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Abstract

The interplay between incompressibility and stratification can lead to non-conservation of horizontal momentum
in the dynamics of a stably stratified, incompressible Euler fluid filling an infinite horizontal channel between rigid
upper and lower plates. Lack of conservation occurs even though in this configuration only vertical external forces
act on the system. This apparent paradox was seemingly first noticed by Benjamin (1986) in his classification of the
invariants by symmetry groups with the Hamiltonian structure of the Euler equations in two dimensional settings, but
it appears to have been largely ignored since. By working directly with the motion equations, the paradox is shown
here to be a consequence of the rigid lid constraint coupling through incompressibility with the infinite inertia of the
far ends of the channel, assumed to be at rest in hydrostatic equilibrium. Accordingly, when inertia is removed by
eliminating the stratification, or, remarkably, by using the Boussinesq approximation of uniform density for the inertia
terms, horizontal momentum conservation is recovered. This interplay between constraints, action-at-a-distance by
incompressibility, and inertia is illustrated by layer averaged exact results, two-layer long-wave models, and direct
numerical simulations of the incompressible Euler equations with smooth stratification.

1 Introduction

Among the many areas of classical mechanics, fluid dynamics arguably holds a special distinction for being a rich
source of the sort of paradoxes that often arise from simplifying limit assumptions. Thus, for instance, the limit of zero
viscosity gives rise to D’Alembert’s paradox on the drag experienced by rigid bodies moving in ideal fluids, while the
opposite limit of dominating viscous stresses leads to the Stokes or Whitehead paradoxes of unphysical divergences for
the same problem.

This work focuses on an effect that could also be viewed as paradoxical: horizontal momentum conservation is
violated in the dynamics of a stratified ideal fluid filling an infinite horizontal channel between rigid bottom and lid
boundaries, starting from localized initial conditions, even though the only external forces acting on the system are
vertical (gravity and constraint forces from the horizontal boundary) and the fluid is free to move laterally. Of course,
even for an inviscid fluid, lateral boundaries could lead to horizontal forces by action-reaction mechanisms due to the
constrained motion, and so horizontal momentum conservation cannot in general be expected to hold for a stratified
Euler fluid filling a finite domain enclosed by a rigid boundary. However, we shall see below that for a domain extending
horizontally to infinity the infinite inertia possessed by the far fluid at rest acts as an effective lateral boundary, giving
rise to violation of horizontal momentum conservation. While stratification is necessary for creating the relative inertia
of the lateral fluid at rest, a subtlety of this effect is that incompressibility is also required to transmit forces arising from
finite-range motion instantaneously all the way to infinity. Accordingly, the “light-cone” provided by the maximum
speed of propagation of internal baroclinic modes gives a rough estimate of the boundary of the exterior region that
can be considered as contributing to an effective-wall lateral confinement.

To the best of our knowledge, this limiting behaviour in the dynamics of a stratified fluid has not been given much
attention in the literature. Benjamin (1986) appears to be the first to point out this curious property, in the course
of his investigation on symmetries and Hamiltonian structures of the stratified, incompressible two–dimensional Euler
equations. In particular, Benjamin shows that the invariant generally associated with translational symmetry is the
fluid’s impulse rather than its momentum.

This Hamiltonian approach is compact and elegant, and its applications certainly deserve further study. Nonetheless,
the physical mechanisms responsible for the dynamics seem to be more transparent by a direct approach with the
simplest configuration of a two-layer fluid. This configuration has the added advantage of leading naturally into
reliable models when long-wave asymptotics applies. A further advantage of the direct approach is that it can be
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Figure 1: (a) Two-layer fluid set up and relevant notation. (b) The domains for computation of momentum balance

immediately extended to three-dimensional settings for fluid domains between horizontal rigid planes. Admittedly, the
effect considered here can be viewed as small, because the violation of momentum conservation scales with the size ∆ρ
of the density range (which in practical cases such as water stratified with heat or salt, is typically ∆ρ/ρ ' 10−2). Of
course, the effect also relies on the abstract setup of infinite rigid bounding surfaces. Nonetheless, we think that this
limiting case is of conceptual importance for a proper understanding of the dynamics of the incompressible limit for
density-stratified fluids.

The paper is organized as follows. In §2 we first derive balance laws that imply the paradox for incompressible
stratified Euler equations in an infinite channel, without approximations. Next, we show that the paradox remains in
a two-layer fluid in the hydrostatic (dispersionless) non-Boussinesq approximation. In this simpler setting an explicit
formula for the interface pressure can be derived. In §3, we show how the paradox can arise via direct numerical
simulations of stratified incompressible Euler equations.

2 Layer averaged Euler equations

While the inertia effects we focus upon here arise with general smooth stratifications, we work first with two-layer
fluids. This setup is the most convenient for developing long wave models, which can further illustrate the inertia
effect by allowing explicit formulae to be derived. Similarly, the restriction to a single horizontal dimension is not
essential, and our conclusions (and formalism) work for the full three-dimensional case of a horizontal fluid between
infinite top and bottom rigid bounding plates. We choose to work with layer-averaged equations, which of course can
be formulated independently of the assumption of stacked homogeneous layer stratification.

The dynamics of an inviscid and incompressible fluid stratified in layers of uniform density ρj is governed by the
Euler equations for the velocity components (uj , wj) and the pressure pj , in two dimensional Cartesian coordinates
(x, z),

ujx + wjz = 0, (1)

ujt + ujujx + wjujz = −pjx/ρj , (2)

wjt + ujwjx + wjwjz = −pjz/ρj − g, (3)

where g is the gravitational acceleration and subscripts with respect to space and time represent partial differentiation.
In a two-fluid system, j = 1 (j = 2) stands for the upper (lower) fluid, and ρ1 ≤ ρ2 must be assumed for stable
stratification.

For a channel with upper and lower rigid surfaces (see figure 1a for the setup and relevant notation) the kinematic
boundary conditions are

w1(x, h1, t) = 0 , w2(x,−h2, t) = 0 , (4)

where h1 (h2) is the undisturbed thickness of the upper (lower) fluid layer, respectively. The boundary conditions at
the interface z = ζ(x, t) are the continuity of normal velocity and pressure

ζt + u1ζx = w1, ζt + u2ζx = w2, p1 = p2 ≡ P at z = ζ(x, t), (5)

where ζ(x, t) is the displacement of the interface from the equilibrium configuration surface z = 0 and P (x, t) denotes
the interfacial pressure. As to the lateral boundary conditions, a set of particular interest physically is the one that
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corresponds to localized initial data, i.e., the fluid is quiescent at infinity. This would require

ζ(x, ·)→ 0 , uj(x, ·, ·)→ 0 , j = 1, 2 , as |x| → ∞ , (6)

sufficiently fast, which in turn implies that at infinity hydrostatic equilibrium applies,

pjz + ρjg = 0, j = 1, 2 , ⇒ pj = −gρjz + P , as |x| → ∞ . (7)

In what follows we rewrite the Euler system (3) in terms of layer-averages (see, e.g., Wu, 1981). (For a smoothly
stratified fluid, this is equivalent to singling out an intermediate level set of constant density z = ζ(x, t) and carrying
similar manipulations since such a set will always be a material surface.) We define the layer-mean quantities f̄ as

f̄(x, t) ≡ 1

ηj

∫
[ηj ]

f(x, z, t)dz , (8)

where ηj are the layer-thicknesses ηi ≡ hj + (−1)jζ, and, abusing notation a little by not differentiating overbars with
respect to lower or upper layer, the intervals of integration [ηj ] are z ∈ (ζ, h1) for the upper- and z ∈ (−h2, ζ) for the
lower-layer, respectively. Vertically integrating (1)–(2) across the layers and imposing the boundary conditions (4)–(5)
yields the layer-mean equations for the upper (lower) fluid

ηjt +
(
ηjuj

)
x

= 0, (9)

ρj(ηjuj)t + ρj
(
ηjujuj

)
x

= −(ηjpj)x + (−1)jζxP , j = 1, 2 . (10)

(We use the notation ujuj here and in similar formulae below instead of the equivalent uj2 because the latter applies
only to the two dimensional case, whereas the former can be used for three dimensions as well, upon interpreting the
horizontal velocity product as a two-tensor and replacing the x-derivative by a divergence over the horizontal variables.)

For incompressible, inviscid fluids under a body-force density f(x, t) in a domain Ω, the momentum balance in
Eulerian form is expressed by

dΠ

dt
≡ d

dt

∫
Ω

ρu dV =

∫
Ω

∂

∂t
(ρu) dV +

∫
Ω

div(ρuu) dV = −
∫
∂Ω

pn dA +

∫
Ω

ρf dV , (11)

where n is the outward normal to the surface ∂Ω, and dV , dA denote the volume and area elements, respectively.
Layer averages are just a local version of the integral form of the horizontal momentum balance for each layer (see
figure 1b), which can be expressed by integrating equations (10) over some x-interval L− ≤ x ≤ L+. We have

dΠ1j

dt
≡ d

dt

∫ L+

L−

ρjηjuj dx+ ρjηjujuj |
L+

L−
= − ηjpj |

L+

L−
+ (−1)j

∫ L+

L−

ζxP dx , (12)

for the upper (j = 1) and lower (j = 2) layer respectively, since the outward normals along the interface are n ∝ (±ζx, 1),
and neither the pressure at the rigid horizontal surfaces or the external gravity field contribute horizontal components
of forces.

In hydrostatic equilibrium, the layer-mean pressures are

pj = (−1)jgρj
ηj
2

+ P , j = 1, 2 . (13)

Hence, by a suitable definition of the limit procedure L± → ±∞, the lateral equilibrium boundary conditions imply
that for each infinite upper and lower layer the horizontal momenta are conserved if and only if

−h1 P |+∞−∞ −
∫ +∞

−∞
ζxP dx = 0 , −h2 P |+∞−∞ +

∫ +∞

−∞
ζxP dx = 0 , (14)

at all times, that is, if ∫ +∞

−∞
ζxP dx = 0 and P |+∞−∞ = 0 . (15)

(These relations are precisely the ones encountered in the study of single layer fluids when an external pressure
distribution is applied to their free-surface.)

Summing up the two momentum equations (10) (for j = 1, 2) yields the mean layer balance law for the total
momentum of the fluid

∂t
(
ρ1(η1u1) + ρ2(η2u2)

)
= −∂x

(
ρ1

(
η1u1u1

)
+ ρ2

(
η2u2u2

)
+ η1p1 + η2p2

)
. (16)
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By action-and-reaction the contribution from the pressure at the interface P (x, t) drops from the balance (16) as well
as from the integral version of the total horizontal momentum. Thus, the condition for total momentum conservation
is that P |+∞−∞ = 0, since (13) with (12) in this limit yields

dΠ1

dt
=
dΠ11

dt
+
dΠ12

dt
= −(h1 + h2) P |+∞−∞ .

At first sight, for localized displacements and velocities, it might not be clear how the asymptotic values of the interfacial
pressure could be different from plus to minus infinity, as the hydrostatic equilibrium is identical at both ends and the
interfacial pressure simply keeps track of the overall constant of integration up to which pressure is defined. For a free
upper surface, this constant is usually set by the atmospheric pressure; if this is assumed to be uniform, no pressure
jump can occur. However, a system with a rigid lid is constrained, and reaction forces can develop in response to the
constraint. Thus, we now focus on the consequences of the rigid lid constraint η1 + η2 = h1 + h2. The continuity
equations (9) imply (

η1u1 + η2u2

)
x

= 0 ⇒ η1u1 + η2u2 ≡ Q(t) , (17)

that is, the volume flux Q through the channel can only be a function of time. Dividing the momentum equations (10)
by the respective densities and summing the resulting equations yields

∂x
(
η1u1u1 + η2u2u2 +

1

ρ1
η1p1 +

1

ρ2
η2p2

)
=
( 1

ρ2
− 1

ρ1

)
ζxP − Q̇ . (18)

With the far-field zero boundary conditions on the velocities, which implies Q(t) = 0 at all times, equation (18) can
be interpreted as an expression that determines the (unknown) interfacial pressure P (x, t) in terms of the divergence
of the layer-mean quantities. By integrating in x and taking into account the boundary conditions (6)-(7) we obtain(h2

ρ2
+
h1

ρ1

)
P |+∞−∞ =

( 1

ρ2
− 1

ρ1

)∫ +∞

−∞
ζxP dx , (19)

which shows that unless the surface integral of the pressure along the interface at the right-hand-side of (19) vanishes,
or the layers have the same density, the extremal values of the interfacial pressure will in general be different. The
equivalent expression

ρ2

(
h1 P |+∞−∞ +

∫ +∞

−∞
ζxP dx

)
= −ρ1

(
h2 P |+∞−∞ −

∫ +∞

−∞
ζxP dx

)
shows that if one of the two conditions in (14) is satisfied, i.e., horizontal momentum of one of the layers is conserved,
the other will be as well, as the surface pressure integral is linked to the difference of asymptotic interfacial pressure
by the rigid lid constraint. Thus, conservation of the horizontal momentum of just one of the two layers implies
conservation of the total horizontal momentum of the fluid. On the other hand, with nonzero surface pressure integral
along the interface total horizontal momentum will change with time, i.e., the bulk of the fluid will in general undergo
accelerations. Horizontal momentum is always conserved if the fluid is homogeneous, ρ1 = ρ2, as (19) shows that in this
case interfacial pressure forces cannot add up to provide a total pressure gradient between the far ends of the channel.
Perhaps more notable is the effect of the Boussinesq approximation of taking ρ1 = ρ2 in front of the inertial terms (cf.
Bonkasame & Milewski, 2001 for an analysis of the interplay between interfacial pressure and flux in the non-Boussinesq
case and of the stability properties of the long wave regime). Just as in the case of homogeneous density fluid, build-up
of pressure jump P |+∞−∞ from interfacial pressure cannot occur in this case: taking the Boussinesq approximation in,
e.g., equation (16), and applying the constraint Q(t) = 0 sets the right-hand side of that equation to zero, so that
Π̇1 = 0, which in turn implies P |+∞−∞ = 0. Hence total as well as individual layer momenta are always conserved in the
Boussinesq approximation for two-layer channel flows with far-field hydrostatic equilibrium boundary conditions.

It remains to be seen if states of the fluid leading to a nonzero interfacial integral at the right-hand of equation (19)
can develop during the evolution governed by the Euler equations (even for a general smoothly stratified fluid). A
convenient starting point is offered by a choice of initial conditions corresponding to zero velocity and a local deformation
of density level sets away from the (flat) ones for hydrostatic equilibrium. This is the choice of initial data used in the
numerical simulations below, where in particular we take x-antisymmetric initial deformations. As we will see, during
the subsequent evolution, this choice leads to an analog for a finite domain of time-variation of horizontal momentum
for the infinite channel. The numerical simulations will be performed with near two-layer configurations, and with
initial data which are slowly varying in x. For such case explicit expressions (not readily available in the general case)
for the quantities in equation (19) can be derived approximately using long-wave asymptotics.

2.1 Shallow water models

At leading order in a long-wave asymptotic expansion (see, e.g., Yih, 1980), the hydrostatic approximation for the
pressures holds throughout the fluid domain, not just as far field boundary conditions. This can be used to derive a
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Figure 2: Sketch of the fluid test domain and its symmetrical padding by wings of increasing length, doubling and
quadrupling the period as shown.

closed form expression for the interfacial pressure in equation (18). The result is expressed in terms of well known
two-layer (five-equation, dispersionless) shallow water model (see, e.g., [Milewski et al. (2004)]). We have

∂x
(
η1u1u1 + η2u2u2 + gζ(h1 + h2) + g

h2
2 − h2

1

2
+
(η1

ρ1
+
η2

ρ2

)
P
)

= ζx
( 1

ρ2
− 1

ρ1

)
P ,

so that, with the identities ζx = −η1x = η2x used in the RHS of this expression,

∂x
(
η1u1u1 + η2u2u2 + gζ(h1 + h2)

)
= −Px

(η1

ρ1
+
η2

ρ2

)
.

Upon splitting the average of products into the products of averages, this coincides with the expression derived from
the five-equation model, and yields

P |+∞−∞ = −ρ1ρ2

∫ ∞
−∞

(η1u1
2 + η2u2

2)x
ρ1η2 + ρ2η1

dx . (20)

Here a term with the factor g(h1 +h2)ζx has been dropped because the denominator is only a (linear) function of ζ thus
making the ratio a perfect x-derivative, vanishing when the boundary conditions on ζ are applied. Thus, at leading
order total horizontal momentum conservation requires the extra constraint on the choice of initial data that make the
above integral vanish, which is manifestly not verified for general functions uj ’s and ηj ’s. Note that if ρ1 = ρ2 the
denominator in the integrand in (20) becomes a constant, making the integral null on account of the velocity boundary
conditions.

Finally, we remark that equation (20) shows that the symmetries of the system with respect to the horizontal variable
allow to identify a large class of solutions compatible with momentum conservation (in the hydrostatic approximation).
Indeed, it is easy to check that if initially η1, η2 are even functions and u1, u2 are odd functions with respect to x, then
these symmetries are preserved by the evolution of the system. For such solutions, (20) shows that the (null) horizontal
momentum is conserved. However, generic initial conditions not in this class can be shown to evolve to non-zero P |+∞−∞,
even starting from null values of this pressure jump, or, remarkably, even when the velocities are chosen to be initially
zero. For this latter case, this can be seen by looking at the higher order dispersive (non-hydrostatic) corrections to
the shallow water model as reported in Choi & Camassa (1999). At t = 0 with zero initial velocities these corrections
modify equation (20) as

P |+∞−∞ =
1

3

∫ +∞

−∞

(
η3

1u1xt + η3
2u2xt

)
x

η1/ρ1 + η2/ρ2
dx , (21)

which, by bringing into the integrand the time-derivatives of the velocities shows that the pressure jump can be non-
zero even if the velocities are initially zero. In particular, antisymmetric initial displacements of the interface can lead
to non-zero P |+∞−∞, whereas this pressure jump always vanishes for symmetric initial data.

3 Numerical simulations

The above discussion was carried out with laterally unbounded domains in mind. Of course, such an idealization
cannot be used either in reality or in numerical studies. However, in this section we provide numerical evidence that
the effective-wall lateral confinement, and hence non-conservation of horizontal momentum, can occur in finite domains,
due to the relative inertia of a stratified, incompressible Euler fluid. First, we remark that, for domains bounded by
rigid lateral walls, the finite domain version of equation (19) (obtained by writing ±L/2 in place of ±∞) continues
to hold; in the limit of the walls moving to infinity we simply recover the hydrostatic balance as expressed by (19).
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Figure 3: Density field from the numerical simulation of the evolution out of the initial data in the 1232 cm long tank
with the center 308 cm test section marked by the small box.

Next, consider the case of periodic boundary conditions in the periodic box [−L/2, L/2]. This requires P |+L/2−L/2 = 0 and
hence the horizontal momentum for the whole periodic domain is conserved. We focus on a subset of the fluid domain,
henceforth referred to as the “test section,” obtained by taking a (much) smaller interval embedded in the period (cf.
figure 2). Within this test section, we apply localized initial conditions for velocity and pycnocline displacement, e.g.,
by requiring that the data have compact support on a small subset of the test section’s region. The analog of equation
(19) for a periodic domain becomes an equation for the flux Q,

LQ̇ =

(
1

ρ2
− 1

ρ1

)∫ L/2

−L/2
ζxP dx. (22)

Consider the limit L → ∞ of this equation. For definiteness, let ζ be a function with compact support and suppose
that all the velocites are zero at t = 0. The integral in the right-hand side will be bounded as L→∞ (assuming that
P remains bounded on finite domains), so that Q̇ ∼ L−1. Suppose the test section extends from −A/2 to A/2 and
supp(ζ) ⊂ [−A/2, A/2]. At t = 0, after integrating (18) in the test section and eliminating Q̇, we obtain(

1

ρ2
− 1

ρ1

)(
1− A

L

)∫
supp(ζ)

ζxP dx =

(
h2

ρ2
+
h1

ρ1

)
P
∣∣∣+A/2
−A/2

. (23)

If we extend the test section to infinity with the double scaling limit A,L → ∞ and A/L → 0, the previous formula
becomes (19). Though valid only at time t = 0, this argument shows how the limit of infinite period for localized initial
data can agree with the pressure differential of the infinite channel in hydrostatic balance at infinity.

We now explore numerically the time evolution of localized initial data under both periodic and rigid (impermeable)
wall boundary conditions. In particular, we first compute the evolution of the flux Q(t) and horizontal momentum
Π1(t) for the test section alone. We then compare the resulting time series with those from simulations from the
same initial conditions in progressively longer channels under periodic boundary conditions, see figure 2. Thus, while
the total horizontal momentum for these longer periodic channels is conserved, that computed only on the embedded
test-section will in general exhibit time-dependence. Owing to the added inertia of the “padding” wings bracketing the
test section in the longer channels, we expect this time dependence to show some similarity with that of the walled-in
test-section. That is, the added inertia acts as virtual walls, which could then approximate actual walls in the limit of
an infinite periodic channel.

The details of our numerical simulations are as follows. The initial conditions in all our simulations (all performed
using dimensional quantities, and translating the coordinates’ origin to the bottom) are chosen to be the antisymmetric
interface displacement through ζ0(x) = h2 + x/2 exp(−x2/σ2) together with zero initial velocities. This function
displaces the smooth equilibrium density function ρe(z) to give the initial condition ρ0 (with obvious meaning of
notation)

ρ0(x, z) = ρ1 +
ρ2 − ρ1

2
(1 + tanh [γ(ζ0(x)− z)]) , z ∈ [0 , H] . (24)

Here, σ = 30 cm, ρ1 = 0.999 g/cm3, ρ2 = 1.022 g/cm3, H = 77 cm, h2 = 62 cm, and the thickness of the pycnocline
(defined as the distance between density isolines corresponding to 10% and 90% of the total density jump) is set by the
parameter γ = 0.5 to correspond to about 4.5 cm (all of these parameters are suggested by those typical for experiments
with salt-stratified water). Notice that this choice of parameters gives effectively an initial condition of compact support,
with the initial departure from hydrostatic equilibrium for |ρ−ρe|/ρe of order 10−10 at the boundary of the test-section
x = ±154 cm; this departure remains below 10−7 in all our runs. The simulations are performed using the numerical
software VARDEN which solves the stratified incompressible Euler equations (for details see [Almgren et al. (1998)].)
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Figure 4: (a) Horizontal momentum time-evolutions for the test section embedded in progressively larger periodic domains,
starting from the same initial condition. The solid line correspond to the rigid wall boundaries. (b) Time series of fluxes
Q(t) with respect to increasing period L, for the same cases as (a). The flux decreases as 1/L in response to the larger
inertia of the channel “padding” wings.

We typically use a square grid with 512 points along the vertical, although we have run cases with doubled and half this
resolution to assess convergence. Figure 4a shows the time series of the horizontal momentum of the test-section for
the walled-in configuration, and compares it to that computed with periodic boundary conditions with quadrupled and
octupled periodic extensions. As can be seen, there is indeed a tendency for the longer channel to yield a momentum
evolution closer to that of the walled section, for the initial (short) time displayed. As expected, later time evolution
shows larger discrepancies but still with similar overall behavior and magnitudes. This is in rough agreement with the
estimate from the fastest baroclinic wave speeds, which for this parameter choice are of order 16 cm/s, and with the
horizontal scale of the initial condition with respect to that of the test-section. For reference, we remark that the code
maintains the total horizontal momentum for the periodic channels close to zero (the initial value) with an error of
order 10−3. Figure 4b presents the time series of the flux Q(t) for the same runs. The flux is computed at different
x-locations, yielding the same value to within a relative error of 10−10 (thus further validating the convergence of the
code). As can be seen by the different curves, the flux appears to scale as the inverse of the channel length L, in
agreement with expression (22) for its initial time derivative. This can be taken as further evidence of the inertia
provided by the padding wings (growing as L) which acts to oppose the fluid flux (recall that in the limit of unbounded
domain Q ≡ 0 due to the equilibrium at infinity). The inverse scaling can be given further analytic interpretation in
the long wave approximation. In fact, the analog of (20) for the leading order hydrostatic (and hence dispersionless)
long wave approximation is

Q̇

∫ +L/2

−L/2

1

η1/ρ1 + η2/ρ2
dx+

∫ +L/2

−L/2

(η1u1
2 + η2u2

2)x
η1/ρ1 + η2/ρ2

dx = 0 . (25)

For zero velocity initial conditions, this expression yields Q̇(0) = 0, in contrast to the time series depicted in figure 4b.
This discrepancy brings forth a limitation of the hydrostatic (and hence dispersionless) long-wave model. It is generally
accepted that the dispersionless approximation works well at intermediate times, while at long times the system
could display a gradient catastrophe, which can be avoided by restoring dispersive effects (Esler and Pearce, 2011).
Remarkably, equation (25) shows that dispersive effects can also be relevant at short times, even in the absence of large
x-derivatives. Specifically, at t = 0 with zero initial velocities the dispersive corrections turn equation (25) into∫ +L/2

−L/2

−Q̇(0) + 1
3

(
η3

1u1xt + η3
2u2xt

)
x

η1/ρ1 + η2/ρ2
dx = 0. (26)

By computing the leading-order long-wave asymptotic expressions for the time derivatives (Choi & Camassa, 1999) in
equation (26), the initial slope of the flux turns out to be

Q̇(0) =

(∫ +L/2

−L/2

Bx
η1/ρ1 + η2/ρ2

dx

)(∫ +L/2

−L/2

1−Ax
η1/ρ1 + η2/ρ2

dx

)−1

, where

A =
η3

1

3

( ρ2

η2ρ1 + η1ρ2

)
x

+ (1↔ 2), B =
g(ρ2 − ρ1)η3

1

3

( η2η2x

η2ρ1 + η1ρ2

)
x
− (1↔ 2) .

Even within this leading order approximation, there is rough agreement (but in particular capturing the correct sign)
with the numerical data in figure 4b. This can also be seen as an a posteriori check on the robustness of the two-
layer model. For instance, the theoretical prediction (adjusting for smooth stratification, as in Camassa & Tiron,
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2011) is Q̇(0) ' −8.1 × 10−3 cm2/s2 for the case in figure 4b with L = 1232 cm, whereas the numerical result is
Q̇(0) ' −1.9 × 10−3 cm2/s2. Finally, we remark that the inertia effects can be further magnified by taking larger
density variations. We have carried out tests with various density ratios, e.g., for ρ2 = 2ρ1 and ρ2 = 1.022 g/cm3 the
model predicts Q̇(0) ' −9.62 cm2/s2, while the measured numerical value is Q̇(0) ' −2.04 cm2/s2.
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