivalent.

In what follows, we will always use this simpler prescription.

Operator length. For single-trace operators in the fishnet theory, the length is defined

by L = max(|J1|, |J2|). It is the length of the corresponding spin chain state in the in-

tegrable formulation. Twisted operators can have length L = 0, 1, 2, . . . , where the case

L = 0 corresponds to a twisted identity operator or, in other words, a pure twist operator.

In the un-twisted case, the first non-trivial operator appears at L = 2. In contrast, in the

twisted case L = 1 is already non-trivial. In this paper, we will focus on the simplest cases

of colour-twist operators with length L = 0 and L = 1. In certain cases, this simplification

will allow us to re-sum all diagrams.

4 Colour-twist operators with one scalar

Twisted operators in the fishnet limit can come with an arbitrary number of scalars. The

smaller that number, the simpler the corresponding Feynman diagrams. The simplest

single-trace twisted operator has no scalars at all. That operator, however, turns out to be

trivial, having zero conformal dimension and no loop corrections. Hence, here we will focus

on the simplest non-trivial case of twisted operators with a single scalar and an arbitrary

number of derivatives. Considering such short operators will allow us to obtain analytic

results for their conformal dimension and some correlation functions at finite coupling.18

In the absence of a twist, such operators of the U(N) theory decouple from the planar

SU(N) sector. They are however still very useful for understanding the general structure

and are needed for the non-planar integrability of the model [30, 31].

17When considering correlation functions of more than two operators in most situations one can adjust

the compensating rotations such that the monodromy condition (2.10) is satisfied without any additional

constraint on spins.
18Besides the results described in this paper, more general correlators will be reported in [15].
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4.1 The J = 1 CFT wave function

Twisted operators of unit charge, spin ~S = (S1, S2) and conformal dimension ∆ take the

schematic form

O~θ,∆,~S(x0) ∝ tr
(
R~θ ∂

S1
1 ∂S2

2 (∂1∂̄1)n1 (∂2∂̄2)n2 Z(x0)
)
, (4.1)

where ∂i = ∂
∂zi

are the derivatives in the two planes z1 = x1 + ix2 and z2 = x3 + ix4. Here,

the twist transformation R~θ is the rotation (3.12) dressed with an SU(4) transformation

as in (3.17), to ensure invariance of the operator under the twist. In this conformal frame,

its two fixed points are x0 = 0 and x0̄ =∞. To change these fixed points, one has to apply

a conformal transformation to (4.1).

In principle, one can also add a number of neutral pairs of X and X̄. Furthermore,

using the equation of motion �Z ∝ ∂1∂̄1Z + ∂2∂̄2Z ∝ ξ2XZX̄, one can get rid of all

powers of ∂2∂̄2 i.e. setting n2 = 0, n1 ≡ n, by the price of introducing extra XX̄. Notice,

however, that the operators containing X or X̄ will mix with each other as explained

in [34] by means of three moves ZX → XZ, X̄Z → ZX̄ or X̄ZX → XZX̄. It is clear

that the operation of applying those three moves is nilpotent and will necessary terminate

after finitely many steps, implying that the mixing matrix can be brought to an upper

triangular form with zeros on the diagonal. From that simple argument, we conclude that

all operators involving X and X̄ (or their derivatives) belong to a logarithmic multiplet

with zero anomalous dimension. Thus, to get a non-trivial dimension, we will focus on the

operators (4.1) with n2 = 0.

At the loop levels, depending on the regularisation scheme, the twisted operator in (4.1)

can still mix with the operators containing XX̄ pairs.19 In order to avoid this scheme

dependent mixing problem at finite coupling it was suggested in [32] to consider the so-

called “CFT wave function”. The CFT wave function is a way to describe the local operator

by its correlation function with a point-split set of fundamental fields. In the present case

it is given by the correlator

Ψ(x) ≡ 〈O~θ,∆,~S(x0) tr(Z̄(x)R−~θ)〉 . (4.2)

Here, the operator tr(Z̄(x)R−~θ) is a twisted trace made of a conjugate scalar at x and the

inverse twist transformation R−~θ, which in particular has the same fixed points as in (4.1).

This operator is similar to the operator in (4.1). The only difference is that now, instead

of having derivatives, the field is separated from the twist fixed point, x 6= x0̄.

Note that the non-local operator tr(Z̄(x)R−~θ) is not invariant under the dressed rota-

tion R~θ. As discussed in section 2, the twisted correlator (4.2) is still well defined because it

is sufficient that the operator O~θ,∆,~S(0) is invariant. The non-local operator can be thought

of as a generating function of local operators with different spins at x0̄. In that sum, only

19For example one may perform a point-splitting regularisation by moving Z slightly away from the fixed

point x0.
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the spin −~S operator contributes to the correlator (4.2), while all other local operators are

projected out.20

The Feynman diagrams that contribute to the CFT wave function, given by the corre-

lator (4.2), are of the iterative type drawn in figure 8. At tree-level, we have a free scalar

propagator between the origin and x, (the black line). At the l-th loop order, we have

l interaction vertices of the fishnet model inserted along the Z− Z̄ line. Each vertex is

contracted back with itself by an X−X̄ propagator (the red lines). All of these X−X̄
propagators cross the twist cut (the blue dashed line) and are therefore twisted. Namely,

they connect the interaction point y to its image under the twist, y	. More explicitly, for

the choice x0 = 0 and x0̄ =∞ we have

Ψ(x) =
1

4π2(x−x0)2
+16π2ξ2

∫
d4y

1

4π2(x−y)2

1

4π2(y−y	)2

1

4π2(y−x0)2
+. . . . (4.3)

Due to this iterative diagrammatic structure, the correlator (4.2) satisfies a Dyson-type

evolution equation, see figure 9, given by

Ψ(x) =
1

4π2(x− x0)2
+ B ◦Ψ , (4.4)

where B is the “graph building operator” [14]

B ◦Ψ(x) ≡ ξ2

π2

∫
d4y

Ψ(y)

(y − y	)2(x− y)2
. (4.5)

Acting with this operator on the Feynman diagram in figure 8 would create a new diagram

with one extra X−X̄ wheel. By acting on both sides of (4.4) with B−1 = − 1
4ξ2 (x−x	)2�x

we arrive at the differential equation for x 6= x0,

− 1

4
(x− x	)2�x Ψ(x) = ξ2 Ψ(x) . (4.6)

We will now use its global symmetries to map this equation into a 1D Schrödinger equation.

The operator B−1 commutes with dilatations and rotations in the two planes. Hence, its

eigenfunctions can be characterised by two spins S1, S2 and the conformal dimension ∆.

These global charges determine the dependence of the wave function on x, up to a function

of the ratio r1/r2 as

Ψ(x) =

(
x1 + ix2

r1

)S1
(
x3 + ix4

r2

)S2 1

(r2
1 + r2

2)
∆+1

2

× ψ
(

log
r1

r2

)
, (4.7)

where r2
1 = x2

1 + x2
2, r2

2 = x2
3 + x2

4 are the radial coordinates in the two planes of rotation.

Here, the total scaling dimension of Ψ, equal to ∆ + 1, is given by the sum of the scaling

20For the J = 1 case at hand, one may equivalently define the CFT wave function as the three-point

function

Ψ~θ,∆,~S(x) = 〈O~θ,∆,~S(x0) tr(Z̄(x)) tr(R−~θ(x0̄))〉 ,

where tr(R−~θ) is the pure twist operator with no field insertions.
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tr(Z R~θ)

Z†(x)

R−~θ

Figure 8. Feynman graphs contributing to the wave function. The graphs can be drawn on a

cylinder. The blue dashed line represents the cut used to twist the diagrams according to the

rules of section 2. The black line is made of Z-propagators, and the red lines represent twisted

X-propagators.

x0
x0̄

x

Ψ(x) 1
4π2(x−x0)2 B ◦Ψ(x)

Figure 9. The correlator (4.2) satisfies a Dyson-type evolution equation. On the right hand side

we have the tree-level propagator (first term) plus the correlator with one more wheel of the X-field

(in red). The addition of a wheel is implemented by the graph building operator B.

dimension ∆ of the twisted operator O and the protected scalar ∆0 = 1 in the correla-

tor (4.2). By plugging this form of the wave function into the evolution equation (4.6), and

using that

(x− x	)2 = 4

(
r2

1 sin2 θ1

2
+ r2

2 sin2 θ2

2

)
, (4.8)

we arrive at the one-dimensional stationary Schrödinger equation[
−∂2

σ + V (σ)
]
ψ(σ) = 0 , σ = log

r1

r2
, (4.9)

where the potential is given by

V (σ) =
1

2 coshσ

[(
e−σS2

1 + eσS2
2

)
+

1−∆2

2 coshσ
− ξ2

eσ sin2 θ1
2 + e−σ sin2 θ2

2

]
. (4.10)

This equation looks like a stationary zero-energy Schrödinger problem for a potential well

problem. Instead of the energy in the Schrödinger problem, which is set to zero, we should

extract the conformal data ∆(ξ, S1, S2). To read the physical CFT spectrum, one has to

tune ∆ that enters the potential, so that a solution satisfying the relevant quantisation con-

dition exists. The relevant quantisation condition is in general different from the standard

square integrability of ψ(σ), as we describe below.

Quantisation condition. As is obvious from its definition, the CFT wave function Ψ(x),

given by the correlator (4.2), can only be singular at x = x0. In particular, it is regular

when the argument x is placed on one of the two orthogonal planes, that is, when either

r1 = 0 or r2 = 0 (but not both at the same time). In the coordinates we are using, these
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-6 -4 -2 2

1

σ

ψ(σ)

ξ = 10

ξ = 6

ξ = 2

ξ = 1

Figure 10. Numerical plot of the ground state wave function (normalised to unity at σ = −∞), for

zero spins, twist angles (θ1, θ2) = (4/3, 1/2) and coupling constants ξ = 1 (green), ξ = 2 (orange),

ξ = 6 (red), ξ = 10 (purple). For zero spins, the wave function is not decaying but asymptotically

constant at infinity. As we will discuss in more detail in section 4.4, it becomes more and more

localised around σ = −∞ as the coupling increases.

two cases correspond to σ = log r1
r2
→ ±∞. In these limits the “potential” V (σ) (4.10)

behaves as

lim
σ→+∞ or r2→0

V (σ) = S2
2 +O

(
e−2|σ|

)
, lim

σ→−∞ or r1→0
V (σ) = S2

1 +O
(
e−2|σ|

)
. (4.11)

This implies the following possible asymptotics

lim
|σ|→∞

ψ(σ) ∝ e±|Siσ|
(

1 +O(e−2|σ|)
)
. (4.12)

The growing solutions would result in a singularity, thus we have to require that ψ(σ)

decays exponentially, which for Ψ(x) implies regular behaviour |Ψ(x)| ∼ rSii → 0 as ri → 0.

Similarly, for the case when one of the spins is zero, we get two solutions at infinity — one

asymptotically constant and one linearly growing. Using the same principle, we have to

exclude the linearly growing solution, as it would result in a singular Ψ(x). In summary,

we can express the quantisation condition as

lim
|σ|→∞

∂σψ(σ) = 0 . (4.13)

Notice that, in the case where one of the spins is zero, the wave function is not square

integrable with the naive flat measure, see figure 10. As we will explain shortly, the natural

measure for the Schrödinger problem is in fact non-trivial.

Changing conformal frame. Above, we reduced the problem of computing the CFT

wave function to a one-dimensional stationary Schrödinger equation with a certain quan-

tisation condition. However, for simplicity, we set x0 = 0 and x0̄ = ∞. The general

configuration with finite fixed points can be mapped to the standard one by a suitable

conformal transformation K, such that K(0) = x0, K(∞) = x0̄, which relates the twist
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maps in the two frames as R = K ◦R~θ ◦K
−1. The simplest example of such a map is the

special conformal transformation

(
K−1 ◦ x

)µ
=

xµ − xµ
0̄

(x− x0̄)2
−

xµ0 − x
µ
0̄

(x0 − x0̄)2
. (4.14)

In the following, we assume that this choice is made when discussing the correlator as a

function of the fixed points of the twist, which we then can plug into (2.12).21 As shown

in appendix B, the wave function is given by

Ψ(x) =
ẑS1

1 ẑS2
2

|x− x0|∆+1 |x− x0̄|1−∆ |x0 − x0̄|∆−1
× ψ (σ) , (4.15)

where σ and ẑi are

zi =
(
K−1 ◦ x

)
· ni , ẑi = zi/|zi| , σ = log(|z1/z2|) , (4.16)

with n1 = (1, i, 0, 0), n2 = (0, 0, 1, i).

Note that, for zero spins, the wave function Ψ(x) has the structure of the three-point

correlator between an operator of dimension ∆ at x0, an operator of dimension 1 at x and

an operator of dimension 0 at x0̄. However, an important difference as compared to the

standard CFT case is that the coefficient ψ(σ) carries an additional spatial dependence.

The measure. The measure for the functions of four variables Ψ(x), which plays an

important role in what follows, is defined as22

〈〈Ψ1|Ψ2〉〉 ≡
1

π2

∫
d4x

∣∣∣∂x	∂x ∣∣∣ 1
4

(x− x	)2
Ψ1(x) Ψ2(x) . (4.17)

It is easy to check that with this measure the operator B−1 (4.6) is self-adjoint.23

For physical wave functions that correspond to operators in the theory, the wave func-

tion and the bar one are given by the correlators (4.2) and

Ψ(x) ≡ 〈O−~θ,∆,~S(x0̄) tr(Z(x)R~θ(x0))〉 (4.18)

where x0 and x0̄ are the two fixed points of R~θ. By this definition, Ψ can be obtained

from (4.15) by interchanging the role of x0 and x0̄, reversing the sign of ~θ → −~θ, and

taking the complex conjugate of the result.24 Correspondingly, we have

Ψ~θ,∆,~S
(x) =

ẑ−S1
1 ẑ−S2

2

|x− x0|−∆+1 |x− x0̄|1+∆ |x0 − x0̄|∆−1
× ψ~θ,∆,~S (σ) , (4.19)

21The most general map is related to K in (4.14) by rotation and dilatation, which are the conformal

transformations that leave the origin and infinity invariant and would result with an extra scalar factor.
22On a solution to the evolution equation (4.6), this measure can also be written also as 〈〈Ψ1|Ψon-shell

2 〉〉 ∝∫
d4xΨ1(x)�x Ψon-shell

2 (x), which has the form of the “CFT norm” defined in [33].
23See appendix B for an explicit expression for the graph-building operator in a general frame.
24Incidentally, ~θ → −~θ and ~S → −~S have no effect on the wave function in the present case, since the

Schrödinger equation is even in the angles and spins.
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where the bar over ψ denotes complex conjugation while treating ξ as a real parameter.

By construction, Ψ satisfies the same equation (4.5) as the original wave function. By

plugging (4.7) and (4.19) into the “CFT norm” (4.17), we arrive at

〈〈Ψθ,∆,~S |Ψ̃θ,∆,~S′〉〉 = −δS1,S′1
δS2,S′2

× 2

π

log(εUV)

|x0 − x0̄|2∆
〈ψ∆,~S |ψ̃∆,~S〉 , (4.20)

where εUV is a small UV cutoff length scale and the corresponding Schrödinger measure is

given by

〈ψ|ϕ〉 =
π

2

∞∫
−∞

dσ
ψ(σ)ϕ(σ)(

eσ sin2 θ1
2 + e−σ sin2 θ2

2

)
coshσ

. (4.21)

We see that the measure in (4.21) decays as e−2|σ| at large |σ|. This means that solutions

that satisfy the quantisation condition (4.13) are also normalisable with respect to the

norm (4.21).

Relating the Schrödinger and the CFT normalisations. In CFT one usually nor-

malizes the operator by setting its two point function to have the standard form 1
|x1−x2|2∆ .

This normalization can be related to the normalization of the wave function according

to the norm (4.21). In [32] the following relation between the CFT norm (4.17) and the

two-point function of the operators was found

〈〈Ψ∆,~S |Ψ∆,~S〉〉 = 8 log(εUV) (∂ξ2∆) 〈O
1,~θ,∆,~S

(x0)O
1,−~θ,∆,~S(x0̄)〉 . (4.22)

To derive this relation, note that the twisted propagator in the CFT measure (4.17) has the

effect of introducing an extra graph-building operator into the diagrams that contribute to

the two point function of O∆,~S . This can be interpreted as the integrated insertion of the

interaction vertex in a two-point function and results in (4.22).

By comparing (4.22) with (4.20), we conclude that the normalisation of the Schrödinger

measure is related to the normalisation of the twisted CFT operators as

〈ψ∆,~S |ψ∆,~S〉 = −4π (∂ξ2∆)×
〈O

1,~θ,∆,~S
(x0)O

1,−~θ,∆,~S(x0̄)〉
|x0 − x0̄|−2∆

= −4π (∂ξ2∆) , (4.23)

where in the last equality we have fixed the standard CFT normalisation25

〈O
1,~θ,∆,~S

(0)O
1,−~θ,∆,~S(x)〉 =

1

|x|2∆
. (4.24)

This choice or normalisation can also be written as

〈ψ∆,~S |
eσ̂ sin2 θ1

2 + e−σ̂ sin2 θ2
2

cosh σ̂
|ψ∆,~S〉 =

π

∆
. (4.25)

25One may be confused by the fact that the left-hand side of (4.24) is the two-point function of operators

with spins ±(S1, S2) while the right-hand side of that equation looks like a scalar. A general two-point

function of twisted operators with spins ~S and ~S′ is proportional to δS1,−S′1δS2,−S′2(ε1.ε
′
1)S1(ε2.ε

′
2)S2 , where

the εi’s are the polarization vectors of the operators in the two planes. In our case however, that factor is

equal to one by construction.
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Figure 11. The first five states for J1 = 1, J2 = 0, S1 = S2 = 0, with θ1 = 5/6 and θ2 = 1/6.

All states reach a branch point where ∆ = 0, after which the scaling dimension becomes purely

imaginary and scales classically, |∆| ∼ ξ for ξ →∞. The strong coupling behaviour will be studied

in section 4.4.

To relate (4.25) with (4.23), we start from the Schrödinger equation and consider small

variations of the potential with respect to ξ2, which results in a small variation of ∆. In

that way we arrive at the relation

∂ξ2∆2 = −
∫
dσψ∆,~S(σ)ψ∆,~S(σ) ∂ξ2V (σ)∫
dσψ∆,~S(σ)ψ∆,~S(σ) ∂∆2V (σ)

= −
〈ψ∆,~S |ψ∆,~S〉

2〈ψ∆,~S |
eσ̂ sin2 θ1

2
+e−σ̂ sin2 θ2

2
cosh σ̂ |ψ∆,~S〉

, (4.26)

from which (4.25) follows.

4.2 Structure of the spectrum: general situation

For two generic twist angles we cannot solve the Schrödinger equation analytically. Still,

we have complete numerical control over it. In figure 11 we have plotted the spectrum for
~S = 0, ~θ = (5/6, 1/6) and real ξ obtained numerically by solving the stationary Schrödinger

equation (4.9) with the boundary conditions described in the previous section.

As one can see from the plot, at zero coupling the spectrum is given by the bare

operators of dimension 1 + 2n+ |S1|+ |S2|. We refer to n as the excited state number. It

can be related to the number of derivatives used to build the state at weak coupling, (4.1)

with n2 = 0 and n1 = n.
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As we turn on the coupling ξ, the spectrum starts to deviate from the trivial one while

the number of states is conserved. In particular, there is only one non-protected state for

every choice of the spins and classical dimension. These states can be understood as broken

conformal descendants.

At some critical real value of ξ, each of the trajectories ∆2
n(ξ) passes smoothly through

zero. After this point, the scaling dimension ∆n(ξ) splits into two purely imaginary levels.

At strong coupling, all levels scale as ∆n(ξ2) ∼ ±iξ.

4.3 Special case of equal angles

It turns out that for equal angles, θ1 = θ2 ≡ θ, one can solve the Schrödinger problem

analytically.26 The reason for that is the large amount of symmetry that is preserved by

the twist in this case. As discussed in section 3.3.1, for equal angles the twist preserves an

extended subgroup of conformal symmetries (3.15). In particular, the rotation symmetry

is only broken down to SO(4)→ SU(2)×U(1). For one scalar, that symmetry is enhanced

even further, to the full SO(4) group of rotations. To see that, we note that the twisted

propagator (4.8) now takes the form

(x− x	)2 = 4 sin2 (θ/2)× |x|2 (4.27)

and depends only on the absolute magnitude of x, but not on its direction. The corre-

sponding potential in the Schrödinger equation takes the form

V (σ) =
S2

1

1 + e2σ
+

S2
2

1 + e−2σ
+

1−∆2 − ξ2/ sin2(θ/2)

4 cosh2(σ)
. (4.28)

The solutions of the Schrödinger differential equation subject to the boundary condi-

tions (4.13) can be found explicitly. In order to satisfy the boundary conditions one has to

restrict ∆ to the following values

∆n =

√
(1 + 2n+ |S1|+ |S2|)2 − ξ2/ sin2(θ/2) , (4.29)

where n is a non-negative integer that is equal to the excited state number introduced in

the previous section. The corresponding wave functions are

ψn(σ) =
2F1

(
−n, 1 + n+ |S1|+ |S2|, 1 + |S2|, 1

1+e2σ

)
(1 + e2σ)

|S2|
2 (1 + e−2σ)

|S1|
2

≡ P
~S
n (e2σ)

(1 + e2σ)n+
|S2|

2 (1 + e−2σ)
|S1|

2

,

(4.30)

where P
~S
n (x) is a polynomial of degree n.27 Notice that this wave function is independent of

the coupling and therefore coincides with the tree-level one. Explicitly, the wave function

is fixed by the unbroken SO(4) symmetry and is given by

Ψ∆n(ξ),~S(x) ∝ x−γ(∂1∂̄1)n ∂̄S1
1 ∂̄S2

2

1

x2
, (4.31)

where γ = ∆n(ξ)−∆n(0), ∂̄
−|k|
a ≡ ∂|k|a and the SO(4) spin is S = 2n+ |S1|+ |S2|.

26This simple solvable case was also very useful to test of the duality with the quantum fishchain model

proposed in [35]. In fact, after we had obtained the result for the spectrum presented below, it was

reproduced by two of the present authors from the dual model in [32].
27For example, for zero spins, P 0,0

n (x) = (1 + x)n Pn(x−1
x+1

), where Pn is the Legendre polynomial of

degree n.
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4.4 Strong coupling

In this section, we study the strong coupling limit ξ2 → +∞ of the Schrödinger equa-

tion. We will show that the states ∆n with some fixed spins S1, S2 can be described

quasi-classically (i.e. by means of WKB analysis) even for the lowest lying states. The

strong coupling behaviour depends on the values of the angles parameters. Without loss

of generality, in this section we assume that sin2 θ1
2 ≥ sin2 θ2

2 .

The problem under consideration is a Schrödinger equation[
−∂2

σ + V (σ)
]
ψ(σ) = E(∆)ψ(σ) , (4.32)

where the scaling dimension ∆ and the coupling ξ enter as a parameters in the poten-

tial (4.10). The physical scaling dimension is obtained by tuning ∆, so that the Schrödinger

energy vanishes

E(∆phys) = 0 . (4.33)

From the numerical results described in section 4.2, we know that at strong coupling and

for fixed values of the spins, ∆ become purely imaginary and ∆ ∼ Dξ, where D2 < 0. With

this scaling, the strong coupling potential takes the form,

V (σ) =
ξ2

2 coshσ

[(
e−σS2

1 + eσS2
2

)
− D2

2 coshσ
− 1

eσ sin2 θ1
2 + e−σ sin2 θ2

2

]
, (4.34)

where we also re-scaled the spins as Si = ξSi. In the following, we will drop these pa-

rameters and only consider the case of zero classical spins, Si = 0. The potential (4.34)

is plotted in figure 12(a), for some values of D2 such that it admits bound states. In this

case, the potential displays a minimum around which it is negative.

As ξ2 →∞, the potential becomes very deep and the wave function (weighted by the

appropriate measure (4.21)) is supported around the minimum, see figure 12(b). Hence, to

leading order, the Schrödinger energy E is given by the value of the potential at the mini-

mum. To impose E = 0, we look for the minimum of the potential and tune D2 such that

at this point the potential is also zero, V ′(σ∗) = 0 and V (σ∗) = 0. This leads to the result

D2 = − 1

sin2 θ2
2

. (4.35)

This result describes the leading strong coupling behaviour ∆n ∼ Dξ of the ground state, as

well as low-lying excited states with fixed excitation numbers n/ξ ∼ 0 and spins Si/ξ ∼ 0.

At the physical value (4.35), both σ = ±∞ are minima of the potential. However, the

potential well at σ∗ = −∞ is steeper, meaning that V (σ) ∼ e−4|σ| rather than V (σ) ∼ e−2|σ|

there. This is the minimum around which the wave functions are asymptotically concen-

trated, see figure 12(b).

We can also analyse the excited states. The scaling dimensions of operators corre-

sponding to different excited states start to differ at order ~ = 1/ξ. These excited states

correspond to semi-classical solutions that come from σ = −∞ and bounce against the

potential at some finite turning point σt which scales as O(log(1/ξ2)). The turning point
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1
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Figure 12. (a) The typical shape of the strong coupling potential (4.34), drawn here for

(θ1, θ2) = (4/3, 1/2), zero spins and D2 = −4 (red), D2 = −9 (blue), D2 = −14.4 (black). At large

coupling, the potential becomes very high and the wave function is localised, with the appropriate

measure (4.21), around the minimum. We then tune D2 so that the minimum is at zero Schrödinger

energy (4.33). This is achieved at D2 = −1/ sin2(θ2/2) ' −16.3 (4.35), where the minimum moves

to σ = −∞. (b) Numerical plot of |ψ(σ)|2 × µ(σ), where µ(σ) = 1

(eσ sin2 θ1
2 +e−σ sin2 θ2

2 ) coshσ
is the

Schrödinger measure. We see that the ground state “probability” is localised around the minimum

of the potential, which moves towards σ∗ = −∞ as D2 approach its physical value.

separates the classically allowed region of the potential (V < 0), from the classically for-

bidden region (V > 0), see figure 12 for an illustration. These points are fixed by the

Bohr-Sommerfeld quantisation condition

σt∫
−∞

dσ
√
V (σ) = (n+ 1/2)

iπ

ξ
, (4.36)

where n ∈ N is the excitation level above the strong coupling vacuum. By expanding this

equation we find

∆2
n = − ξ2

sin2 θ2
2

1−
(2 + 4n)

√
sin2 θ1

2 − sin2 θ2
2

ξ
+O

(
1

ξ2

) , ξ2 → +∞ . (4.37)

The same equation can be used to calculate further terms. The cases where sin2 θ2
2 > sin2 θ1

2

and ξ2 < 0 are treated in an analogous way.

4.5 Dual description

In the rest of this section, we interpret these results from the point of view of the holographic

description of the fishnet model introduced in [33]. The dual model consists in a chain of

particles with nearest neighbour interactions propagating in AdS5, where ξ is identified

with 1/~. In the strong coupling limit, we are interested in its classical dynamics, which

takes place near the boundary of AdS5. For the present case, there is a single particle,

which is classically confined to the light-cone in R1,5, described by coordinates

X2 = 0, X ≡
(
X−1, X0, . . . , X4

)
∈ R1,5 . (4.38)
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In these coordinates, the twist transformation (3.12) takes the form

X	 = R~θ ◦X , R~θ =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 cos θ1 − sin θ1 0 0

0 0 sin θ1 cos θ1 0 0

0 0 0 0 cos θ2 − sin θ2

0 0 0 0 sin θ2 cos θ2


, (4.39)

and as above we will assume sin2 θ1
2 > sin2 θ2

2 . Following [33] we write the action of

the model

S = ξ

∫
Ldt , L = −

[
Ẋ2

2α
− α (X ·X	)−1

]
, (4.40)

where Ẋ = ∂tX and α is an auxiliary field, related to the worldline metric. This action

is invariant under worldline time reparametrisation symmetry as well as time-dependent

rescaling of X. As explained in [32], it is convenient to fix these gauge redundancies by

imposing α = 1 and L = m2, which leads to the constraints,

Ẋ2 = −2(X ·X	)−1 = m2 . (4.41)

It can be verified that, for the present case, the equations of motion arising from the

Lagrangian are a trivial consequence of the constraints and of the SO(1, 5) charge conser-

vation. The classical spins and scaling dimension in this description are given by

D = −iQ−1,0 , S1 = Q1,2 , S2 = Q3,4 , (4.42)

where QM,N = 2(ẊMXN − ẊNXM ). In the following discussion, for simplicity, we set the

classical spins to zero. We parametrise the solution using four functions of time, ρ(t), s(t),

ϕ1(t) and ϕ2(t) as

X−1 = ρ (2 coshσ)
1
2 cosh s , X0 = ρ (2 coshσ)

1
2 sinh s ,

X1 = ρ eσ/2 cosϕ1 , X2 = ρ eσ/2 sinϕ1 ,

X3 = ρ e−σ/2 cosϕ2 , X4 = ρ e−σ/2 sinϕ2 .

(4.43)

By combining the constraints (4.41) and (4.42), one obtains the following equation for σ(t)

p2
σ(t) + V(σ(t)) = 0 , pσ(t) =

σ̇(t)

2m2 cosh(σ(t))
(
eσ(t) sin2 θ1

2 + e−σ(t) sin2 θ2
2

) , (4.44)

where pσ is the conjugate momentum variable, and V(σ) = limξ→∞ V (σ)/ξ2 is the classical

limit of the potential (4.34). Equation (4.44) shows that the classical motion is restricted

to the region where V(σ) ≤ 0. Such a region exists only for D2 ≥ −1/ sin2 θ2
2 , which is

the classically allowed range for the scaling dimension. The bottom of this range coincides

with (4.35), and gives the classical dimension of the ground state at the leading strong

coupling limit.
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The classical solution corresponding to the ground state is particularly simple, and

stays at σ = σ∗ at all times, where σ∗ = −∞ as in the previous section. Introducing

the convenient four-dimensional coordinates ~x ≡ 1
X−1+X0

(
X1, X2, X3, X4

)
, the classical

solution corresponding to the ground state is

~x(t) = e−m
2 sin

θ2
2
t ~x(0) , where (~x)1 = (~x)2 = 0. (4.45)

To describe excited states, one can use semi-classical arguments. The solutions corre-

sponding to excited states are periodic orbits oscillating between {σ∗, 0} and the turning

point {σt, 0} in the coordinates {σ, pσ}. The semi-classical Bohr-Sommerfeld quantisation

rule
∮
pσdσ ∈ 2π~(N + 1/2) leads to the same condition (4.36) as the WKB study of the

Schrödinger equation.

5 Twisted operators with two orthogonal scalars (one-magnon case)

In this section, we consider the next simplest example of rotation twisted operators in the

fishnet model. This consists of operators with charges J1 = J2 = 1. Such operators are

built with one X scalar and one Z scalar and any distribution of derivatives. They take

the schematic form

O~θ,∆,~S(0) = tr
(
R~θ ∂

S1
1 ∂S2

2 (∂1∂̄1)n1 (∂2∂̄2)n2 X(0)Z(0)
)

+ permutations of derivatives .

(5.1)

As in the previous section, we define the CFT wave function of this operator as a two-point

function

Ψ(x) = 〈O~θ,∆,~S(0)tr(R−~θX(x)Z(x))〉 . (5.2)

The Feynman diagrams contributing to this correlator look like spirals, see figure 13. Like

in the previous case, we can use the iterative structure of the diagram to write an integral

equation for the CFT wave function. As the same symmetry considerations apply, a de-

composition of the wave function as in (4.7) is still valid. However, an important difference

is that the graph-building operator B cannot be inverted as a differential operator, making

this case considerably more complicated. As a result there is no simple differential equation

which determines the remaining function ψ(σ). As was noticed in [33], this is a common

feature of all fishnet operators with |J1| = |J2|.
Below, we study the spectrum perturbatively at one loop in section 5.2. We then com-

pute the finite coupling spectrum at equal angles in section 5.3. After that, in section 6 we

demonstrate a precise match between these results and the predictions of the integrability

formalism, which will allow us to extend our results to non-equal angles at finite coupling.

5.1 Structure of the spectrum

Here we describe the general properties of the spectrum of this family of operators, which

we then explore perturbatively at one loop in the next section.

There are plenty of operators of the type (5.1), which can mix with each other in

perturbation theory. Similarly to the case considered in the previous section with a single
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Figure 13. Feynman diagram contributing to the correlation function between one operator of the

type (5.1) and its conjugate. These operators consist of a Z and an X field and any configuration

of derivatives. At l loops the red Z line spirals l times around the black X line. Along the way, it

also crosses the dashed blue twist cut l times.

scalar, we have to solve a mixing problem between all operators with the same spins S1,

S2 and the same tree-level scaling dimension ∆(0) = 2 + S1 + S2 + 2(n1 + n2). As there

is a possibility to choose where the derivatives act, this is a very large family of operators.

However, due to a peculiarity of the fishnet theory, only a small subset of these operators

can receive a non-trivial anomalous dimension.

First, for the purposes of counting non-trivial operators, let us temporarily remove the

twist. Consider an operator

tr
(
∂̄1XZ

)
− tr

(
X∂̄1Z

)
. (5.3)

When such an operator appears in a loop diagram (e.g. figure 14(b)), it gets contracted with

the interaction vertex which is symmetric in X and Z, so that the result is immediately zero.

To make this consideration more formal, one can effectively replace the part of the

interaction vertex which contracts with the operator by tr(X̄(x)Z̄(x)), generating the same

two propagators connecting the operator, at tree-level:

〈O(0)tr(X̄(x)Z̄(x))〉tree . (5.4)

Now looking at (5.4), we can immediately conclude that O(0) should be a descendant

of O0 = tr(X(x)Z(x)) in the free theory in order for (5.4) to be non-zero. In other

words, we can divide the whole space of operators (5.1) into two families — O0 and its

descendants, and other primaries and their descendants. According to the argument above,

any loop diagram will automatically project onto the operators in the first group. The same

considerations apply in the twisted case too, if the cut is chosen so that it does not cross the

two propagators connecting to the operator. This is always possible to do without changing

the result, as is demonstrated in figure 14(b) and in the next section. The only difference

is that, in presence of the twist, the projection only applies to one of the two operators.

Hence, the anomalous dimension matrix has off-diagonal Jordan elements between the two

families of operators. These Jordan cells, however, are irrelevant for the computation of
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the eigenvalues. Thus, in this section we restrict ourselves to the operators in the first

family, which are total derivatives of O0.28

This non-trivial sub-class of operators thus consists of all operators of the form

O~θ,∆,~S(0) =
n∑

m=0

α
(m)
~θ,∆,~S

∂̄S1
1 ∂̄S2

2 (∂1∂̄1)n−m (∂2∂̄2)mO0 where O0 ≡ tr(R~θ ZX) . (5.5)

However, the basis above is not easy to work with, as it is not orthogonal w.r.t. the tree-

level contractions. The orthogonal combinations are quite non-trivial; for example, for the

case of zero spins, one can show that the following basis is orthogonal under the tree-level

contractions29

OS1=0,S2=0,n,m ≡ �n−m
(

m∑
k=0

(
m

k

)2

(−∂1∂̄1)k(∂2∂̄2)m−k

)
O0 , m = 0, . . . , n , (5.6)

so for fixed bare dimension ∆(0) = 2 + 2n there are n+ 1 operators OS1,S2,n,◦ that can mix

with each other. For general spins, in order to construct the tree-level orthogonal operators,

it is convenient to introduce lowering generators J−L and J−R for the two SU(2) subgroups

of the SO(4) rotation symmetry as defined in appendix A. Specifically, one can define

OS1,S2,n,m = �n−m
[
(J−L )m(J−R )m+S2 ∂̄2m+S1+S2

1

]
O0 , m = 0, . . . , n , (5.7)

where in our notations the generators J−L and J−R only rotate the highest weight “state”

∂̄2m+S1+S2
1 O0 of SO(4) spin j = 2m + S1 + S2. Since this formula uses the symmetry

generators, orthogonality is guaranteed by construction. In particular for S1 = S2 = 0 one

reproduces (5.6) up to a numerical factor.

In the next section we demonstrate how to resolve the mixing problem at one loop. In

section 6 we solve the problem numerically, using integrability, and reproduce the correct

(n+ 1)-degeneracy in the spectrum as deduced in this section.

5.2 The one-loop spectrum

At one-loop order, there is only one diagram that contributes to the correlation function

between two operators of the type (5.1), see figure 14.b. As usual, we can read off the

one-loop anomalous dimension of the operators from the logarithmically divergent piece of

that diagram.

First, let us consider the case without the twist. As all the operators we consider are

total derivatives of O0 = tr(X(0)Z(0)), they will all have the same anomalous dimension.

The sum of the tree-level and one-loop diagram for the correlator of O0 with O0 is

1

16π4(x0 − x0̄)4
+ 16π2ξ2

∫
d4x

1

16π4(x0 − x)4

1

16π4(x− x0̄)4
. (5.8)

28This general argument explains some of the results obtained previously in the literature [34].
29In order to verify the orthogonality, one should compute the tree-level contraction with a conjugate

operator sitting at infinity. The conjugate operator is obtained by applying an inversion conformal trans-

formation to O(x) and then taking the limit x→ 0.

– 31 –



J
H
E
P
0
6
(
2
0
2
0
)
0
9
2

Z X X̄Z̄

(a)

Z X X̄Z̄

(b)

Figure 14. (a) The unique tree-level diagram that contributes to the correlation function between

a twisted operator of the type (5.1) and a conjugate operator from the same family. The diagram

is plotted in double line notation, where the external and internal circles represent the colour-trace

in (5.1). Here, we have made a conventional choice for the twist cut. (b) The unique one-loop

diagram that contributes to the same correlator.

The integral, indeed, is log-divergent at the locations of the operators. Introducing an ε

cutoff around x0 and x0̄ we get

1

16π4(x0 − x0̄)4

(
1 +

ξ2

π2
2× 2π2 log

(
|x0 − x0̄|

ε

))
, (5.9)

from where we read off the one-loop anomalous dimension γ = −2ξ2, which is in agreement

with the ABA result of [36]30

∆ABA = J +
√

1− 4ξ2 ' 2− 2ξ2 +O(ξ4) . (5.10)

Now we place the operators at zero and at infinity and introduce the twist by the

rotation around the origin. This will result in the twist cut going through one of the two

Z-field propagators as in figure 14(b). We notice, however, that at one loop, the effect of

the twist is very innocent, as one can simply move the starting point of the cut to the left

from Z so that it does not affect the propagator anymore. As the Z-field is sitting at the

origin, it is invariant under the twisting rotation, so for the operator tr(X(0)Z(0)) there

will be no difference and our calculation above is still valid. Thus we conclude that

γS1=0,S2=0,n=0 = −2ξ2 +O(ξ4) . (5.11)

We see below in section 5.3 that the two-loop term does have a non-trivial θ-dependence.

Now consider an example with non-trivial angle dependence. Let us take the operator

S1 = 1, S2 = 0, n = 0

O1,0,0 = ∂̄1O0 = tr
(
R~θ ∂̄1XZ

)
+ tr

(
R~θX∂̄1Z

)
. (5.12)

30We analyse the zero twist limit in more detail in the next section. We will see that at two loops the

perturbation theory breaks down in this case.
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This time, when moving R~θ to the left from Z we introduce an additional phase factor due

to the derivatives

O1,0,0 = ∂̄1O0 = tr
(
∂̄1XR~θZ

)
+ eiθ1 tr

(
XR~θ∂̄1Z

)
. (5.13)

After we move the twist marker as above, it can be removed, as the twist cut will no longer

cross any of the propagators for each of the two terms above. This transformation defines

a linear operator R~θ

R~θ
◦ ∂̄1tr (XZ) = tr

(
∂̄1XZ

)
+ eiθ1tr

(
X∂̄1Z

)
.

Finally, following the previous discussion, we know that only the descendants of O0 of the

free theory survive in the one-loop diagram, so we write

R~θ
◦ ∂̄1tr (XZ) =

1 + eiθ1

2

(
tr
(
∂̄1XZ

)
+ tr

(
X∂̄1Z

))
+

1− eiθ1
2

(
tr
(
∂̄1XZ

)
− tr

(
X∂̄1Z

))
.

The second operator, with anti-symmetric combination of derivatives, is a new primary of

the free theory and is not a descendant of O0. Its presence leads to an off-diagonal Jordan

element of the anomalous dimensions matrix Γ̂~θ and therefore can be projected out. Hence,

we conclude that we get the same result as in the un-twisted case multiplied by (1+eiθ1)/2,

giving for the scaling dimension of O1,0,0 the result ∆ = 3− ξ2
(
1 + eiθ1

)
+O(ξ4).

One can treat the general case in the same way. First, one has to deduce the operator

Rθ̃ arising from moving the twist mark point by using

tr[R~θ . . . ∂
n1
1 ∂̄n̄1

1 ∂n2
2 ∂̄n̄2

2 Z(0)] = ei(n̄1−n1)θ1+i(n̄2−n2)θ2tr[. . . R~θ∂
n1
1 ∂̄n̄1

1 ∂n2
2 ∂̄n̄2

2 Z(0)] . (5.14)

After that, one can remove the twist marker and compute the divergent part of the diagram.

For that one should project onto the free theory descendants of O0 and read off the mixing

matrix. A convenient way of projecting back to this class of operators is to contract (5.7)

with tr
(
X̄(x)Z̄(x)

)
at tree-level, as in (5.4).

For example, in the sector S1 = S2 = 0 and n = 1 we have two operators (5.6)

O0,0,1,1 ∝
(
∂1∂̄1 − ∂2∂̄2

)
O0 , O0,0,1,0 ∝

(
∂1∂̄1 + ∂2∂̄2

)
O0 . (5.15)

Following the above procedure we get a non-trivial mixing matrix

− ξ2

(
1
3 (4 + cos θ1 + cos θ2) 1√

3
(cos θ1 − cos θ2)

1√
3
(cos θ1 − cos θ2) cos θ1 + cos θ2

)
. (5.16)

The corresponding anomalous dimensions, found as eigenvalues of the mixing matrix (5.16),

are

γ
(±)
0,0,1 =−2

3
ξ2
(

1+cosθ1+cosθ2±
√

1+cos2 θ1+cos2 θ2−cosθ1−cosθ1 cosθ2−cosθ2

)
.

(5.17)

Note that for θ2 = θ1 = θ, the operators (5.15) do not mix and the anomalous dimensions

simplify to

γ0,0,1,1 = −ξ2 2

3
(2 + cos θ) , γ0,0,1,0 = −2ξ2 cos θ . (5.18)

We give further examples and summarise the one-loop results in appendix D.
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As in the case of one scalar field, the calculation simplifies considerably in the case

where the twist angles are equal and the current results can be pushed to arbitrary loop

level. This is considered in the next section.

5.3 All-loop spectrum at equal angles

Similarly to (4.2), the starting point for the all-loop calculation is the CFT wave func-

tion (5.2). The diagrams that contribute to the correlator (5.2) are generated by the

graph-building operator

B ◦Ψ(x) ≡ ξ2

π2

∫
d4y

Ψ(y)

(x− y	)2(x− y)2
, (5.19)

which adds one more spiral to the diagram in figure 13. Following the same procedure

as was exemplified in detail in [37], the sum of all diagrams can be written as a simple

geometric sum of this operator. In particular, physical twisted operators correspond to

stationary wave functions31

B ◦Ψ~θ,∆,~S
(x) = Ψ~θ,∆,~S

(x) . (5.20)

We do not know how to directly diagonalise B as it is a rather complicated integral

operator, which cannot be easily inverted as in the previous case. However, in the special

case θ1 = θ2 ≡ θ the eigenfunctions are completely fixed by the enhanced symmetry (3.15)

and all we need is to find the eigenvalue of B and impose it to be one according to (5.20). We

parametrise the wave functions by their corresponding SO(4) ' SU(2)L × SU(2)R charges,

{∆, S,mL,mR}.32 As the symmetry preserved in the case θ1 = θ2 is U(1)L × SU(2)R, the

eigenvalue should not depend on mR and we can consider the SU(2)R highest weight state

with mR = S/2 ≡ j. It takes the form

Ψ∆,S,mL ∝ z
mL+S/2
1 z̄

S/2−mL
2 (z1z̄1 + z2z̄2)−

∆
2
−S/2−1 . (5.21)

Since the wave function is explicitly given by (5.21), the problem is reduced to the calcu-

lation of the eigenvalue

B ◦Ψ∆,S,mL(x) = ξ2E(∆, S,mL) Ψ∆,S,mL(x) . (5.22)

The evaluation of this integral for several choices of the spins is given in appendix C. In

the simplest case S = 0, the result is33

E(∆, 0, 0) = i
Φ
(
e−iθ, 1,−∆

2

)
− Φ

(
e−iθ, 1, ∆

2

)
− Φ

(
eiθ, 1,−∆

2

)
+ Φ

(
eiθ, 1, ∆

2

)
∆ sin θ

. (5.23)

31Notice that the tree-level term on the r.h.s. of the Dyson-type evolution equation (analogous to (4.3))

is suppressed due to the wave function renormalisationion at finite coupling. The same also applies for the

case of a single scalar considered in the previous section.
32In the vector representation, the Casimir operators of both SU(2) subgroups are equal to j(j + 1) with

j = S/2. The (S+1)2 states in the multiplet are labelled by −j ≤ mL,mR ≤ j. See appendix A for details.
33The function Φ(z, 1, x) =

∑∞
n=0

zn

n+x
, or HurwitzLerchPhi[z, 1, x] in Mathematica.
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2 4 6 8 10 12 14

1/ξ2

∆

Figure 15. The eigenvalue of the graph building operator E(∆, 0, 0) in (5.22) at θ = 1. It has

poles at the positive real even integers ∆0 = 2 + 2n. The spectrum is giving by equating E(∆, 0, 0)

with 1/ξ2 and is represented by the intersection with the red dashed line. The solution between

the n-th and the (n − 1)-th poles correspond to the operator �n tr
(
R~θZX

)
, or, equivalently, the

wave function (5.21).

This function is plotted in figure 15 for real positive ∆. It has simple poles at ∆ = 2 + 2n

for non-negative integer n and is smooth between these poles. Next, from (5.20), we can

extract the spectrum using the condition

E(∆, 0, 0) = ξ−2 . (5.24)

The resulting spectrum is plotted in figures 16 and 17 for real and complex coupling.

At zero coupling, the solutions to (5.24) are localised at the poles. Hence, in the free

theory we have ∆n = 2 + 2n, which correspond to the operators On = �nO0. Expand-

ing (5.24) at weak coupling gives

∆n=0 = 2− 2ξ2 + ξ4
(
4 log[2 sin θ

2 ]− 2
)

+O
(
ξ6
)

∆n=1 = 4− 2ξ2 cos θ + ξ4 cos θ
(
cos θ

(
4 log[2 sin θ

2 ]− 1
)

+ 2
)

+O
(
ξ6
) , (5.25)

in agreement with (5.11) and (5.18) at one-loop order. We see that the limit θ → 0 of the

two loop coefficient is singular.34

For each given spin S the integral in (5.22) can also be computed. Unfortunately, we

were not able to obtain a closed expression for the eigenvalue for all spins and values of

mL. For mL = S/2 we found

E(∆, S, S2 ) =
1

(1 + e−iθ)
S

S∑
k=0

(
S

k

)
M(∆− 2k + S) +R(∆, S) , (5.26)

34The expansion in ξ and θ → 0 limit do not commute. Fixing ξ and then analytically continue the

solution for ∆ from some finite θ to zero we find that ∆ → 2Z∗. Except for the state n = 0, where

depending on the initial value of ξ one can either get 2 or ±i∞ as a limit.
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Figure 16. The conformal dimensions of the one-magnon operators at twist angle θ = 2.0 and real

ξ2. The dimensions start real for small ξ2 and then split into pairs of complex conjugate ∆’s. We

see how the scaling dimensions of different operators are connected to each other through analytic

continuation in the complex ξ2 plane.

where R(∆, S) is a rational function, which removes all simple poles in the first term in ∆

inside the interval (−1− S, 1 + S). For example, R(∆, 0) = 0 and

R(∆, 1) =
2

(∆− 1) (1 + e−iθ)
− 2

(∆ + 1) (1 + e−iθ)
, (5.27)

and so on. For mL = S/2− 1 we get

E(1,1)(∆, S, S2 − 1) ' e−iθ

(1 + e−iθ) S

S∑
k=0

2

(
S

2

(
S

k

)
− k (cos θ1 + 1)

(
S − 1

k

))
M(∆−2k+S) ,

(5.28)

where ' means that again, we have to subtract simple poles in the interval (−1−S, 1+S).

Finally, for E(1,1)(∆, S, S/2− 2) we found

1

2

e−2iθ

(1+e−iθ)S

S∑
k=0

M(∆−2k+S)

(
− (cosθ+1)

(
6k2−6(k+1)S+4S2 +2

)(S−2

k−1

)
+2(k−1)k (cosθ+cos(2θ))

(
S−2

k

)
+S(S−1)

(
S

k

))
.

In the next section we explain how to compute the spectrum from integrability.
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Re(ξ2)

Im(ξ2)

∆

Figure 17. Spectrum of the one-magnon family of operators as a function of a complexified coupling

ξ2. All the operators, corresponding to different combinations of fields at weak coupling (black dots)

in fact belong to the same Riemann surface and can be obtained as an analytic continuation in ξ2

from one another. The plot is done for θ = 2.

6 The spectrum via integrability

In this section we connect our construction with the integrability approach. Our main

claim is that the twist we introduced can be studied by means of the twisted ABA of [23]

in the asymptotic regime, or exactly using the twisted QSC construction of [20, 21]. To

demonstrate this is the case, we consider several examples in the fishnet model.

We start with a leading order perturbative test of the equivalence by considering the

“vacuum” operator at length J

OJ = tr
(
ZJ(x0)R~θ

)
. (6.1)

The Feynman diagrams that contribute to the two-point function of these operators are all

wheel graphs, see for example figure 18. From the integrability perspective, these corre-

spond to wrapping corrections. Using this fact, we will perform a test of the integrability

at the first Lüscher order O(ξ2J).

Next, we review the finite coupling twisted fishnet Baxter equations that were presented

in [33] for generic operators. We present the corresponding quantisation condition, which

was used in [33] for solving numerically the spectrum of length-three operators. Finally,

we will match and generalise the field theory results obtained in the previous sections at

finite coupling.
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tr
(
R~θZ

J
)

tr
(
R−~θZ̄

J
)

w

x0

x0̄

Figure 18. The first loop correction to the two-point function 〈OJŌJ〉 in (6.1) comes from the dia-

gram in the figure. It is composed of one wheel of the X scalar (in red) crossing all the Z-propagators

(in black). After factoring out one of the loop integrations over an internal vertex (w in the figure),

we remain with a known ladder integral (dashed grey) times two propagators (between w and x0,

x0̄). In appendix E, we use this representation of the integral to extract the J-loop anomalous

dimension of these operators (6.2).

6.1 One-wheel diagram vs. first Lüscher correction

6.1.1 One-wheel diagram

The first loop correction to the dimension of OJ comes from the single-wheel graph in

figure 18. It is given by the coefficient in front of the logarithmic divergence of that graph.

This coefficient is computed in appendix E by expressing this J-loop integral as a single

4D integral over a known (J − 1)-loop ladder function [38]. The resulting anomalous

dimension is

γ1-wheel
J = ξ2J

(
2J − 2

J − 1

)
Li2J−1(eiθ1) + Li2J−1(e−iθ1)− Li2J−1(eiθ2)− Li2J−1(e−iθ2)

cos θ2 − cos θ1
.

(6.2)

6.1.2 First Lüscher correction

We will now reproduce the result (6.2) from integrability. We will do that by starting

with the scalar operator tr(ZJR) in N =4 SYM theory, twisted by a generic element

R ∈ PSU(2, 2|4). We will then take the appropriate double scaling limit.

Diagonal twist in N=4 SYM. When studying the spectrum, we consider twist sym-

metries that commute with dilatations. Such a transformation R ∈ PSU(2, 2|4) can always
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be brought to a diagonal form with a symmetry transformation, after which it depends on

six independent parameters,

R ≡ diag (y1,y2,y3,y4|x1,x2,x3,x4) ∈ PSU(2, 2|4) , (6.3)

with
∏4
i=1 xi =

∏4
i=1 yi = 1. As a group element, this twist map can be written as

R =

(
y1y2

y3y4

)D̂/2 (y2y4

y1y3

)Ŝ1/2 (y2y3

y1y4

)Ŝ2/2

︸ ︷︷ ︸
conformal transf.∈ SU(2,2)

(
x1x2

x3x4

)Ĵ1/2 (x1x3

x2x4

)Ĵ2/2 (x2x3

x1x4

)Ĵ3/2

︸ ︷︷ ︸
R-symmetry transf.∈ SU(4)

,

(6.4)

where D̂ is the dilatation operator, Ŝi generate rotations in two orthogonal planes, and Ĵi
are Cartan generators of the R-symmetry group SU(4). As we discussed in section 2, a state

twisted by Rmust be invariant under this transformation. Denoting as (∆, S1, S2, J1, J2, J3)

the charges of the state, this constraint reads(
y1y2

y3y4

)∆/2 (y2y4

y1y3

)S1/2 (y2y3

y1y4

)S2/2 (x1x2

x3x4

)J1/2 (x1x3

x2x4

)J2/2 (x2x3

x1x4

)J3/2

= 1 .

(6.5)

Twisted Quantum Spectral Curve equations describing the full spectrum of scaling dimen-

sions in the presence of generic twists were proposed in [20, 21]. The condition (6.5) seems

to be omitted there. We believe that it may play an important role in the QSC approach.

It could be that the QSC can only have solutions when this condition is satisfied. This

point should be further investigated.

Lüscher corrections. To match the result (6.2), we use the method of Lüscher correc-

tions (see [39] and [40] for a review).35 This approach is very convenient to study the

operator tr(ZJR), which is a protected operator in the limit where the twists are sent to

zero. The Lüscher method gives in one go the twisted anomalous dimension at J loops.

In this setup, one considers the dual worldsheet theory. The anomalous dimension at this

order arises from the elastic interaction between the state and a virtual particle travelling

a closed loop around the cylinder in the mirror channel obtained by double Wick rotation.

This process gives an energy shift, equivalent to the anomalous dimension, described by

the formula [39, 40]:

γ1-wheel
J = δE = −

∞∑
a=0

∫
du

π
e−J Ẽa(u) TLa,1 T

R
a,1 , (6.6)

where the sum runs over bound states in the mirror channel, Ẽa(u) is the dispersion relation

for mirror particles, and T
L/R
a,1 are asymptotic large-volume transfer matrix eigenvalues [44].

For the twisted vacuum state, they are independent of the spectral parameter and can be

expressed in terms of PSU(2, 2|4) characters of the twist matrix [45]. This leads to the

35Similar computations with the Lüscher method were previously made for the case of twists correspond-

ing to the γ-deformation in [20, 41–43], including at higher loops.
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solution

TLa,1 T
R
a,1 =

∑
i=1,2

∑
j=3,4

(yi/yj)
a−1 κij({x} , {y}) , (6.7)

κij({x} , {y}) =
(−1)i+jyj (yi − x1)(yi − x2)(y−1

j − x−1
3 )(y−1

j − x−1
4 )

yi (y1 − y2)(y−1
3 − y−1

4 )
, (6.8)

where the eigenvalues of the twist matrix are parametrised as in (6.4). The state we are

considering has charges J1 = J , J2 = J3 = S1 = S2 = 0. To satisfy the constraint of state

invariance under the twist for general ∆, we should restrict the twists to x1x2 = x3x4 =

y1y2 = y3y4 = 1. We will consider the special choice

(yi|xi) =
(
ei
θ1+θ2

2 , e−i
θ1+θ2

2 , ei
θ1−θ2

2 , e−i
θ1−θ2

2 |eiγJ/2, e−iγJ/2, eiγJ/2, e−iγJ/2
)
, (6.9)

which corresponds to the twist matrix

R = R~θ · G(γ) ,

namely the product of a spacetime rotation R~θ defined in (3.12) and an internal ro-

tation G(γ), defined in section 3.2. Plugging the weak coupling expansion e−Ẽa(u)J ∼(
4g2/(a2 + 4u2)

)J
into (6.6), computing the integrals and summing the series, we find

δE = −2g2J

(
2J − 2

J − 1

) ∑
i=1,2

∑
j=3,4

κij({x} , {y}) Li2J−1

(
yi
yj

)
, (6.10)

where g2 ≡ Ncg
2
YM/(16π2) = λ/(16π2) is proportional to the ’t Hooft coupling. With the

choice of twists (6.9), the result reduces precisely to (6.2), but with a redefined coupling

constant

ξ2J→ 16g2J sin

(
γJ−θ1−θ2

4

)
sin

(
γJ−θ1+θ2

4

)
sin

(
γJ+θ1−θ2

4

)
sin

(
γJ+θ1+θ2

4

)
.

(6.11)

In the double scaling limit which selects the fishnet diagram of figure 18, g → 0, g2eiγ → ξ2,

we perfectly recover the result of the field theory computation.

It should be possible to reproduce the result at finite value of γ by a direct diagram-

matic calculation in N=4 SYM using the methods introduced in this paper.

6.2 Baxter equations and Q-functions

The most powerful method with which to study the spectrum of a quantum integrable

model are the so-called Baxter TQ equations or Quantum Spectral Curve. These remark-

able equations reduce the diagonalization problem of a quantum integrable Hamiltonian,

which is a complex many-body problem, to equations in a single variable. The solutions

of Baxter equations are known as Q-functions. It is expected that the Q-functions give

access to the wave function of the system in a very special set of coordinates (the Sepa-

rated Variables), where it becomes completely factorised [46]. In the next section we will

see explicitly the link between Q-functions and the wave function.
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The form of the Baxter equation for an arbitrary state in the fishnet theory was deter-

mined in [47] using the dual fishchain model, and in [48] from the diagrammatic formulation

of the quantum field theory. They can also be obtained starting from the Quantum Spectral

Curve for N=4 SYM theory [19, 50] with generic twists [20], and taking the opportune dou-

ble scaling limit as done in [34]. Here, we review the main features to make the discussion

internally consistent, and then discuss the example of length-one operators.

Based on the SU(2, 2) symmetry of the model, the Baxter equation for the fishnet

model is a fourth order difference equation for the Q-functions depending on the spectral

parameter u,
4∑

n=0

a[2−n]
n (u)q[+4−2n](u) = 0 , (6.12)

where f [n](u) ≡ f(u + in/2). Above, q(u) is the Q-function, while the coefficients an(u)

of the equation are related to the eigenvalues of transfer matrices with antisymmetric

representations in the auxiliary space (see e.g. the review [47]). As such, these coefficients

are (related to) polynomials in u. Their form was fixed in [32, 48], and is given by

a0(u) = a4(u) = uJ(u− i)M , a2(u) = uM−J P 6
2J(u), (6.13)

a1(u) = −(u− i/2)M P 4
J (u), a3(u) = −(u− i/2)M P 4̄

J (u), (6.14)

where P 4
n , P 4̄

n and P 6
n are polynomials of degree n. Here J = max (|J1|, |J2|) and

M = min (|J1|, |J2|).36 Being a fourth order equation, (6.12) has in general four indepen-

dent solutions for the Q-functions. They can be distinguished by their large-u asymptotics,

which are related to the twist and to the SU(2, 2) charges as

qi(u) ' y−iui uM̂i , u→ +∞, (6.15)

where

M̂i =

(
∆−S1−S2−D0

2
,
∆+S1+S2−D0

2
,
−∆−S1+S2−D0

2
,
−∆+S1−S2−D0

2

)
, (6.16)

with D0 = J1 + J2, and where yi are the eigenvalues of the twist transformation repre-

sented as a SU(2, 2) matrix, see (6.4). In the following, we will restrict to the twist by a

rotation (3.12). In this case the eigenvalues yi are given in (6.9).

The physical solutions to the Baxter equation, and therefore the spectrum, are deter-

mined by imposing two additional constraints. The first is a quantisation condition. We

propose here for the first time37 a new simple quantisation condition which is expected to

be valid for all states in the theory. Enforcing this condition constrains the Q-functions and

36As was shown in [32], there exist equivalent forms of the Baxter equation, with the same spectrum, con-

taining an additional anti-magnon number M̄ . We are writing here the representative equation with M̄=0.
37Different types of quantisation conditions existed previously. The first condition was derived in [34]

for a particular case J1 = 3, J2 = 0. The general J1 case was developed in [48], based on the field

theoretical derivation. We propose here the most general quantisation condition which can be understood

as a consequence of the QSC for the full N=4 SYM, and also uses some ideas of [48]. The method presented

here was used and verified in [33] for several non-trivial cases with |J1| 6= |J2|.
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the coefficients of the polynomials an(u) to a discrete set of solutions, which correspond to

physical states. Furthermore, we will use an extra equation, derived in [48], to introduce

the coupling constant of the fishnet theory in the problem for |J1| = |J2| case (the only

special case not covered by [32]).

6.2.1 Quantisation conditions

The starting point is the observation that, for any fixed choice of the coefficients an(u),

we can define two alternative sets of solutions of the same Baxter equation. The first

solution, denoted as q↓i (u), is obtained by requiring analyticity in the upper-half plane.

The asymptotics (6.15) are taken to be valid in this region. Notice that, as a consequence

of the Baxter equations, these functions will then in general have poles in the lower half

plane at positions u ∈ −iN.

The second solution q↑i (u), instead, is defined by requiring analyticity in the lower half

plane. The asymptotics (6.15) will be valid in this region.

Notice that both q↑i (u) and q↓i (u) are specified uniquely as functions of the parameters

entering the Baxter equations — in particular, they can be computed numerically with the

method of [49], which we review below in section 6.4. As observed in [50] in the case of

the full N=4 SYM theory, since q↑i (u) and q↓i (u) are solutions of the same finite difference

equation, they must be related by a linear transformation i-periodic in u:

q↑i (u) = Ωj
i (u)q↓j (u) , (6.17)

where

Ωj
i (u+ i) = Ωj

i (u) . (6.18)

We found that a sufficient quantisation condition is the following constraint on this matrix:

Ω2
1(u) = Ω1

2(u) = Ω4
3(u) = Ω3

4(u) = 0 . (6.19)

This condition was also obtained independently in [48], and can be justified in various

ways. In particular, one can argue that the same condition is valid for the Quantum

Spectral Curve of N = 4 SYM, see appendix F, and therefore it should be inherited by the

fishnet model. For the states with one scalar, we also found, together with F. Levkovich-

Maslyuk, a direct proof38 that (6.19) is equivalent to the quantisation conditions for the

Schrödinger equation (4.13), see section 6.5. The same quantisation condition was also

used to study different operators with length three in [33]. It is expected to be valid for

arbitrary operators.

6.2.2 Introducing the coupling constant

For states with J1 > J2 it can be shown (see, [33, 48]) that the coupling constant appears

as a coefficient of a pole in the Baxter equation:

ξ2J1 = lim
u→0

uJ1−J2a2(u). (6.20)

38This proof is similar to one found for the cusp operators in the ladders limit in [9].
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The case with |J1| = |J2| is more complicated. The method to take into account the

coupling constant for generic states was found in [48] and we borrow this unpublished

result here.39 We construct a function Q+(u), defined as

Q+(u) = A

(
q↓1

(
u− i

2

)
q↑2

(
u+

i

2

)
− q↓2

(
u− i

2

)
q↑1

(
u+

i

2

))
+ q↓3

(
u− i

2

)
q↑4

(
u+

i

2

)
− q↓4

(
u− i

2

)
q↑3

(
u+

i

2

)
.

(6.21)

The coefficient A should be chosen in such a way that this combination of Q-functions

does not have a pole at u ∼ ±i/2. It can be shown that this can be done only when the

quantisation condition (6.19) is satisfied, see appendix F. Once this condition is enforced,

we can relate the function Q+(u) to the coupling constant. For the states studied in this

paper this relation is

ξ2 = lim
ε→0

ε
Q+

(
3i
2 − iε

)
Q+

(
i
2

) . (6.22)

6.2.3 Baxter equations at length one

For the families of length-one operators described in this paper, the form of the Baxter

equation is almost entirely fixed by the structure described above.

Baxter equation for J1 =1, J2 =0. Requiring compatibility of the asymptotics (6.15)

with the polynomial-type ansatz for the coefficients an(u) fixes

a0(u) = a4(u) = u , a1(u) = a+(u) , a3(u) = a−(u) ,

a2(u) =
κ

u
+ 2u (1 + cos θ1 + cos θ2) + 2S1 sin θ1 + 2S2 sin θ2 , (6.23)

a±(u) = −2
(

cos θ12 , sin
θ1
2

)
.

(
2u S2

S1 ∓i∆

)
.
(

cos θ22 , sin
θ2
2

)ᵀ
,

for the family of operators with J1 = 1, J2 = 0. Notice that only one coefficient, κ, is left

unfixed. Using (6.20), it can be directly related to the coupling constant, κ = ξ2. Therefore,

the Baxter equation contains both ∆ and ξ2 as parameters. Their mutual dependence for

physical states is fixed by the quantisation condition (6.19).

Baxter equation for J1 = 1, J2 = 1 With similar considerations one can see that,

for the states built with two scalars and charges J1 = 1, J2 = 1, the Baxter equation takes

the form

a0(u) = a4(u) =u(u−i), a1(u) = b+(u)(u−i/2), a3(u) = b−(u)(u−i/2),

a2(u) = ρ+2
(
u2−iu

)
(1+cosθ1+cosθ2)+(2u−i) (S1 sinθ1+S2 sinθ2) , (6.24)

b±(u) =−2
(

cos θ12 ,sin
θ1
2

)
.

(
2u−i S2

S1 ∓i∆

)
.
(

cos θ22 ,sin
θ2
2

)ᵀ
.

39We thank the authors of [48] for sharing this result with us.
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Notice that also in this case there is precisely one unfixed coefficient, denoted as ρ. In this

case the relation between this coefficient and the coupling constant is much less straight-

forward. It is, however, determined implicitly by equation (6.22). The physical states are

again selected by the quantisation condition (6.19).

6.3 Exact solutions for θ1 = θ2

Before discussing numerical results at generic values of the twists, let us consider the case

θ1 = θ2 ≡ θ which is solvable analytically. In this case, there are no unfixed parame-

ters in the Baxter equation. The quantisation condition (6.19) is automatically satisfied

and the spectrum can be found explicitly. For θ1 = θ2, we have an enhanced symmetry

U(1)L × SU(2)R. In terms of the related spins, SR = S1−S2
2 , SL = S1+S2

2 , the asymptotics

of the Q-functions are

qi ∼
(
eθuu

∆−2SL−D0
2 , e−θu u

∆+2SL−D0
2 , u

−∆−2SR−D0
2 , u

−∆+2SR−D0+2

2

)
. (6.25)

Notice that, as compared to (6.15), the asymptotics of the last Q-function is modified by

a power of u. This is a typical effect of removing one twist [20].

States with J1 = 1, J2 = 0. The compatibility of the asymptotics (6.25) with the

Baxter equation (6.23) at θ1 = θ2 fixes

κ = − sin2 θ

2
(∆2 − (1 + 2SR)2) . (6.26)

This new constraint is a special feature of the equal angles limit. Together with the

condition κ = ξ2, it gives precisely the exact spectrum (4.29) determined earlier from

Feynman diagrams.

States with J1 = 1, J2 = 1. In this case the asymptotics (6.25) for equal angles

imposes the condition

ρ =
−4S2

R(t− 1)2 − 4SR(t− 1)2 + ∆2(t− 1)2 − 4(t2 + 1)

4t
, t = eiθ . (6.27)

To compute the spectrum, we must map this parameter to the coupling via (6.22), and

to do this we need to solve explicitly the Baxter equations. The solution can be found

after transforming the finite-difference equation to a differential equation through a Mellin

transform. Imposing analyticity in the upper half plane and the asymptotics (6.25), we

find the solutions40

q↓1(u) = F(SR, SL,∆, t, u), q↓2(u) = F(SR,−SL,∆, 1/t, u), (6.28)

q↓4(u) = G(SR, SL,∆, t, u), q↓3(u) ∝ G(SR,−SL,∆, 1/t, u)− G(SR, SL,∆, t, u) ,

40We have written the solutions with a different normalisation for q3, as compared to (6.15).
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with

F(SR, SL,∆, t, u)

Γ(−iu)t−iu−1/2 (it− i)−
∆
2

+SL+1
(6.29)

≡
SR−SL∑
l=0

(−1)l
Γ(SR − SL + 1)Γ(SR + SL + 1− l)

Γ(l + 1)Γ(SR + SL + 1)Γ(SR − SL − l + 1)
(1/t+ 1)l

× 2F̃1

(
−iu, SL −

∆

2
+ 1− l,−iu+ SL −

∆

2
+ 1− l, t

)
,

and

G(SR, SL,∆, t, u)

Γ(−iu) (it− i)
∆
2
−SR

= (6.30)

=

SR+SL∑
l=0

Γ(SR + SL + 1)Γ(2SR − l + 1)Γ2(SR − ∆
2 + 1)

Γ(l + 1)Γ(2SR + 1)Γ(SR + SL − l + 1)Γ2(SR − ∆
2 − l + 1)

(t+ 1)l

× 2F̃1

(
−iu,−SR +

∆

2
+ l,−iu− SR +

∆

2
+ l, t

)
,

where 2F̃1(a, b, c, z) ≡ 2F1(a, b, c, z)/Γ(c). One can verify explicitly that the quantisation

condition (6.19) is automatically satisfied. All we need to do is compute Q+(u) and use

equation (6.22) to obtain the coupling dependence of the spectrum.

For instance, in the case SR = SL = 0, we find that the constant A ensuring the

absence of poles in Q+(u) at u ∼ i/2 is

A =
Γ2(1− ∆

2 )

Γ2(∆
2 )

(
4 sin2 θ

2

)∆−1

, (6.31)

and we find, with the definition (6.22) and using 2F1(1, n, n+ 1, z) = nΦ(z, 1, n),

lim
u→0

uQ+(u+ 3/2i) ≡ −2∆ sin θ sin θ
2 A

1
2 , (6.32)

Q+(i/2) = −2 sin
θ

2
A

1
2

(
Φ(eiθ, 1,−∆

2 )− Φ(e−iθ, 1,−∆
2 )− Φ(eiθ, 1, ∆

2 ) + Φ(e−iθ, 1, ∆
2 )
)
,

from where we see that the result (5.23) earlier computed from Feynman diagrams is exactly

reproduced. We can similarly compute the result for any values of the spins. We did not

manage to find a general closed form expression for generic spins, but we list several results

in appendix G.

6.4 Numerics for generic angles

Method. In this section, we briefly discuss how to find the spectrum and Q-functions

numerically, at a finite value of the coupling constant. The numerical method is essentially

the same as the one introduced in [49] in the context of N = 4 SYM. In this approach,

one regards the coefficients entering the polynomials an(u) in the Baxter equation as varia-

tional parameters. These coefficients are tuned using a generalisation of Newton’s method

in order to find a solution satisfying the quantisation condition (6.19). This quantisation
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condition fixes all the coefficients in the Baxter equation except for one, which is a contin-

uous independent parameter of the solution, and can be related to the coupling constant

using the equations (6.20) or (6.22).

To implement the method, we need a routine to compute the Q-functions q↓i and q↑i for

any given choice of parameters. Consider for instance the solution analytic in the upper

half plane. It satisfies a large-u expansion:

q↓i (u) ∼ y−iui uM̂i

(
1 +

∞∑
n=1

Bi,n
un

)
, Im(u)→∞, (6.33)

where the coefficients Bi,n are completely determined by the coefficients in the Baxter

equation. With a suitable choice of truncation for the sum, (6.33) gives an arbitrarily good

approximation to the solution for large enough values of Im(u) in the upper half plane.

We can then use the Baxter equation to translate down the Q-function from this region to

generic points in a strip around the real axis.

From the Q-functions, one can then construct the matrix Ωj
i (u) as a ratio of determi-

nants. It is given by41

Ωb
a(u) =uJ1(u+i)J1+J2(u+2i)J2

εbb1b2b3 det
n=0,1,2,3

{
q↑a(u−in)q↓b1(u−in)q↓b2(u−in)q↓b3(u−in)

}
3!
∏
i<j(yi−yj)

.

(6.34)

To turn the quantisation condition (6.19) into a numerical condition, it is convenient to

expand (6.34) around u = 0. For the operators studied in this paper, every matrix element

of Ω has at most a single pole at the origin. We impose the vanishing of the residue of the

pole for Ω2
1, Ω1

2, Ω3
4, Ω4

3 (it is sufficient to consider only one of these matrix elements for

the convergence of the algorithm). This procedure fixes the trajectory ∆(κ) for J2 = 0, or

∆(ρ) for J2 = 1, where κ and ρ are the parameters in the Baxter equations (6.23), (6.24).

We can then compute the associated value of the coupling constant using the on-shell

condition (6.22).42

Results. We computed the scaling dimension as a function of the coupling for several

states in the length-one sectors, see figures 11, 19, 20. In the J2 = 0 case, these results

agree with the spectrum of the Schrödinger problem which was already discussed.

Some findings for the more complicated one-magnon case are shown in figures 19

and 20. Notice that, at weak coupling, our numerical results confirm very clearly the

pattern of degeneracies due to the mixing between different combinations of derivatives,

described in section 5.2. For this case where J1 = J2 = 1, at strong coupling, we see that

most of the states do not display a classical scaling of the type |∆| ∼ ξ, but instead tend

to constant values. This non-classical behaviour is a generic feature of the states with

|J1| = |J2|, and is reminiscent of the behaviour of states in the SYK model. Presently,

these states elude a dual description in terms of the fishchain model of [35].

41This relation can be obtained using the i-periodicity of Ω and the Baxter equation.
42Alternatively, one can fix the desired value of the coupling constant and use the quantisation condition,

together with (6.22), to fix all parameters in the Baxter equation as functions of the coupling.

– 46 –



J
H
E
P
0
6
(
2
0
2
0
)
0
9
2

Figure 19. The states with ∆(0) = 2, 4, 6, 8 for J = 1, M = 1 with θ1 = 5/6 and θ2 = 1/6,

S1 = S2 = 0. The number of states and weak coupling match precisely with the predictions obtained

in section 5. Among the states with a given ∆(0), one level reaches a square-root branch point where

∆ = 0, and the scaling dimension splits into two imaginary levels after this point, with a classical

scaling at strong coupling, ∆(ξ2) ∼ ±iξ, ξ → ∞. The states that do not reach a branch point

appear to stay real for all values of the coupling, and tend to constant values at strong coupling.

However, we find that, for any group of states with a given ∆(0) = 2n, there is

exactly one state which behaves classically at strong coupling. For these special classical

states, the scaling dimension, as a function of the coupling constant, has qualitatively the

same behaviour as for the solutions of the zero-magnon case: the dimension decreases

monotonically with the coupling, until it reaches a branch point where ∆ = 0, and then

splits into a pair of purely imaginary levels. At strong coupling, they scale as ∆ ∼ ±iξ.
It would be interesting to determine whether these special states can be captured by the

fishchain model.

All the other levels, instead, reach a constant plateau at strong coupling, which may

be either real or complex, depending on the values of the two angles. We find that,

depending on these parameters, the structure of the spectrum is qualitatively different,

compare figures 19 and 20. In particular, while in figure 19 all the non-classical states

have a real scaling dimension, in the case studied in figure 20 we see that all of them fuse

pairwise at square-root branch points that occur for ∆ 6= 0. After these branch points,

the levels split into complex conjugate pairs, which approach complex constant values at

strong coupling. It might be interesting to study the boundaries of these different phases,

determined by the values of the angles. We leave these investigations for future studies.
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Figure 20. Some states with ∆(0) = 4, 6, 8, 10 for J = 1, M = 1 with θ1 = 11/4 and θ2 = 9/4,

S1 = S2 = 0. The number of states and weak coupling expansions again match the predictions in

section 5, however, for this choice of angles the spectrum is qualitatively different. As for the case

of figure 19, exactly one level, for any given ∆(0) = 2n, reaches a branch point with ∆c = 0, and

then splits into a pair of imaginary levels which show classical behaviour at strong coupling. All

other states merge in pairs at branch points with ∆c 6= 0. After these branch points, they split into

two complex conjugate levels with a nonzero real part, which appear to tend to constant values at

strong coupling.

6.5 Mapping the Q-functions to the CFT wave functions

So far, we had two different descriptions of the same physics. One is in terms of the

CFT wave function (4.2). Its dynamics are governed by the Schrödinger equation (4.9)

with boundary conditions (4.13). The other is in terms of the SoV wave function, namely

the Q-functions. They are fixed by the Baxter equation (6.12), (6.23) and quantisation

condition (6.19). In this section we close the circle by explicitly mapping one to the

other. We will be short, and only consider the simplest non-trivial case of J1 = 1 and

J2 = S1 = S2 = 0. In [15] we will extend this map and study it in greater detail. We thank

Fedor Levkovich-Maslyuk for collaboration on this part.

Our starting point is the Baxter equation (6.12), (6.23). After setting S1 = S2 = 0

this equation becomes

0 =

(
2u(1 + cos θ2 + cos θ2) +

ξ2

u

)
q(u)

− 2
(

(2u+ i) cos θ12 cos θ22 − i∆ sin θ1
2 sin θ2

2

)
q(u+ i) + (u+ i)q(u+ 2i)

− 2
(

(2u− i) cos θ12 cos θ22 + i∆ sin θ1
2 sin θ2

2

)
q(u− i) + (u− i)q(u− 2i) .

(6.35)

– 48 –



J
H
E
P
0
6
(
2
0
2
0
)
0
9
2

To map this equation to the Schrödinger equation (4.9), we first use a Mellin transform

similar to the one introduced in [9]

Θ(σ) =

c+i∞∫
c−i∞

du

2πiu
q(u)w(σ)iu , w(σ) =

e−
i
2
θ2 sin θ1

2 − e
2σ e+ i

2
θ1 sin θ2

2

e+i
θ1
2 sin θ1

2 − e2σ e−i
θ2
2 sin θ2

2

, (6.36)

where c > 0. We then plug the result into the integral

ψ(σ) =

V (σ)∫
V−

dV ′

V ′
V

V ′

(
V − V ′

V ′

)∆−3
2

Θ(σ(V ′)) , (6.37)

where

V (σ) = tanhσ −
sin2 θ1

2 + sin2 θ2
2

sin2 θ1
2 − sin2 θ2

2

, V− =
2 sin2 θ1

2

sin2 θ1
2 + sin2 θ2

2

, (6.38)

and Re ∆ > 1. It can be checked the ψ(σ) in (6.37) satisfies the Schrödinger equation (4.9),

and obeys the boundary conditions (4.13) exactly when the quantisation conditions for the

Q-functions (6.19) are satisfied.

Importantly, this relation and its generalisations allows one to explicitly express the

results of correlation functions that are computed using field theory techniques in terms of

the SoV variables [15].

7 Conclusions and discussion

In this paper, we have introduced a novel type of operators, which can be constructed in any

theory with a ’t Hooft large-N limit by twisting the colour-trace: colour-twist operators.

We have studied some simple examples of these operators perturbatively, at finite coupling,

and in the strong coupling limit in the fishnet model. This was done in two complementary

ways, first by a direct field theory calculation and second, using the integrability based

Quantum Spectral Curve (QSC) technique. A perfect match was obtained for the spectrum

of scaling dimensions computed in the two approaches. Finally, we explicitly mapped the

wave function in the separation of variable basis, known as the Q-function, to the CFT

wave function.

This paper sets the ground for the computation of planar correlation functions in

terms of the same objects that are used for computing the quantum spectrum of anomalous

dimensions, namely in terms of the QSC Q-functions. Further progress in this direction will

be reported in [15]. We end this paper by enumerating some of the many future directions.

It would be interesting to study colour-twist operators in other integrable quantum

field theories and in N = 4 SYM theory in particular. We expect that our field theory

definition will give results that match with the twisted Bethe ansatz of [23], and, more

generally, with the QSC predictions [20].

In this paper, we have only considered colour-twist operators in the leading planar limit.

It would be interesting to extend our definition beyond the planar limit and study 1/N

corrections to the correlation functions between colour-twist operators. Specifically, the
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topology of planar Feynman diagrams is that of a sphere with punctures. At higher orders

in the 1/N expansion, the Feynman diagrams have topologies with higher genus. To extend

our definition to these cases, one should allow the twist cuts to wind around the cycles of

the diagrams. For twist transformations of the type (3.1), such a cutting prescription can

be obtained starting from the non-planar Feynman diagrams of the γ-deformed theory and

cutting them into disks in a similar way to the cylinder-cut of section 3.1.

As explained in section 2, an operator can only be twisted by a symmetry transfor-

mation that leaves it invariant. The twist-symmetry transformations we have considered

in this paper are continuously connected to the identity. Namely, they are of the form

R(θ) = eiθĴ . Correspondingly, the operators we studied have zero charge under the sym-

metry generator Ĵ . Another way of making an operator invariant under R(θ) is to have its

charge quantised in units of 1/θ, but not necessarily equal to zero. In particular, when the

twist transformation is a spacetime rotation or boost, the corresponding colour-twist oper-

ator would have non-integer spin. Operators with non-integer spin exist in any CFT [51].

These so-called light-ray operators give a continuous interpolation between different op-

erators that are on the same Regge trajectory. They appear as intermediate states in

correlation functions, but otherwise they annihilate the vacuum; therefore, their correla-

tors in the un-twisted theory are vanishing. It would be interesting to see if colour-twist

operators with non-integer spin are somehow related to the light-ray operators in the pla-

nar limit. If so, the twisting procedure may provide a direct way of studying them and

their correlation functions at large N .

Finally, our main motivation for studying the colour-twist comes from the separation

of variables (SoV) approach. The twist removes the degeneracy in the spectrum, allowing

for a one-to-one correspondence between the integrability description (say in terms of the

Q-functions) and the actual states in the theory. In the case of integrable spin chains,

the twisting procedure is essential for the SoV to be well defined. Equally, in the fishnet

theory, or N = 4 SYM theory, we expect the twist to play an essential role for a possible

SoV construction for the correlation functions. An example of SoV structures was recently

found in [9–12] for correlation functions of cusp operators, and following this paper for

single trace operators [15].
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A SO(4) representations

In the main body of the paper, we compute the spectrum of operators in the fishnet model

that are twisted by rotation. For that aim, it is useful to explicitly realise the symmetries

that are preserved by (3.13) and to decompose the SO(4) irreducible representations into

representations of the residual symmetry (3.14) or (3.15).

We work in the canonical frame where the twist transformation is given by R~θ in (3.12).

In this conformal frame, the two fixed points of the twist are x0 = 0 and x0̄ = ∞. Any

point x ∈ R4 can be represented as a 2× 2 matrix

x =

(
z1 z2

−z̄2 z̄1

)
, (A.1)

where, as before, z1 = x1 + ix2 and z2 = x3 + ix4. In this convention, rotations around the

origin act as SO(4) ' (SU(2)L × SU(2)R) /Z2 right and left multiplications

x→ gL · x · gR , gL/R ∈ SU(2)L/R . (A.2)

These SU(2)L/R transformations are generated by the differential operators

J+
L = z2∂z̄1 − z1∂z̄2 , J+

R = z1∂z2 − z̄2∂z̄1 ,

J−L = z̄1∂z2 − z̄2∂z1 , J−R = z2∂z1 − z̄1∂z̄2 ,

J3
L = (z1∂z1 − z̄1∂z̄1 + z2∂z2 − z̄2∂z̄2)/2 , J3

R = (z1∂z1 − z̄1∂z̄1 − z2∂z2 + z̄2∂z̄2)/2 .

(A.3)

Irreducible representations of SO(4) are characterised by two irreducible representa-

tions of these two commuting SU(2)-factors, and are labelled by the corresponding spins

(jL, jR). The allowed representations for fields built with scalars and their derivatives (such

as in the fishnet model that we consider in this paper) are the ones with jL+jR ∈ Z. More-

over, operators with a single scalar can only have jL = jR ≡ S/2, which correspond to trace-

less symmetric tensors with S indices. Operators in such a (2jL + 1)(2jR + 1)-dimensional

representation are labelled by the eigenvalues of (J3
L, J

3
R) in (A.3), and (mL,mR), that

take values in the range −jL/R ≤ mL/R ≤ jL/R. The rest of the generators act on these

operators in the standard way

J±L ◦ O∆,jL,jR,mL,mR(x) =
√
jL(jL + 1)−mL(mL ± 1)O∆,jL,jR,mL±1,mR(x) ,

J±R ◦ O∆,jL,jR,mL,mR(x) =
√
jR(jR + 1)−mR(mR ± 1)O∆,jL,jR,mL,mR±1(x) .

(A.4)

In this representation, the rotation symmetry (3.12) that we will use to twist the operators

takes the form

R~θ = eiθ1(J3
L+J3

R)+iθ2(J3
L−J

3
R). (A.5)

In particular, for θ1 = θ2 = θ, (A.5) reduces to exp(2iθJ3
L), which makes it clear why the

remaining symmetry is enhanced from (3.14) to (3.15).

B Wave function in a generic frame

In this section, we compute the wave function in a generic frame, using two distinct but

equivalent points of view.
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From covariance of correlation functions. The wave function is defined as a partic-

ular correlator (4.2):

ΨR̃(x) ≡ 〈OR̃(x0) tr
(
Z̄(x) R̃−1

)
〉. (B.1)

In this general definition, R is a conformal transformation with fixed points x0, x0̄, which

we assume to take the form R̃ = K◦R~θ◦K
−1, for a conformal map K satisfying K(0) = x0,

K(∞) = x0̄. As a result of a generic conformal change of coordinates, correlation functions

transform as explained in section 2.2. This allows us to relate the wave function (B.1)

to the one in the frame where the fixed points are 0 and ∞. In fact, the transformation

rule (2.12) gives

ΨR̃(x) = ΨR~θ
(K−1 ◦ x)

∣∣∣∣∂K−1

∂y

∣∣∣∣
∆
4

y=x0

∣∣∣∣∂K−1

∂y

∣∣∣∣
1
4

y=x

. (B.2)

To evaluate the Jacobian determinants on the right hand side, we can use the explicit form

of the change of frame given in (4.14).43

For the special conformal transformation (4.14), we have, for any x, y,

∣∣∣∣∂K−1

∂y

∣∣∣∣
1
4

=

∣∣∣∣∂(K ′)−1

∂y

∣∣∣∣
1
4

=
1

(y − x0̄)2
, (K−1 ◦ x)2 =

(x0 − x)2

(x0 − x0̄)2 (x− x0̄)2
. (B.3)

Using these identities, (B.2) leads to the result (4.15).

From the Dyson-type equation in a generic frame. Alternatively, the wave function

can be characterised as a solution of the Dyson-type equation

B̃ ◦ΨR̃(x) = ΨR̃(x), (B.4)

where B̃ is the graph-building operator. According to the perturbative rules explained in

this paper, for a generic twist map R̃ the graph-building operator is given by

B̃ ◦ F̃ (y) ≡ ξ2

π2

∫ d4x
∣∣∣∂R̃(x)

∂x

∣∣∣ 1
4

(y − x)2(x− R̃(x))2
F̃ (x). (B.5)

To relate this expression to the Dyson-type equation in the original frame, we use (2.5)

with x	 ≡ K−1(x), which leads to

d4x
∣∣∣∂R̃(x)

∂x

∣∣∣ 1
4

(x− R̃(x))2
=

d4x′

(x′ −R~θ(x′))2

∣∣∣∣∂K−1

∂x

∣∣∣∣−
1
2

, (B.6)

43Here we do not lose generality. The most general change of frame satisfying K(0) = x0, K(∞) = x0̄ is

related to (4.14) by a rotation r ∈ SO(4) and dilatation d, K → d◦ r ◦K. The effect of this modification on

the map R̃ only affects the final result (4.15) by redefining the null vectors ni as ni → r ◦ni. Alternatively,

we can say that the geometry of the map is fully specified by the data {x0, x0̄, ni}, and this fixes the form

of the wave function (4.15).
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with x′ = K−1 ◦ x. Changing integration variables x→ x′ in (B.5), with the help of (B.6)

we find (
B̃ ◦ F̃

)
(y) =

∣∣∣∣∂K−1

∂y

∣∣∣∣
1
4

(B ◦ F ) (K−1 ◦ y), (B.7)

where B is the graph-building operator defined in the frame with fixed points at 0 and ∞,

and the relation between F and F̃ is

F̃ (x) =

∣∣∣∣∂K−1

∂x

∣∣∣∣
1
4

F (K−1 ◦ x). (B.8)

Thanks to this property, the solution of the Dyson-type equation (B.4) can be constructed

as ΨR̃(x) ∝ ΨR~θ
(K−1 ◦ x)

∣∣∣∂K−1

∂x

∣∣∣ 1
4
, where ΨR~θ

is the wave function stationary under the

graph-building operator B. Therefore, we have rederived the transformation rule (B.2),

apart from a proportionality factor (independent of x). This factor is simply 1/|x00̄|2∆,

and can be recovered by demanding that the wave function reduces to ΨR~θ
for x00̄ →∞.

C One-magnon eigenvalue

In this appendix, we describe the details of the calculation of the integral (5.22) for the

eigenvalue of the graph-building operator at J1 = J2 = 1 and θ2 = θ1 ≡ θ. States in

this case are parametrised by their scaling dimension ∆ as well as their U(1)L × SU(2)R
quantum numbers, (mL, jR,mR). The method we use is applicable for any values of these

spins. For simplicity, we only consider the case where mL = jR = mR = 0. In this case, the

wave function (5.21) simplifies to Ψ∆,0,0,0(x) = |x|−2∆−2. The action of the graph building

operator on this function is given by the integral (5.22)

E1,1 =
B ◦Ψ∆,0,0,0(x)

ξ2 Ψ∆,0,0,0(x)
=
x2∆+2

π2

∫
d4w

(x− w	)2(x− w)2w2∆+2
(C.1)

=

∫
(r1dr1dφ1) (r2dr2dφ2) (r2

1 + r2
2)−∆/2−1

π2
(
r2

1 + r2
2 + 1− 2r1 cosφ1

) (
r2

1 + r2
2 + 1− 2r1 cos (θ − φ1)

) ,
where, without loss of generality, we have fixed x = (1, 0, 0, 0) and parametrised the inte-

gration point as w = (r1 cosφ1, r1 sinφ1, r2 cosφ2, r2 cosφ2). The integral over φ2 factorises

trivially. The integral over φ1 can be done explicitly by changing variables to z = eiφ1 ,

blowing up the contour of integration, and picking up the poles. This results in

E1,1 =

∞∫
0

dρ

π/2∫
0

dσ
2
(
ρ2+1

)
ρ1−∆ sin(2σ)√

ρ4−2ρ2 cos(2σ)+1
(
ρ4−ρ2

(
2cos2 θ

2 cos(2σ)+cosθ−1
)
+1
) , (C.2)

where we have used the parametrisation r1 + i r2 = ρ eiσ. The integration in σ can be

performed explicitly and gives

E1,1 =
i

sin θ

∞∫
0

dρ

ρ∆+1
log

ρ2 − eiθ

ρ2 − e−iθ
. (C.3)

Finally, by integrating over ρ, we arrive at (5.23).

– 53 –



J
H
E
P
0
6
(
2
0
2
0
)
0
9
2

D One-loop one-magnon data

In the table below we present the one-loop scaling dimensions of operators with J1 = J2 = 1

and θ1 = θ2 ≡ θ. Operators in that group can only have an anomalous dimension if they

are the twist of a conformal descendant of O0 = tr(XZ). Such operators are characterised

by the number of boxes in �nO0 and the U(1)L × SU(2)R representation, (mL, jR).

jR mL n ∆

0 0 0 2− 2ξ2

0 0 1 4− 2ξ2 cos(θ)

1
2

1
2 0 3− 2e

iθ
2 ξ2 cos

(
θ
2

)
1
2

1
2 1 5− 2

3e
iθ
2 ξ2

(
cos
(
θ
2

)
+ 2 cos

(
3θ
2

))
1 0 0 4− 2

3ξ
2(cos(θ) + 2)

1 0 1 6− 2
3ξ

2(2 cos(θ) + cos(2θ))

1 1 0 4− 2
3e
iθξ2(2 cos(θ) + 1)

1 1 1 6 + 1
3e
iθξ2(−2 cos(θ)− 3 cos(2θ)− 1)

3
2

1
2 0 5 + 1

3e
iθ
2 ξ2

(
−5 cos

(
θ
2

)
− cos

(
3θ
2

))
3
2

1
2 1 7 + 1

15e
iθ
2 ξ2

(
−7 cos

(
θ
2

)
− 17 cos

(
3θ
2

)
− 6 cos

(
5θ
2

))
3
2

3
2 0 5− 2e

3iθ
2 ξ2 cos

(
θ
2

)
cos(θ)

3
2

3
2 1 7 + e

3iθ
2 ξ2

(
−3

5

(
cos
(
θ
2

)
+ cos

(
3θ
2

))
− 4

5 cos
(

5θ
2

))
2 0 0 6− 2

15ξ
2(6 cos(θ) + cos(2θ) + 8)

2 0 1 1
5ξ

2(−5 cos(θ)− 4 cos(2θ)− cos(3θ)) + 8

2 1 0 6 + 1
5e
iθξ2(−6 cos(θ)− cos(2θ)− 3)

2 1 1 8− 2
15e

iθξ2(4 cos(θ) + 7 cos(2θ) + 2 cos(3θ) + 2)

2 2 0 6− 2
5e

2iθξ2(2 cos(θ) + 2 cos(2θ) + 1)

2 2 1 8− 2
15e

2iθξ2(4 cos(θ) + 4 cos(2θ) + 5 cos(3θ) + 2)

5
2

3
2 0 7− 2

15e
3iθ
2 ξ2

(
7
(
cos
(
θ
2

)
+ cos

(
3θ
2

))
+ cos

(
5θ
2

))
5
2

3
2 1 9− 2

105e
3iθ
2 ξ2

(
27 cos

(
θ
2

)
+ 27 cos

(
3θ
2

)
+ 41 cos

(
5θ
2

)
+ 10 cos

(
7θ
2

))
5
2

5
2 0 7− 2

3e
5iθ
2 ξ2 cos

(
θ
2

)
(2 cos(2θ) + 1)

5
2

5
2 1 9 + 2

21e
5iθ
2 ξ2

(
−5
(
cos
(
θ
2

)
+ cos

(
3θ
2

)
+ cos

(
5θ
2

))
− 6 cos

(
7θ
2

))
3 2 0 8− 2

21e
2iθξ2(8 cos(θ) + 8 cos(2θ) + cos(3θ) + 4)

3 2 1 10 + 1
21e

2iθξ2(−10 cos(θ)− 10 cos(2θ)− 14 cos(3θ)− 3 cos(4θ)− 5)

3 3 0 8− 2
7e

3iθξ2(2 cos(θ) + 2 cos(2θ) + 2 cos(3θ) + 1)

3 3 1 10 + 1
14e

3iθξ2(−6 cos(θ)− 6 cos(2θ)− 6 cos(3θ)− 7 cos(4θ)− 3)

(D.1)
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Another example is given by {mL,mR, S+2n} = {0, 0, 4}. In this case, there are three

operators ~O ≡
{

(∂1∂̄1)2, ∂1∂2(∂̄1∂̄2), (∂2∂̄2)2
}
O0. The corresponding mixing matrix is

Γ̂~θ
~O = ξ2

−
32s21

5 + 8s1 − 2 16s1
15 (5− 6s1) −16s21

15
4s2
15 (5− 6s1) −64s1s2

15 + 8
3(s1 + s2)− 2 4s1

15 (5− 6s2)

−16s22
15

16s2
15 (5− 6s2) −32s22

5 + 8s2 − 2

 ~O , (D.2)

where si = sin2 θi
2 . It is straightforward to construct the mixing matrix for any mL, mR

and M .

E Single-wrapping anomalous dimension from fishnet diagrams

The leading diagram contributing to the two-point function 〈OJ(x0) ŌJ(x0̄)〉, where

OJ(x0) = tr
(
ZJ(x0)R~θ

)
, is exemplified in figure 18. The goal of this section is to extract

the logarithmic divergence of the diagram, which corresponds to the anomalous dimension

of the operator.

We introduce a point-splitting regularisation by separating the Z scalar from the fixed

point of the twist transformation x0

Oreg
J = tr

(
ZJ(x)R~θ

)
, Ōreg

J = tr
(
Z̄J(y)R−~θ

)
. (E.1)

We will be working in the frame with x0 = 0, x0̄ =∞ and x2 = 1/y2 = ε2.

The anomalous dimension can be read off from

〈Oreg
J Ō

reg
J 〉J-loop

〈OJŌJ〉tree
∼ log(ε) γ1-wheel

J . (E.2)

As illustrated in figure 18, we can isolate the integration over one of the internal vertices.

We remain with a ladder subdiagram times two propagators

〈Oreg
J Ō

reg
J 〉J-loop =

ξ2

π2

∫
d4w
Gladder
J−1 (x, y, w,w	)

(x− w)2 (y − w)2
. (E.3)

The ladder integral (grey in figure 18) was evaluated in [38] and is given by

Gladder
n (x1, x2, x3, x4) = ξ2n 1

x2n
12x

2
34

(1− z)(1− z̄)

z − z̄
Ln(z, z̄) , (E.4)

where z and z̄ are the two conformal cross ratios

zz̄ =
x2

14x
2
23

x2
13x

2
24

, (1− z)(1− z̄) =
x2

12x
2
43

x2
13x

2
24

, (E.5)

and the ladder function Ln is given by

Ln =
2n∑
j=n

j![− log(zz̄)]2n−j

n!(j − n)!(2n− j)!
[Lij(z)− Lij(z̄)] . (E.6)
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The form (E.3) is convenient, since we can directly set x = 0 and y →∞ in the integrand

without encountering any singularity. The UV divergence will be produced only after

performing the integration over w. Defining the integral with a cutoff around 0 and ∞,

we have

〈Oreg
J Ō

reg
J 〉J-loop

〈OJŌJ〉tree
=
ξ2J

π2

∫
d4w

1

(w − w	)2

(1− z)(1− z̄)

z − z̄
Ln(z, z̄) , (E.7)

where the explicit form of the cross ratios in terms of the integration variable is

zz̄ = 1 , (1− z)(1− z̄) =
(w − w	)2

w2
= 4

r2
1 sin2 θ1

2 + r2
2 sin2 θ2

2

(r2
1 + r2

2)
, (E.8)

with r2
1 = w2

1 + w2
2, r2

2 = w2
3 + w2

4 being the square radial coordinates in the two rotation

planes.

The simplest case to consider is when the twist involves equal angles θ1 = θ2 = θ. In

this case, the cross ratios are independent on the integration variable and given by

z = eiθ , z̄ = e−iθ . (E.9)

Therefore, the radial integration factors out and we can immediately extract the anomalous

dimension

γ1-wheel
J (θ, θ) = − iξ

2J

sin θ

(
2J − 2

J − 1

)[
Li2J−2(e−iθ)− Li2J−2(eiθ)

]
. (E.10)

For generic angles θ1 6= θ2, the cross ratios instead have a non-trivial dependence on r1, r2.

Introducing ϕ defined as

z = e−iϕ , z̄ = eiϕ , (1− z)(1− z̄) = 4 sin2 ϕ

2
, (E.11)

and changing integration variables to (r2
2, ϕ), we find that the integral factorises as

〈Oreg
J Ō

reg
J 〉J-loop

〈OJŌJ〉tree
∼ ξ

2J

4i

(
2J−2

J−1

) ∫
ε2<r2

1+r2
2<1/ε2

d(r2
1)d(r2

2)
[
Li2J−2(eiϕ)−Li2J−2(e−iϕ)

]
tan ϕ

2

(r2
1 +r2

2)(r2
1 sin2 θ1

2 +r2
2 sin2 θ2

2 )

=

−1

2

∫
ε<r2<1/ε

d(r2
2)

r2
2


︸ ︷︷ ︸

−2log ε

×

−iξ2J

(
2J−2

J−1

) θ1∫
θ2

dϕ
Li2J−2(eiϕ)−Li2J−2(e−iϕ)

cosθ1−cosθ2


︸ ︷︷ ︸

γ1-wheel
J (θ1,θ2)

, (E.12)

yielding the anomalous dimension in (6.2).
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F Justification of the quantisation condition of Baxter equations from

N = 4 SYM

As shown in [34, 48], the Baxter equations for the fishnet model can be derived by applying

the double scaling limit to the Quantum Spectral Curve of N = 4 SYM. These results

show that the Q-functions of the fishnet model are directly connected to a quadruplet of

Q-functions of N = 4 SYM, denoted as Qi. For example, for the states with charges

J1 = J , J2 = 0, we have the relation [48]:

Qi(u)→ q↓i (u)/uJ/2 (double scaling limit) . (F.1)

A dual set of Q-functions, denoted as Qi(u), also plays an important role. In the double

scaling limit, they are related to 3 × 3 determinants constructed out of the q-functions.

Given this relation, it is not surprising that there is a way to derive the quantisation

condition (6.19) from the properties of the QSC, which we now explain.

The two sets of Q-functions Qi and Qi each satisfy a fourth order Baxter equation,44

which is a consequence of the algebraic PSU(2, 2|4) Q-system relations [50, 52]. In the

same way that we explained in section 6.2.1, one can consider two independent solutions of

these difference equations, one solution being analytic in the upper half u-plane, and the

other in the lower half u-plane. In this way, we introduce Q↓i (u) and Q↑i (u), and similarly

Qi↓(u), Qi↑(u).45 For real values of the parameters these two sets of solutions are related

by complex conjugation Q↑i (u) = Q↓i (u) in N = 4 SYM. However, this direct relation is

lost when considering generic complex points in parameter space, and for this reason we

will not use it in the following.

Since they satisfy the same Baxter equation, the two sets of Q-functions analytic in

the upper/lower half plane are related by an i-periodic matrix,

Q↑i (u) = Ωj
i (u) Q↓j (u) , Ωj

i (u+ i) = Ωj
i (u) . (F.2)

Importantly, this matrix Ω is directly related to the corresponding matrix in the fishnet

model (see eq. (6.17)) after taking the double scaling limit.

While the Q-functions in the fishnet model are meromorphic, their “parent functions”

in N = 4 SYM have square-root branch cuts rather than poles. The branch cuts are at

u ∈ (−2g, 2g)− in, n ∈ N, where g2 = λ/(16π2). The analytic continuation of a Q-function

through the branch cut on the real axis is denoted as Q̃i. The quantisation conditions for

N=4 SYM can be stated as [50]

Q̃i↓(u) = ωij(u)Q↓j (u) , (F.3)

where ωij(u) is an i-periodic function of u, satisfying the algebraic conditions

ωij(u) = −ωji(u) , 1 = ω12(u)ω34(u)− ω13(u)ω24(u) + ω14(u)ω23(u) . (F.4)

44In this case, the coefficients of the Baxter equation are not simple rational functions of u, but are

explicitly constructed out of other Q-functions usually denoted as Pi, P
i.

45In the conventional notations used in the QSC literature, Qi(u) ≡ Q↓i (u) and similarly Qi(u) ≡ Qi↓(u).
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Combining (F.2) and (F.3), we obtain

Q̃i↓(u) = GijQ↑j (u) , (F.5)

where Gij is defined as

GikΩj
k(u) = ωik(u) , (F.6)

and is called the gluing matrix [53]. The crucial property of the gluing matrix is that it has

no cuts. For the case of integer spins that we consider, it is a constant matrix. The form

of this matrix was determined for the theory without twists in [53]. The case of the theory

with twists in AdS was never explicitly considered; however, our results are consistent with

the assumption that the gluing matrix takes the form:

Gij =


0 α 0 0

−α 0 0 0

0 0 0 β

0 0 −β 0

 , (F.7)

where α, β are two constants that may depend on the state and are in general non-vanishing.

The antisymmetry of ωij , combined with (F.7), implies precisely that the four components

Ω2
1, Ω1

2, Ω4
3, Ω3

4 must vanish. This justifies the quantisation condition (6.19).

Notice that the ansatz (F.7), together with (F.4), imposes several further constraints

on the form of the matrix Ωj
i (u). In particular, it must take the form

Ω =


Ω1

1 0 Ω3
1 Ω4

1

0 Ω1
1 Ω3

2 Ω4
2

AΩ4
2 −AΩ4

1 Ω3
3 0

−AΩ3
2 AΩ3

1 0 Ω3
3

 , (F.8)

where A = α/β. Indeed, our numerical study of twisted Baxter equations in the fishnet

model confirms that, once we impose even just one of the conditions (6.19), the matrix

Ω acquires the form (F.8). This provides a strong cross-check of the correctness of the

quantisation condition (6.19). It can be proved that the constant A appearing in (F.8) is

the same parameter guaranteeing the absence of poles in the bi-linear combination Q+(u)

defined in (6.22), see [48].

G Results for the one-magnon spectrum at equal angles from

integrability

Starting from the solutions of the Baxter equation (6.28), we can compute the spectrum

using the exact equation (6.22) derived in [48]:

ξ2 = i lim
u→0

u
Q+(u+ 3/2i)

Q+(i/2)
. (G.1)

Let us discuss some of the formal steps involved. We listed the explicit form of the Q-

functions analytic in the upper half plane in (6.28). The Q-functions analytic in the lower
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half plane are

q↑1(u) = eiπ(−∆/2+SL+1)F(SR, SL,∆, 1/t,−u+ i) , (G.2)

q↑2(u) = eiπ(−∆/2−SL+1)F(SR,−SL,∆, t,−u+ i) , (G.3)

q↑4(u) = eiπ(∆/2−SR)G(SR, SL,∆, 1/t,−u+ i) , (G.4)

q↑3(u) ∝ eiπ(∆/2−SR) (G(SR,−SL,∆, t,−u)− G(SR, SL,∆, 1/t,−u+ i)) .

Next, one needs to fix the form of the bi-linear combination Q+(u) by fixing the constant A

appearing in (6.21). This constant is fixed in such a way that Q+(u) is regular at u ∼ i/2
and can easily be found case by case. We conjecture the general form of this constant for

arbitrary spins to be

A= (−1)SL+SR
Γ2(1−∆

2 +SR)Γ(SR+1−SL)Γ(SR+SL+1)

Γ2(∆
2 −SR)Γ2(2SR+1)

(
4sin2 θ

2

)∆−1
(

cos2 θ
2

sin2 θ
2

)SR
.

(G.5)

Using the explicit form of the Q-functions, one can then explicitly evaluate (G.1). In

particular, the evaluation of the limit limu→0Q+(u+ 3/2i) is straightforward, as the pole

comes from the Γ(−iu) pre-factor included in the functions F and G functions, see (6.29).

Stripping off the pole, the result takes the generic form of a linear combination of Lerch

functions Φ(t±1, 1, b) ≡ 1/b 2F1(1, b, b + 1, t±1), multiplied by rational functions of ∆ and

t, with a prefactor A
1
2 . Using identities between the Lerch functions, the result can be

significantly simplified, and we find that the residue of Q+(u) at u ∼ 3/2i can always be

rewritten as A
1
2 , multiplied by a rational function of ∆ and t. To evaluate the denominator

in (G.1), it is convenient to rewrite the function Q+(u) in the form

Q+(u) = −A
(
q↓1

(
u+

i

2

)
q↑2

(
u− 3i

2

)
− q↓2

(
u+

i

2

)
q↑1

(
u− 3i

2

))
− q↓3

(
u+

i

2

)
q↑4

(
u− 3i

2

)
+ q↓4

(
u+

i

2

)
q↑3

(
u− 3i

2

)
.

(G.6)

This alternative expression is completely equivalent to (6.21) once we choose the value of

A canceling the poles, namely (G.5). This can be proved using the form of Ω in (F.8). The

expression (G.6) has the advantage that it manifestly has no pole at u = i/2. The direct

evaluation of Q+(i/2) then yields a quadratic combination of Lerch functions. Again, this

can be further simplified and leads in the end to a simple linear combination involving a

basis of four Lerch functions. For instance, for integer spins we can always bring the result

to the form

(1 + t)2SR
∏SR
n=1(∆2 − (2n)2)

tSR ξ2
= tSL

(1 + t)2

t
R(0)(t,∆, SR, SL) (G.7)

+ tSL R(1)(t,∆, SR, SL)
2t
(
Φ(t, 1,−∆

2 ) + Φ(1/t, 1, ∆
2 )
)

∆ (−1 + t2)

− tSL R(1)(t,−∆, SR, SL)
2t
(
Φ(t, 1, ∆

2 ) + Φ(1/t, 1,−∆
2 )
)

∆ (−1 + t2)
,
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where R(i)(t,∆, SR, SL) are polynomials in t±1 and ∆. A small sample of results is listed

in the table below.

SR SL R(0)(θ,∆,SR,SL) R(1)(θ,∆,SR,SL)

0 0 0 1

1 {−1,0,1} 4S2
L

S2
L

(
2(∆−2)t−2(∆+2)t−1

)
+((∆+2)t−

1
2 +(∆−2)t

1
2 )2

2 0 −384
(

6∆(1
t−t)+∆2 (t+1)2

t +8(t−4+ 1
t )
)2

2 {−1,1} 4
(
∆2t−1+∆2t+2∆2−64

) (∆+(∆−4)t+4)
(

∆3 (t+1)3

t2
−96(1

t−1)

+8∆(1
t +1)(t−7+ 1

t )−6∆2(t−1)(1
t +1)2

)
2 {−2,2} 16∆2t−1+4∆2t2−16t2+16∆2t−96t

+24∆2+4∆2t−2−224−16t−2−96t−1

384+16∆
(
t2+8t− 8

t−
1
t2

)
+∆4 (t+1)4

t2

−4∆3 (t−1)(t+1)3

t2
−4∆2(1+ 1

t )
2(t(t+14)+1)
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