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1. Introduction

In this paper we investigate existence and uniqueness of ground states for the NLS 
energy functional

Fp,q(u) = 1
2

∫
SN

|u′|2 dx− 1
p

∫
SN

|u|p dx− 1
q
|u(0)|q, (1)

with the mass constraint ∫
SN

|u|2 dx = μ , (2)

where SN is the star graph made of N half–lines glued together at their common origin, 
which in the following will be denoted by v or, alternatively, by 0.

Each half–line Hi of SN is provided with a coordinate xi : Hi → [0, +∞), so that 
xi = 0 corresponds to the origin of Hi, for every i = 1, . . . , N . A function u on SN is 
given by the collection of its restrictions ui to each half–line Hi, i.e. u = (u1, . . . , uN ). 
We then define Lp(SN ) as the space of all functions u on SN such that, for every i, 
ui ∈ Lp(Hi) with respect to the standard Lebesgue measure on Hi. We define

‖u‖pLp(SN ) :=
N∑
i=1

‖ui‖pLp(Hi) .

Similarly, we set H1(SN ) to be the space of all functions u on SN that are continuous 
on the graph, in particular at v, and such that ui ∈ H1(Hi) for every i, endowed with 
the norm

‖u‖2
H1(SN ) :=

N∑
i=1

‖ui‖2
H1(Hi) .

Introducing the notation

H1
μ(SN ) :=

{
u ∈ H1(SN ) : ‖u‖2

L2(SN ) = μ
}

for the mass constrained space, and

Fp,q(μ) := inf
v∈H1

μ(SN )
Fp,q(v) (3)

for the ground state energy level of (1) in H1
μ(SN ), we define a ground state of (1) at 

mass μ as a minimizer of the energy among functions with mass μ, i.e. u ∈ H1
μ(SN ) such 

that Fp,q(u) = Fp,q(μ).
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The aim of the paper is thus to understand whether ground states exist and are unique 
in the L2 subcritical regime for both nonlinearities, namely p ∈ (2, 6) and q ∈ (2, 4).

Since their first appearance as a model for valence electrons in naphthalene molecules 
[66], the study of dynamics on metric graphs (or networks) has grown through the decades 
to become a prominent line of research. To date, models involving Schrödinger operators 
have been gathering a considerable interest, both in the linear setting (see for instance 
[19,24,42,50,51] as well as the monograph [25] and references therein) and in the non-
linear case [1,10–13,26,30,31,36–40,44,48,49,59–61,63–65]. Recent investigations are now 
available also for the KdV equation [57] and the Dirac equation [27].

Within this framework, star graphs provide a prototypical model. Particularly, the 
issue of the existence of NLS ground states on star graphs has been widely investigated 
for the last ten years. As a first step, nonexistence on star graphs made of at least three 
half-lines with free (or Kirchhoff’s) conditions at the origin was established in [2], so that 
non-trivial conditions are required in order to have existence. The effect of an attractive 
linear delta interaction at the vertex, that corresponds to q = 2 in (1), was then studied 
in [3,4], finding that ground states exist for small values of the mass only, and they 
bifurcate from the bound state of the corresponding linear Schrödinger Equation. Such 
ground states are always radial, in the sense that their restriction to every half-line of 
the graph always coincide with the same function. Moreover, the stability of the family 
of radial stationary states was proved even for the values of the mass for which such 
functions are no longer ground states. Further stability analysis on star graphs with 
linear pointwise interaction at the origin have then been developed in [17,18,43]. In [32]
the result of existence of a nonlinear ground state bifurcating from the linear one was 
extended to the presence of a further linear potential.

Here we introduce nonlinear vertex conditions, more specifically conditions mimick-
ing the nonlinear delta potential introduced in [16], and recently studied for the same 
problem on the line [28].

The concentrated nonlinearity is nowadays a widely accepted model of the net effect 
of the confinement of charges in small regions [47,54], as well as in the study of resonant 
tunnelling [58]. Related models have been originally discussed in dimension one [15,
16] and three [8,9], and more recently the analysis has been broadened to the two–
dimensional case [6,7,33] and to non–compact metric graphs [41,67,68,72]. On the other 
hand, starting with the seminal paper [71], the study of the interplay between different 
nonlinearities for NLS equations has been recently carried out for instance in [35,46,52,
53,55,56,69,70], focusing on the case of two different power nonlinearities. Particularly, 
[46,69,70] are devoted to the problem of the existence, the shape and the stability of 
prescribed mass ground states, defined as minimizers of the energy among all stationary 
states at given mass (see also the series of works [20–23] and [62] for the case of NLS 
systems).

In the present paper, we describe the effect of the combined action of two focusing 
nonlinearities again of the power type, with a substantial difference with respect to the 
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cited ones, namely the fact that the second nonlinearity is concentrated at a point: the 
vertex of the graph.

The interaction between this two kinds of nonlinearity has already been explored in 
the case of the line, keeping the two powers at the subcritical or L2-critical level [28]. 
A non trivial interplay emerges in the critical case, with a modification of the critical 
mass. For the graph model treated here, the emerging scenario is considerably richer and 
surprising, as the first of our main theorems starts unravelling.

Theorem 1.1. Let N ≥ 3, p ∈ (2, 6), q ∈ (2, 4) and q �= p
2 +1. Then there exists a critical 

mass μp,q > 0 such that

(i) if q < p
2 + 1, then ground states of (1) at mass μ exist if and only if μ ≤ μp,q;

(ii) if q > p
2 + 1, then ground states of (1) at mass μ exist if and only if μ ≥ μp,q.

Furthermore, whenever they exist, ground states at prescribed mass are unique and they 
are radial and decreasing on SN , in the sense that their restriction to each half–line of 
the graph corresponds to the same decreasing function on R+.

This result highlights the emergence of a natural comparison between the strength of 
the two nonlinearities. If q < p/2 + 1, then the point interaction is weak, so that it does 
not change the qualitative information gained in [4], that ground states exist only for 
masses below a critical value. Conversely, if q > p/2 + 1, then the point interaction is 
strong enough to reverse the result, so that ground states exist only for masses above a 
critical value.

The threshold phenomena in Theorem 1.1 reveals a natural scaling for the doubly 
nonlinear problem on graphs. Heuristically, one may interpret such a feature as the 
result of the competition between the two terms defining Fp,q: the standard NLS energy 
on the one side

1
2

∫
G

|u′|2 dx− 1
p

∫
G

|u|p dx , (4)

and the delta nonlinearity on the other side

−1
q
|u(0)|q .

It is well–known (see for instance [11]) that the unique minimizer of the standard NLS 
energy at mass μ on the real line, the so–called soliton φ as in (10) below, verifies

1
2

∫
R

|φ′|2 dx− 1
p

∫
R

|φ|p dx ∼ μ2β+1, β = p− 2
6 − p

,

whereas
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‖φ‖L∞(R) ∼ μα, α = 2
6 − p

.

An elementary calculation then shows that

αq = 2β + 1 ⇐⇒ q = p

2 + 1 ,

so that the comparison between the standard and the pointwise nonlinearity reported 
in Theorem 1.1 corresponds to the balance between the standard NLS energy and the 
maximal delta nonlinearity for the soliton on the line. However, at a first sight, the 
detailed result in Theorem 1.1, with that unprecedented dependence of the existence of 
ground states on the mass, sounds puzzling and requires a qualitative explanation. As 
well understood since [2], fixed a value for the mass, the existence of ground states for 
the NLSE on metric graphs is ruled by the competition between the soliton on the line 
and the standing wave with the lowest energy among all stationary states. Indeed, even 
though the presence of the vertex together with the prescription of continuity exclude the 
solitons from the family of possible competitors, one can always approximate its standard 
energy (4) arbitrarily well, for instance by a sequence of solitons supported on one half–
line and truncated near the vertex. The approximation is made better and better by 
moving faraway from the vertex. This reasoning shows that, if the lowest-energy standing 
wave wins the competition, namely, if its energy is lower than the standard energy of 
the soliton on the line (4), then the ground state exists. Viceversa, if the energy of the 
soliton is lower than the energy of every stationary state, then the ground state does not 
exist. This is nowadays well understood.

Of course, the outcome of the competition between solitons and standing waves can 
depend on the mass, and this is the new phenomenon put in evidence, in a surprising 
way, by Theorem 1.1. We recall that such a phenomenon is not present in the analogous 
model on the line, since in that case the soliton is an admissible competitor and its 
doubly nonlinear energy is strictly smaller than the standard one (4). As a consequence, 
for the problem on the line a ground state exists for every value of the mass and is 
centred at the origin [28]. On the contrary, in Theorem 1.1 a dramatic dependence on 
the mass emerges as the graph structure plays a crucial role. Indeed, in order to lower 
the energy, from one side it is convenient to exploit the presence of the interaction at the 
vertex, but from the other it is convenient to escape it, as the proximity to the vertex 
increases the kinetic energy (quantitative estimates of this effect can be found by using 
rearrangement theory, see [11, Proposition 3.1]). By this observation, it becomes possible 
to interpret the role of the mass in Theorem 1.1: if q > p/2 +1, then for large masses, and 
consequently large values at the vertex of the radial standing waves, the point interaction 
prevails and a ground state exists. On the other hand, for small mass, the high power on a 
small value at the vertex makes the contribution of the point interaction tiny, so that the 
standard nonlinearity prevails, escaping the vertex becomes convenient, and then there is 
no ground state. Viceversa, in the case of weaker delta interactions, namely q < p/2 +1, 
for small mass, and then small value at the vertex, the lower power in the pointwise 
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term gives to the interaction a larger size than that of the standard nonlinearity, so it 
is convenient to stay on the vertex and a ground state exists. On the other hand, if the 
mass is large, then the effect of the standard nonlinearity is magnified more, so that it is 
convenient to escape the vertex and there is no ground state. Of course, this description 
is qualitative, but is made rigorous by the computations in Section 4.

It remains to investigate what happens at the threshold q = p/2 +1, and the answer is 
given by the following theorem, bearing another unexpected feature: ground states exist 
only for a small number of half-lines, and, notably, such a number does not depend on 
the mass.

Theorem 1.2. Let p ∈ (2, 6) and q = p
2 + 1. Then there exists a critical number of half–

lines Np ≥ 2 such that

(i) if N ≤ Np, then ground states of (1) at mass μ exist for every μ;
(ii) if N > Np, then ground state of (1) at mass μ never exist.

Furthermore, whenever they exist, ground states at prescribed mass are unique and they 
are radial and decreasing on SN , in the sense that their restriction to each half–line of 
the graph corresponds to the same decreasing function on R+.

The number Np of half-lines above which there is never a ground state is not presently 
known, but on the basis of numerical simulations (see Section 4) we have evidence that it 
is at least three for every value of p. However, at the time being we can prove analytically 
only the following result.

Proposition 1.3. For every p ∈ (2, 6), let Np be as in Theorem 1.2. Then:

(i) limp→2+ Np = +∞;
(ii) if p ≥ 4, then Np ∈ {2, 3, 4}. Furthermore, there exists δ > 0 so that Np = 3 for 

every p ∈ (4 − δ, 4 + δ) ∪ (6 − δ, 6).

To conclude, recall that to every critical point u ∈ H1
μ(SN ) of (1) subject to the 

mass constraint (2) it corresponds a standing wave solution ψ(x, t) := eiωtu(x) to the 
time–dependent NLS equation on SN

i∂tψ(t, x) = −∂2
xxψ(t, x) − |ψ(t, x)|p−2ψ(t, x) − |ψ(t, x)|q−2δ0ψ(t, x) . (5)

The standard stability theory in [45] guarantees that ψ is orbitally stable if and only if 
u is a local minimizer of Fp,q in H1

μ(SN ), so that Theorems 1.1–1.2 imply the existence 
of an orbitally stable standing wave of (5) whenever ground states exist. Adapting the 
argument originally developed in [3], the last proposition of this paper improves this 
result, by proving the orbital stability for all elements of the branch of radial stationary 
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states, parametrized by the mass. Theorems 1.1–1.2 establish that for some values of 
the mass there is no ground state. However, even for those values the branch of radial 
standing waves exists, and we prove that they are always orbitally stable.

Proposition 1.4. For every p ∈ (2, 6), q ∈ (2, 4) and every μ > 0, the unique radially–
symmetric stationary state of (5) is a local minimizer of Fp,q in H1

μ(SN ), and the 
associated standing wave is always orbitally stable.

The paper is organized as follows. Section 2 reviews some preliminary results on non-
linear Schrödinger equations with the standard nonlinearity only, and it develops the 
analysis of the stationary states of the doubly nonlinear model on SN . Within Section 3
we derive a existence criterion and we show that, whenever they exist, ground states 
coincide with the unique radial and decreasing stationary state. Finally, Section 4 com-
pletes the proofs of Theorems 1.1–1.2 and of Proposition 1.3, while Section 5 addresses 
that of Proposition 1.4.

notation. In what follows, when denoting a norm, we omit the domain of integration 
whenever it is understood, writing for instance ‖u‖p instead of ‖u‖Lp(SN ). The complete 
notation will be used if needed to avoid ambiguity.

2. Preliminaries

In this section we briefly recall some well–known facts about nonlinear Schrödinger 
equations on the real line and we discuss some preliminary properties of stationary 
solutions on star graphs that will be important in the forthcoming analysis.

2.1. NLSE with standard nonlinearity on the real line

The minimization problem on the real line

E(μ) := inf
v∈H1

μ(R)
E(v,R) ,

where E : H1(R) → R is the NLS energy functional involving the standard nonlinearity 
only

E(v) := 1
2

∫
R

|u′(x)|2 dx− 1
p

∫
R

|u(x)|p dx, (6)

is nowadays classical (see for instance [34]).
Standard variational arguments show that ground states are solutions to the stationary 

nonlinear Schrödinger equation



8 R. Adami et al. / Journal of Functional Analysis 283 (2022) 109483
u′′ + |u|p−2u = ωu on R (7)

for some ω > 0. In fact, for every ω > 0 the unique (up to translations) positive solution 
φω ∈ H1(R) of (7) is

φω(x) =
[p
2ω

(
1 − tanh2

((p
2 − 1

)√
ω|x|

))] 1
p−2

. (8)

The mass of φω is given explicitly by

‖φω‖2
2 =

4
(
p
2
) 2

p−2 ω
6−p

2(p−2)

p− 2

1∫
0

(1 − s2)
4−p
p−2 ds, (9)

which is a continuous, strictly increasing and unbounded function of ω. Therefore, for 
every μ > 0 there exists a unique ω(μ) such that φω(μ) is the unique (up to translations) 
positive ground state of E in H1

μ(R). Such ground states are called solitons, and their 
dependence on μ is given by

φω(μ)(x) = Cpμ
αsech

α
β
(
cpμ

βx
)
, α = 2

6 − p
, β = p− 2

6 − p
, (10)

where Cp, cp > 0 depends on p only, and one can easily compute

E(μ) = E(φω(μ)) = −θpμ
2β+1 (11)

where θp > 0 depends on p only.
In the following, for u ∈ H1(SN ), we will denote by E(u, SN ) the analogous standard 

NLS energy as in (6)

E(u, SN ) := 1
2

∫
SN

|u′|2 dx− 1
p

∫
SN

|u|p dx = 1
2

N∑
i=1

∫
Hi

|u′
i|2 dx− 1

p

N∑
i=1

∫
Hi

|ui|p dx .

Note that, for every positive u ∈ H1
μ(SN ), it holds

E(u, SN ) > E(μ) . (12)

Indeed, if u is compactly supported on a unique half–line of SN , then one can regard it 
as a compactly supported function in H1

μ(R) and (12) is immediate since only solitons 
attain E(μ). On the contrary, if u �≡ 0 on at least two half–lines of SN , then there exist 
infinitely many values t in the image of u such that the number of pre–images

N(t) := #{x ∈ SN : u(x) = t} ≥ 2 .
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If u(0) �= 0 then this is trivial, as u tends to 0 along each half–line. Similarly, if u(0) = 0, 
then all values realized by u in a suitably small neighbourhood of the origin are attained 
at least twice the number of half–lines that belong to the support of u. Hence, letting 
û ∈ H1

μ(R) denote the symmetric rearrangement of u, it follows (see [11, Proposition 
3.1])

‖u′‖L2(SN ) > ‖û′‖L2(R) and ‖u‖Lp(SN ) = ‖û‖Lp(R) , p ≥ 1 ,

yielding again (12).

2.2. Some remarks on stationary states

Computing the Euler–Lagrange equations associated to the energy (1) and to the 
mass constraint (2), it turns out that ground states of (1) at given mass are solutions to 
the system {

u′′
i + ui|ui|p−2 = ωui on Hi for all i = 1, . . . , N,∑N
i=1

dui

dxi
(0+) = −u(0)|u(0)|q−2

,
(13)

for some Lagrange multiplier ω > 0. Note that here the expression dui

dxi
(0+) naturally 

corresponds to the right derivative of ui at x = 0, since each edge of the graph is identified 
with the interval [0, +∞) so that the vertex always corresponds to the point x = 0.

The next proposition provides a complete characterization of the set of positive solu-
tions of (13) in H1(SN ). (See Fig. 1.)

Proposition 2.1. Let ω > 0. Then the set Sω of positive solutions of (13) in H1(SN ) is 
given by

Sω =
{
ηωJ : J ∈ N, 0 ≤ J ≤ N − 1

2

}
.

Here, ηωJ ∈ H1(SN ) is such that

ηωJ (·) =
{
φω(· − a) on J half–lines of SN

φω(· + a) on the other N − J half–lines of SN ,
(14)

where a > 0 is the unique positive solution to

tanh
((

p
2 − 1

)√
ωa
)

(
1 − tanh2 ((p

2 − 1
)√

ωa
)) q−2

p−2
=
(
p
2
) q−2

p−2 ω
2q−2−p
2(p−2)

N − 2J . (15)

Furthermore, for every J , the function ω �→ ‖ηωJ ‖2
2 is continuous and strictly increasing.
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Fig. 1. The stationary states of Proposition 2.1 on S5: ηω
0 (A), ηω

1 (B) and ηω
2 (C).

Proof. Relying on the discussion of the previous subsection, it is immediate to see that, 
on each half–line Hi, i = 1, . . . , N , solutions of (13) coincide with the restriction φω(x −
ai) of the soliton φω, for suitable ai ∈ R. Since the continuity condition at the origin is 
prescribed, then φω(−ai) = φω(−aj) for 1 ≤ i, j ≤ N , therefore ai = εia, where a > 0
and εi = sgn(ai) for all 1 ≤ i ≤ N .

Moreover, by (8), the second line of (13) becomes

√
ω tanh

((p
2 − 1

)√
ωa
) N∑

i=1
εi = −φω(a)q−2 < 0, (16)

thus implying 
∑N

i=1 εi < 0, namely the number of positive εi cannot exceed N−1
2 .

Let then J be a given integer such that 0 ≤ J ≤ N−1
2 and let εi = 1 if and only if 

i ≤ J . Since then 
∑N

i=1 = 2J −N , (16) reads

tanh
((p

2 − 1
)√

ωa
)

= φω(a)q−2
√
ω(N − 2J)

, (17)

so that (15) is proved.
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Setting t := tanh
((

p
2 − 1

)√
ωa
)
, then t ∈ [0, 1) and we can rewrite (15) as

f(t) := t

(1 − t2)
q−2
p−2

=
(
p
2
) q−2

p−2 ω
2q−2−p
2(p−2)

N − 2J . (18)

As f(0) = 0, limt→1− f(t) = +∞ and f ′(t) > 0 for every t ∈ (0, 1), it follows that there 
exists a unique t ∈ (0, 1) for which (18) is satisfied, in turn showing that for every ω > 0
and every integer 0 ≤ J ≤ N−1

2 , there exists a unique positive solution ηωJ of (13), up to 
exchange of edges.

Relying again on (8), we get

‖ηωJ ‖2
2 =

2(p2 )
2

p−2ω
6−p

2(p−2)

p− 2

⎡⎣2J
1∫

0

(1 − s2)
4−p
p−2 ds + (N − 2J)

1∫
t

(1 − s2)
4−p
p−2 ds

⎤⎦ . (19)

Differentiating with respect to ω yields

d

dω
‖ηωJ ‖2

2 =
(
p
2
) 2

p−2 (6 − p)
(p− 2)2 2Jω

6−p
2(p−2)−1

1∫
0

(1 − s2)
4−p
p−2 ds

+
2
(
p
2
) 2

p−2

p− 2 (N − 2J)ω
6−p

2(p−2)−1

[
6 − p

2(p− 2)

1∫
t

(1 − s2)
4−p
p−2 ds− ω(1 − t2)

4−p
p−2 t′(ω)

]
,

(20)

where, by (18),

t′(ω) =
(
p
2
) q−2

p−2 (2q − 2 − p)
2(p− 2)(N − 2J) ω

2q−2−p
2(p−2) −1 (1 − t2)

q−2
p−2+1

t2
(
2 q−2
p−2 − 1

)
+ 1

. (21)

Note that the first term in the sum on the right hand side of (20) is strictly positive 
for every ω > 0. Furthermore, plugging (21) into (20) and making use of (18) allows to 
rewrite the term between square brackets as

6 − p

2(p− 2)

1∫
t

(1 − s2)
4−p
p−2 ds− 2q − 2 − p

2(p− 2)
t(1 − t2)

2
p−2

t2
(
2 q−2
p−2 − 1

)
+ 1

,

which can be proved to be strictly positive for every t ∈ (0, 1) by the same calculations 
in [28, pp.11–12]. Hence, d

dω‖ηωJ ‖2
2 > 0 for every ω > 0 and ‖ηωJ ‖2

2 is a strictly increasing 
function of ω. �

The next straightforward corollary describes the set of stationary states at prescribed 
mass.
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Corollary 2.2. Let μ > 0 be fixed. Then for every integer J such that 0 ≤ J ≤ N−1
2 there 

exists a unique ω > 0 such that ηωJ ∈ H1
μ(SN ). Moreover, it holds

Fp,q(ηωJ ) = − 6 − p

2(p + 2)ωμ +
(

2
p + 2 − 1

q

)
|ηωJ (0)|q . (22)

Proof. Fix J integer such that 0 ≤ J ≤ N−1
2 . By Proposition 2.1, ‖ηωJ ‖2

2 is an unbounded, 
strictly increasing continuous function of ω, thus implying that for every μ > 0 there 
exists a unique value of ω for which ‖ηωJ ‖2

2 = μ, i.e. ηωJ ∈ H1
μ(SN ).

Since ηωJ solves (13), multiplying the equation by (ηωJ )′ and, for every x ∈ SN , inte-
grating on [x, +∞) one obtains

1
2 ((ηωJ )′)2 (x) = ω

2 (ηωJ )2 (x) − 1
p

(ηωJ )p (x) ,

so that integrating on SN gives

1
2‖ (ηωJ )′ ‖2

2 = ω

2 ‖η
ω
J ‖2

2 −
1
p
‖ηωJ ‖pp . (23)

Furthermore, multiplying the first line of (13) by ηωJ , integrating over SN and making 
use of the second line of (13) yields

|ηωJ (0)|q − ‖ (ηωJ )′ ‖2
2 + ‖ηωJ ‖pp − ω‖ηωJ ‖2

2 = 0. (24)

Combining (23) and (24) leads to (22) and we conclude. �
3. Existence criterion and characterization of ground states

In this section we provide a sufficient condition granting existence of ground states 
of Fp,q in H1

μ(SN ) and prove that, whenever they exist, such ground states must be 
monotonically decreasing radial functions on SN .

Let us begin with a compactness result. To this aim we recall the Gagliardo–Nirenberg 
inequalities

‖u‖pp ≤ Kp‖u‖
p
2 +1
2 ‖u′‖

p
2−1
2 , p ≥ 2 , (25)

where Kp > 0 depends only on p, and

‖u‖2
∞ ≤ ‖u‖2‖u′‖2 , (26)

holding for every u ∈ H1(SN ) (we refer to [12] for a proof of these inequalities on general 
metric graphs).
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Proposition 3.1. For every μ > 0 it holds

Fp,q(μ) ≤ E(μ) . (27)

Furthermore, if Fp,q(μ) < E(μ), then ground states of (1) at mass μ exist.

Proof. Let us first prove (27). For every ε > 0, let vε := κε(φμ − ε)+, where φμ is as 
in (10) and κε > 0 is chosen to guarantee ‖vε‖2

L2(R) = μ, so that vε ∈ H1
μ(R). Since 

‖vε‖Lq(R) → ‖φω‖Lq(R) as ε → 0, for every q ≥ 1, then κε → 1 for ε → 0, and we get

E(μ) ≤ E(vε,R) =1
2κ

2
ε

∫
R

| [(φμ − ε)+]′ |2 dx− 1
p
κp
ε

∫
R

|(φμ − ε)+|p dx

≤E(φω,R) + o(1) = E(μ) + o(1)

for ε small enough, making use also of ‖v′ε‖L2(R) ≤ ‖φω‖L2(R). Hence, E(vε, R) → E(μ)
as ε → 0. Moreover, vε has compact support, so that one can think of it as supported 
on any given half–line of SN . We thus have

E(μ) = lim
ε→0+

E(vε,R) = lim
ε→0+

Fp,q(vε) ≥ Fp,q(μ) ,

so (27) is proved.
Assume now that Fp,q(μ) < E(μ) and let (un) ⊂ H1

μ(SN ) be a minimizing sequence 
for Fp,q. Plugging (25) and (26) into the definition of Fp,q gives

Fp,q(un) ≥ 1
2‖u

′
n‖2

2 −
Kp

p
μ

p+2
4 ‖u′

n‖
p
2−1
2 − 1

q
μ

q
4 ‖u′

n‖
q
2
2

which, since p ∈ (2, 6), q ∈ (2, 4), ensures that (un) is bounded in H1(SN ). Therefore 
there exists u ∈ H1(SN ) such that, up to subsequences, un ⇀ u weakly in H1(SN ), 
un → u in L∞

loc(SN ) and consequently un → u a.e. in SN .
Set m := ‖u‖2

2. By weak lower semicontinuity, we have m ≤ μ.
Assume m = 0, that is u ≡ 0. Then un(0) → 0 as n → +∞, so that recalling (12)

leads to

E(μ) > Fp,q(μ) = lim
n

Fp,q(un) = lim
n

E(un, SN ) ≥ E(μ),

i.e., a contradiction. Hence, u �≡ 0 on SN .
Suppose then that 0 < m < μ. By weak convergence in H1(SN ) of un to u, we get 

‖un−u‖2
2 = μ −m +o(1) for n → +∞. On the one hand, since p, q > 2 and μ

‖un−u‖2
2
> 1

for n sufficiently large,
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Fp,q(μ) ≤ Fp,q

(√
μ

‖un − u‖2
2
(un − u)

)

= 1
2

μ

‖un − u‖2
2
‖u′

n − u′
n‖2

2 −
1
p

(
μ

‖un − u‖2
2

) p
2

‖un − u‖pp

− 1
q

(
μ

‖un − u‖2
2

) q
2

|un(0) − u(0)|q <
μ

‖un − u‖2
2
Fp,q(un − u),

so that

lim inf
n

Fp,q(un − u) ≥ μ−m

μ
Fp,q(μ). (28)

On the other hand, an analogous reasoning leads to

Fp,q(μ) ≤ Fp,q

(√
μ

‖u‖2
2
u

)
<

μ

‖u‖2
2
Fp,q(u),

so

Fp,q(u) > m

μ
Fp,q(μ). (29)

Moreover, it holds

Fp,q(un) = Fp,q(un − u) + Fp,q(u) + o(1). (30)

Indeed, by u′
n ⇀ u′ weakly in L2(SN ) and un → u in L∞

loc(SN ), we have ‖u′
n − u′‖2

2 =
‖u′

n‖2
2 −‖u′‖2

2 + o(1) and |(un − u)(0)|q = o(1) as n is large enough. Furthermore, owing 
to the Brezis-Lieb lemma [29],

‖un‖pp = ‖un − u‖pp + ‖u‖pp + o(1).

Using now (28), (29) and (30), we get

Fp,q(μ) = lim
n

Fp,q(un) = lim
n

Fp,q(un − u) + Fp,q(u)

>
μ−m

μ
Fp,q(μ) + m

μ
Fp,q(μ) = Fp,q(μ),

which is again a contradiction.
Henceforth, m = μ and u ∈ H1

μ(SN ). In particular, un → u in L2(SN ) so that, 
(un) being bounded in L∞(SN ), un → u in Lp(SN ) as n → +∞. Thus, by weak lower 
semicontinuity

Fp,q(u) ≤ lim
n

Fp,q(un) = Fp,q(μ) ,

that is u is a ground state of Fp,q at mass μ. �
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Corollary 3.2. Let μ > 0 be fixed. If there exists u ∈ H1
μ(SN ) such that Fp,q(u) ≤ E(μ), 

then ground states of (1) at mass μ exist.

Proof. If Fp,q(μ) = Fp,q(u) then u is a ground state at mass μ. Otherwise, Fp,q(μ) <
Fp,q(u) ≤ E(μ) and a ground state of (1) at mass μ exists by Proposition 3.1. �

Once existence of ground states is granted, the following proposition ensures unique-
ness and provides a complete characterization of their symmetry properties.

Proposition 3.3. Let μ > 0 be such that Fp,q(μ) is attained. Then the unique positive 
ground state of Fp,q at mass μ is the stationary state ηω(μ)

0 such that ηω(μ)
0 ∈ H1

μ(SN ).

To prove this proposition we need two auxiliary lemmas.

Lemma 3.4. Let u ∈ H1
μ(SN ), u ≥ 0. Then there exists u∗ ∈ H1

μ(SN ), u∗ ≥ 0, such that 
Fp,q(u∗) ≤ Fp,q(u) and either

(i) u∗ is symmetric with respect to the vertex and monotonically decreasing on each 
half–line, or

(ii) u∗ is symmetric with respect to the vertex and monotonically decreasing on N − 1
half–lines of SN , whereas on the remaining half–line it is non–decreasing from the 
origin to a unique maximum point and then non–increasing from this point to 
infinity.

Proof. Given a non-negative function u ∈ H1
μ(SN ), suppose first that ‖u‖∞ is attained 

at least once on every half–line of SN (this hypothesis includes the particular case in 
which the maximum is attained at the origin). Then all the values in the image of u
are attained at least N times on the graph. Thus, letting u∗ ∈ H1

μ(SN ) be the sym-
metric rearrangement of u on SN as defined in [3, Appendix A], standard properties of 
rearrangements give

‖u′‖2 ≥ ‖(u∗)′‖2 , ‖u‖p = ‖u∗‖p , |u∗(0)| = ‖u‖∞ ,

the inequality being strict unless u is symmetric with respect to the vertex and mono-
tonically decreasing on each half–lines. Hence, Fp,q(u∗) ≤ Fp,q(u) and u∗ is as in (i).

Assume now that ‖u‖∞ is not attained on every half–line of the graph. Let us discuss 
separately the cases u(0) = 0 and u(0) > 0.

If u(0) = 0, then let ‖u‖∞ be attained at x1 ∈ H1 and denote by I the interval 
connecting the origin to x1 along H1. Consider the following construction.

First, let ũ ∈ H1(0, x1) be the monotone rearrangement of the restriction u|I of u
to I. By definition of monotone rearrangement and the Pólya–Szegő inequality, we have 
ũ(0) = ‖u‖∞, ũ(x1) = 0 and
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‖u′‖L2(I) ≥ ‖ũ′‖L2(0,x1) , ‖u‖Lp(I) = ‖ũ‖Lp(0,x1) ∀p ≥ 1 .

Secondly, let ū ∈ H1(R+) be the monotone rearrangement of the restriction u|SN\I of 
u to SN \ I, so that ū(0) = ‖u‖∞ and, by usual estimates that hold for monotone 
rearrangements,

‖u′‖L2(SN\I) ≥ ‖ū′‖L2(R+) , ‖u‖Lp(SN\I) = ‖ū‖Lp(R+) ∀p ≥ 1 .

Define then u∗ : SN → R to be

u∗(x) :=

⎧⎪⎪⎨⎪⎪⎩
ũ(x1 − x) x ∈ I,

ū(x− x1) x ∈ H1 \ I,
0 otherwise.

By construction, it follows that u∗ ∈ H1
μ(SN ), u∗ is as in (ii) and Fp,q(u∗) ≤ Fp,q(u).

To conclude, it remains to deal with the case u(0) > 0. Given this, let J := {x ∈ SN :
u(x) > u(0)} and let u|J be the restriction of u to J . Note that u(J) = (u(0), ‖u‖∞] is 
connected and every t ∈ u(J) is attained at least twice on SN , except possibly ‖u‖∞. 
Hence, denoting by û ∈ H1(−L, L) the symmetric rearrangement of u|J on the interval 
(−L, L), with L := |J|

2 , we have (see [12, Proposition 3.1])

‖u′‖L2(J) ≥ ‖û′‖L2(−L,L) , ‖u‖Lp(J) = ‖û‖Lp(−L,L) ∀p ≥ 1, û(0) = ‖u‖∞ .

Similarly, u(SN \ J) is connected and every value t ∈ u (SN \ J) is attained at least 
N times (once on each half–line). Therefore, letting u† ∈ H1(SN ) be the symmetric 
rearrangement on SN of u|SN\J as in [3, Appendix A], we get

‖u′‖L2(SN\J) ≥ ‖(u†)′‖L2(SN ) , ‖u‖Lp(SN\J) = ‖u†‖Lp(SN ) p ≥ 1, u†(0) = u(0) .

Let then I be the interval [0, 2L] along H1, and set u∗ : SN → R to be

u∗(x) :=

⎧⎪⎪⎨⎪⎪⎩
û(x− L) x ∈ I

u†(x− 2L) x ∈ H1 \ I
u†(x) otherwise .

By construction, u∗ ∈ H1
μ(SN ), u∗ is as in (ii) and Fp,q(u∗) ≤ Fp,q(u), so that the proof 

is complete. �
Lemma 3.5. Consider u ∈ H1

μ(SN ) that does not have a local maximum point at the 
origin. Then there exists v ∈ H1

μ(SN ) such that Fp,q(v) < Fp,q(u).
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Proof. Given u ∈ H1
μ(SN ), let u be the restriction of u to H1∪H2 and ũ be the restriction 

of u to SN \ (H1 ∪H2). Set also

μ :=
∫

H1∪H2

|u|2 dx, μ̃ :=
∫

SN\(H1∪H2)

|ũ|2 dx.

For ε > 0 small enough, let ν ∈ (−ε, ε). Since u has no maximum point at the origin, 
define

uν(x) :=

⎧⎨⎩
√

μ+ν
μ u(x + T (ν)) x ∈ H1 ∪H2√

μ̃−ν
μ̃ ũ(x) x ∈ SN \ (H1 ∪H2) ,

where the shift T (ν) is such that T (0) = 0 and uν is continuous at the origin. One has 
‖uν‖2

2 = μ for every ν and

d2

dν2Fp,q(uν)
∣∣∣
ν=0

= − p− 2
4

⎡⎢⎣ 1
μ2

∫
H1∪H2

|u|p dx + 1
μ̃2

∫
SN\(H1∪H2)

|ũ|p dx

⎤⎥⎦− q − 2
4μ̃2 |u(0)|q

≤− 1
4μ2

⎡⎣(p− 2)
∫
SN

|u|p dx + (q − 2)|u(0)|q
⎤⎦ < 0,

so that, choosing ε small enough and setting v := uν for any ν ∈ (−ε, ε), we conclude. �
Proof of Proposition 3.3. Note that, by Lemma 3.4–3.5, any ground state u ∈ H1

μ(SN )
of Fp,q at mass μ has to be symmetric with respect to the origin and non–increasing 
on each half–line. Since the unique solution to (13) fulfilling these properties is ηω0 and 
given that, by Corollary 2.2, there exists a unique ω > 0 in (13) for which ηω0 belongs to 
H1

μ(SN ), the proof is complete. �
Note that, whenever Fp,q(μ) is attained, Proposition 3.3 entails

Fp,q(μ) = inf
v∈H1

μ,rad(SN )
Fp,q(v)

where H1
μ,rad =

{
v ∈ H1

μ(SN ) : v is symmetric with respect to the origin of SN

}
. We 

conclude this section with the next proposition concerning radial ground states of Fp,q, 
establishing some properties that will be useful in what follows.

Proposition 3.6. For every μ > 0, the minimization problem

Frad
p,q (μ) := inf

v∈H1 (S )
Fp,q(v) (31)
μ,rad N
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is always attained by the unique stationary state ηω(μ)
0 .

Proof. First notice that

F rad
p,q (μ) < 0 (32)

for every μ > 0. Indeed, let us denote by ϕ ∈ H1(R+) the restriction to R+ of the soliton 
φω

( 2μ
N

) of mass 2μ
N , so that ‖ϕ‖2

L2(R+) = μ
N . Setting v :≡ ϕ on each half–line of SN , we 

get v ∈ H1
μ,rad(SN ) and

F rad
p,q (μ) ≤ Fp,q(v) < NE(ϕ,R+) = −

(
2
N

)2β

θpμ
2β+1 < 0 .

Moreover, the minimization problem (31) is equivalent to minimize Fp,q among all func-
tions u ∈ H1

μ,rad(SN ) non–increasing on each half–line. Indeed, arguing as in the first part 
of the proof of Lemma 3.3, it is possible to construct u∗ ∈ H1

μ,rad(SN ), monotonically 
decreasing on each half–line and such that Fp,q(u∗) < Fp,q(u).

Therefore, let (un) ⊂ H1
μ,rad(SN ) be a minimizing sequence for (31) and, due to 

Lemma 3.5, assume without loss of generality that ‖un‖∞ = un(0) and un is non–
increasing on each half–line. By Gagliardo–Nirenberg inequalities (25)–(26) it follows 
that (un) is bounded in H1(SN ), so that un ⇀ u in H1(SN ) and un → u in L∞

loc(SN ), 
for some u ∈ H1(SN ).

Assume by contradiction that u ≡ 0 on SN . Then un → 0 in L∞
loc(SN ), that is un → 0

in L∞(SN ) since un attains its L∞ norm at the origin. Thus un → 0 strongly in Lp(SN )
and by weak lower semicontinuity

F rad
p,q (μ) = lim

n
Fp,q(un) ≥ 0

which is impossible by (32). Thus u �≡ 0 on SN .
Let then m := ‖u‖2

2, so that ‖un − u‖2
2 → μ −m as n → +∞ by weak convergence of 

un to u in L2(SN ), and assume by contradiction that 0 < m < μ.
Since un ∈ H1

μ,rad(SN ) is non–increasing on each half–line, then for every n we have 
that un − u is symmetric with respect to the origin and (un − u)(0) → 0 as n → +∞
since un → u in L∞

loc(SN ). Hence, one can argue again as in the first part of the proof of 
Lemma 3.3 to construct (un−u)∗ ∈ H1(SN ) symmetric with respect to the origin, non–
increasing on each half–line and such that ‖(un−u)∗‖2 = ‖un−u‖2 and Fp,q((un−u)∗) ≤
Fp,q(un − u).

Thus, following the steps in the proof of Proposition 3.1, we have

F rad
p,q (μ) ≤ Fp,q

(√
μ

‖(un − u)∗‖2
2

(un − u)∗
)

<
μ

∗ 2Fp,q((un − u)∗) ≤ μ
2Fp,q(un − u) ,
‖(un − u) ‖2 ‖un − u‖2
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that is

lim inf
n

Fp,q(un − u) ≥ μ−m

μ
F rad

p,q (μ) .

Similarly, since u ∈ H1
m,rad(SN ),

Fp,q(u) > m

μ
F rad

p,q (μ) .

Relying again on u′
n ⇀ u′ in L2(SN ), un → u in L∞

loc(SN ) and on the Brezis–Lieb lemma 
[29] as in the proof of Proposition 3.1, we obtain

F rad
p,q (μ) = lim

n
Fp,q(un) = lim

n
Fp,q(un − u) + Fp,q(u)

>
μ−m

μ
F rad

p,q (μ) + m

μ
F rad

p,q (μ) = F rad
p,q (μ) ,

i.e. a contradiction. Henceforth, u ∈ H1
μ,rad(SN ) and by weak lower semicontinuity 

Fp,q(u) = F rad
p,q (μ). In particular, u is solution of (13) for some ω > 0, so that it must 

coincide with the unique solution ηω(μ)
0 to (13) that verifies ‖ηω(μ)

0 ‖2
2 = μ. �

4. Proof of Theorem 1.1–1.2 and of Proposition 1.3

This section is devoted to the details of the proof of the main results of the paper.
We begin with the following preliminary lemma.

Lemma 4.1. Let μ > 0 be given.

(i) If q < p
2 + 1 and ground states of Fp,q exist at mass μ, then, for every μ ≤ μ, 

ground states at mass μ exist too.
(ii) if q > p

2 + 1 and ground states of Fp,q exist at mass μ, then, for every μ ≥ μ, 
ground states at mass μ exist too.

Proof. Recall that, by Proposition 3.3, whenever ground states exist they coincide with 
the unique stationary state ηω(μ)

0 such that ‖ηω(μ)
0 ‖2

2 coincides with the prescribed mass, 
so that in this case Fp,q(μ) = Fp,q

(
η
ω(μ)
0

)
. Therefore, relying also on Proposition 3.1

and Corollary 3.2, we have that ground states of Fp,q at mass μ exist if and only if

Fp,q

(
η
ω(μ)
0

)
≤ E(μ)

which by (11) may be rewritten as

F rad
p,q (μ)
2β+1 ≤ −θp ,
μ
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where, as defined in (10), β = p−2
6−p and F rad

p,q (μ) = Fp,q

(
η
ω(μ)
0

)
by Proposition 3.6.

Set K(μ) := Frad
p,q (μ)
μ2β+1 for every μ > 0. Since F rad

p,q (μ) is a differentiable function of μ by 
Proposition 3.6 and formula (22), it follows that K ′ exists for every μ > 0 and it verifies

K ′(μ) = 1
μ2β+1

((
F rad

p,q

)′ (μ) − (2β + 1)
F rad

p,q (μ)
μ

)
, (33)

where 
(
F rad

p,q

)′ denotes the derivative of F rad
p,q .

Let us now prove statement (i). Assume q < p
2 + 1. Letting ηω(μ)

0 be the radial, 
monotonically decreasing ground state at mass μ, we have

F rad
p,q (μ− ε)−F rad

p,q (μ) ≤ Fp,q

(√
μ− ε

μ
η
ω(μ)
0

)
− Fp,q

(
η
ω(μ)
0

)
=1

2
ε

μ

(
−‖

(
η
ω(μ)
0

)′
‖2
2 + ‖ηω(μ)

0 ‖pp + |ηω(μ)
0 (0)|q

)
+ o(ε) = 1

2εω(μ) + o(ε) ,

where ε > 0 is sufficiently small. Therefore

(
F rad

p,q

)′ (μ−) ≥ −1
2ω(μ) ∀μ > 0 ,

where 
(
F rad

p,q

)′ (μ−) denotes the left derivative of F rad
p,q at μ.

Conversely, denoting by 
(
F rad

p,q

)′ (μ+) the right derivative of F rad
p,q at μ, the same 

argument leads to

(
F rad

p,q

)′ (μ+) ≤ −1
2ω(μ) ,

so that, since F rad
p,q is differentiable at every μ > 0,

(
F rad

p,q

)′ (μ) = −1
2ω(μ) .

Coupling with (33) and making use of the explicit expression of Fp,q

(
η
ω(μ)
0

)
as in (22)

yields

K ′(μ) = p + 2 − 2q
q(6 − p)

|η0(0)|q
μ2β+2 > 0

for every μ > 0, and (i) is proved.
The proof of statement (ii) is analogous. �
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Proof of Theorem 1.1. Set

μp,q :=
{

sup{μ > 0 : Fp,q(μ) ≤ E(μ)} if q < p
2 + 1

inf{μ > 0 : Fp,q(μ) ≤ E(μ)} if q > p
2 + 1 .

By Proposition 3.1, Corollary 3.2 and Lemma 4.1, it follows that if q < p
2 +1, then ground 

states of Fp,q at mass μ exist if and only if μ ≤ μp,q, whereas if q > p
2 + 1, then ground 

states Fp,q at mass μ exist if and only if μ ≥ μp,q. Furthermore, Proposition 3.6 ensures 
that, whenever they exist, ground states at prescribed mass are also unique. Thus, to 
complete the proof of Theorem 1.1 it is enough to show that

0 < μp,q < +∞ .

The proof is divided in two steps.

Step 1. Existence. Let u = (ui)Ni=1 ⊂ H1
μ(SN ) be given by

ui(x) = Ae−Bx onHi , i = 1, . . . , N.

Imposing the boundary condition in (13), we get that

NB = Aq−2. (34)

Furthermore,

μ = NA2

2B (35)

and

Fp,q(u) = N

4 A2B − N

p2
Ap

B
− 1

q
Aq. (36)

Combining (34), (35) and (36), we get

Fp,q(u) = −
(

1
q
− 1

4

)(
2
N2

) q
4−q

μ
q

4−q − N2

p2

(
2
N2

) p−q+2
4−q

μ
p−q+2
4−q .

Now, if q < p
2 + 1, then

q

4 − q
<

2q
6 − p

<
p + 2
6 − p

= 2β + 1

so that, recalling (11),

Fp,q(μ) ≤ Fp,q(u) < E(μ) for μ small enough,
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which shows that μp,q > 0.
On the contrary, if q > p

2 + 1, then

q

4 − q
>

2q
6 − p

>
p + 2
6 − p

= 2β + 1

and consequently

Fp,q(μ) ≤ Fp,q(u) < E(μ) for μ large enough,

i.e. μp,q < +∞.

Step 2. Non-existence. As Proposition 3.3 ensures that if a ground state of (1) at mass 
μ exists, then it coincides with ηω(μ)

0 , relations (18) and (19) become respectively

t

(1 − t2)
q−2
p−2

=
(
p
2
) q−2

p−2 ω(μ)
2q−2−p
2(p−2)

N
(37)

and

μ = 2N
(
p
2
) 2

p−2 ω(μ)
6−p

2(p−2)

p− 2

1∫
t

(1 − s2)
4−p
p−2 ds. (38)

Assume now q < p
2 + 1. Since

0 ≤
1∫

t

(1 − s2)
4−p
p−2 ≤

1∫
0

(1 − s2)
4−p
p−2 < +∞ for 2 < p < 6,

by (38) we get ω(μ) → ∞ as μ → +∞, and consequently t → 0+ by (37). Hence it 
follows that

ω(μ) ∼ μ
2(p−2)
6−p as μ → +∞.

Let then m := ‖φω(μ)‖2
L2(R), where φω(μ) is the soliton (8) associated to the Lagrange 

multiplier ω(μ). Since t → 0 as μ → +∞, recalling (9) shows that

lim
μ→+∞

μ

m
= N

2

and combining with (10) gives∣∣∣ηω(μ)
0 (0)

∣∣∣q ≤ ‖φω(μ)‖q ∞ = Cpm
2q

6−p ∼ μ
2q

6−p as μ → +∞ . (39)
L (R)
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Conversely, since almost every value in the range of ηω(μ)
0 is attained N times on SN , by 

[14, Lemma 2.1]

E
(
η
ω(μ)
0 , SN

)
≥ −θp

(
2
N

) 2(p−2)
6−p

μ
p+2
6−p (40)

for every μ > 0.
Combining with (39) and the fact that q < p

2 + 1 entails

Fp,q

(
η
ω(μ)
0

)
≥ −θp

(
2
N

) 2(p−2)
6−p

μ
p+2
6−p − Cμ

2q
6−p ∼ −θp

(
2
N

) 2(p−2)
6−p

μ
p+2
6−p > E(μ)

for μ sufficiently large and N ≥ 3, i.e. μp,q < +∞.
If on the contrary q > p

2 + 1, then a similar argument shows that

ω(μ) ∼ μ
2(p−2)
6−p as μ → 0+

and ∣∣∣ηω(μ)
0 (0)

∣∣∣q ≤ Cμ
2q

6−p

for μ small enough.
Coupling again with (40) then leads to

Fp,q

(
η
ω(μ)
0

)
> E(μ)

provided μ is sufficiently small, yielding μp,q > 0 and we conclude. �
In the final part of the section we prove the main result in the case q = p

2 + 1.

Proof of Theorem 1.2. If q = p
2 + 1, then (37) reduces to

t =
√
p√

p + 2N2
(41)

and (38) can be rewritten as

μ = 2N
(
p
2
) 2

p−2 ω
6−p

2(p−2)

p− 2 I(t),

where

I(x) :=
1∫
(1 − s2)

4−p
p−2 ds ∀x ∈ [0, 1].
x
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Then

ω(μ) =

⎛⎝ (p− 2)μ

2NI(t)
(
p
2
) 2

p−2

⎞⎠
2(p−2)
6−p

, (42)

and plugging (41) and (42) into (22) for ηω(μ)
0 gives

Fp,q

(
η
ω(μ)
0

)
= −2−

p−2
6−p (6 − p)

(p + 2)p
4

6−p

(
p− 2
NI(t)

) 2(p−2)
6−p

μ
p+2
6−p ,

whereas making use of (10) one can rewrite E(μ) as

E(μ) = −2
p−2
6−p (6 − p)

(p + 2)p
4

6−p

(
p− 2
I(0)

) 2(p−2)
6−p

μ
p+2
6−p .

By Proposition 3.1, Corollary 3.2 and Proposition 3.6, ground states of (1) at mass μ
exist if and only if

Fp,q

(
η
ω(μ)
0

)
≤ E(μ)

that, thanks to the previous expressions, can be reduced to

N
I
(√

p
p+2N2

)
I(0) ≤ 2 . (43)

Note that the function h : R+ → R+ defined as

h(x) := x

1∫
√

p

p+2x2

(1 − s2)
4−p
p−2 ds (44)

is non-decreasing on R+. Indeed, differentiating (44), we have

h′(x) :=
1∫

√
p

p+2x2

(1 − s2)
4−p
p−2 ds +

2
2

p−2
√
px

4
p−2

(p + 2x2)
p+2

2(p−2)
> 0 ∀x > 0 .

Therefore, observing that the left-hand side of (43) is strictly less than 2 for N = 2, 
it is non-decreasing in N and diverges to +∞ as N → +∞, since I is continuous and 
bounded and p

p+2N2 → 0, then there exists Np ≥ 2 such that existence of ground states 
is guaranteed for N ≤ Np, while non-existence holds for N > Np. �
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Fig. 2. The graph of R(p) :=
I
(√

p

p+18

)
I(0) as a function of p ∈ (2, 6). The validity of (43) at N = 3 is equivalent 

to R(p) ≤ 0. These numerical simulations suggest that condition (43) always holds at N = 3, for every 
p ∈ (2, 6).

As already pointed out in the Introduction and displayed clearly in the previous proof, 
without further assumption on p ∈ (2, 6), at the moment we can prove only that Np in 
Theorem 1.2 satisfies Np ≥ 2 for every p ∈ (2, 6). However, numerical simulations (see 
Fig. 2) strongly suggest that actually Np ≥ 3 for every p ∈ (2, 6). To conclude, we thus 
provide the proof of Proposition 1.3.

Proof of Proposition 1.3. We split the proof in two parts.
Statement (i). Fix N > 0. We need to show that Np ≥ N as soon as p is sufficiently 

close to 2. To this end, we verify that, given N , condition (43) is always satisfied when 
p approaches 2.

Note that if p ∈ (2, 4), then (1 − s2)
4−p
p−2 is a decreasing function of s ∈ [0, 1]. Hence,

I
(√

p

p + 2N2

)
=

1∫
√

p

p+2N2

(1 − s2)
4−p
p−2 ds ≤

(
2N2

p + 2N2

) 4−p
p−2

(
1 −

√
p

p + 2N2

)
.

Conversely,

I(0) =
1∫

0

(1 − s2)
4−p
p−2 ds =

1∫
0

(1 + s)
4−p
p−2 (1 − s)

4−p
p−2 ds ≥

1∫
0

(1 − s)
4−p
p−2 ds = p− 2

2 .

Therefore we get

N
I
(√

p
p+2N2

)
≤ 2N

(
2N2

2

) 4−p
p−2

(
1 −

√
p

2

)
→ 0 as p → 2+ ,
I(0) p− 2 p + 2N p + 2N
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so that (43) holds true as soon as p is close enough to 2. This shows that there exists 
δ = δ(N) so that for every p ∈ (2, 2 + δ) we have Np ≥ N , i.e. Proposition 1.3(i) is 
proved.

Statement (ii). Let p ∈ [4, 6). We begin by showing that Np < 5, proving that (43)
fails whenever p ∈ [4, 6) and N ≥ 5.

Note that assuming p ≥ 4 implies that (1 − s2)
4−p
p−2 is increasing as a function of s and 

that (1 − s2)
4−p
p−2 ≥ 1 on [0, 1]. Henceforth, we get

I
(√

p

p + 2N2

)
≥ 1 −

√
p

p + 2N2 .

Moreover, fixing s ∈ [0, 1) and regarding (1 − s2)
4−p
p−2 as a function of p ∈ [4, 6), we have

d

dp
(1 − s2)

4−p
p−2 = −(1 − s2)

4−p
p−2 ln(1 − s2) 2

(p− 2)2 > 0 ,

i.e. for every given s ∈ (0, 1), (1 − s2)
4−p
p−2 is an increasing function of p. Therefore, for 

every s ∈ [0, 1) and p ∈ [4, 6)

(1 − s2)
4−p
p−2 ≤ (1 − s2)− 1

2 ,

so that integrating over [0, 1] gives

I(0) ≤
1∫

0

(1 − s2)− 1
2 ds = π

2 .

We thus obtain

N
I
(√

p
p+2N2

)
I(0) ≥ 2N

π

(
1 −

√
p

p + 2N2

)
≥ 2N

π

(
1 −

√
3

3 + N2

)
,

where the last inequality follows from the fact that, for every given N , 
√

p
p+2N2 is an 

increasing function of p.
In view of (43), to prove that Np ∈ {2, 3, 4} for every p ∈ [4, 6), it is then enough to 

show that, for every N ≥ 5

2N
π

(
1 −

√
3

3 + N2

)
> 2 ,

that can be equivalently rewritten as

G(N) := N4 − 2πN3 + π2N2 − 6πN + 3π2 > 0 . (45)
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To prove that (45) holds for every N ≥ 5, we will show that it is true when N = 5 and 
that G(N) is increasing function of N on [5, +∞).

On the one hand, direct calculations immediately show that G(5) > 0. On the other 
hand, differentiating (45) with respect to N gives

G′(N) = 4N3 − 6πN2 + 2π2N − 6π ,

and again we directly see that G′(5) > 0. A further differentiation leads to

G′′(N) = 12N2 − 12πN + 2π2 ,

yielding

G′′(N) > 0 for every N ≥ 3 +
√

3
6 π .

Since 5 > 3+
√

3
6 π and G′(5) > 0, this implies that G′(N) ≥ 0 for every N ≥ 5, and 

coupling with G(5) > 0 this ensures that G(N) ≥ 0 for every N ≥ 5. This concludes the 
proof of the first part of Proposition 1.3(ii).

We are then left to show that there exists δ > 0 such that, if p ∈ (4 −δ, 4 +δ) ∪(6 −δ, 6), 
then Np = 3.

We start by proving the results for p in a suitable neighbourhood of 4. Note that, for 
every given N , we have

N
I
(√

4
4+2N2

)
I(0) = N

∫ 1√
4

4+2N2
ds∫ 1

0 ds
= N

(
1 −

√
2

2 + N2

)
.

Hence, evaluating the previous expression at N = 3 and N = 4 respectively, we obtain

3
(

1 −
√

2
11

)
< 2 , 4

(
1 −

√
2
18

)
= 8

3 > 2 ,

so that condition (43) is satisfied at p = 4, N = 3, whereas it fails at p = 4, N = 4, 
in turn implying N4 = 3. Since both previous inequalities are strict, by continuity with 
respect to p, we conclude that Np = 3 for every p ∈ (4 − δ, 4 + δ), for some δ > 0.

Let us now concentrate on the case p ∈ (6 − δ, 6). When p = 6, evaluating the left 
hand side of (43) at N = 3 and N = 4 gives

3

∫ 1
1
2
(1 − s2)− 1

2 ds∫ 1
0 (1 − s2)− 1

2 ds
=3

π
2 − π

6
π
2

= 2 ,

4

∫ 1√
3
19

(1 − s2)− 1
2 ds∫ 1 2 − 1

2
=4

π
2 − arcsin

(√
3
19

)
π > 2 .
0 (1 − s ) ds 2
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On the one hand, the second inequality being strict shows that (43) is violated when 
N = 4 and p ∈ (6 − δ, 6), for suitable δ > 0, so that for all these exponents it must be 
Np ≤ 3.

On the other hand, the first line of the previous equation shows that (43) becomes 
an equality when p = 6 and N = 3. Therefore, to show that Np = 3, we need to further 
analyse the behaviour of the left hand side of (43) when N = 3 and p approaches 6. To 
do this, fix N = 3 and set

R(p) :=
I
(√

p
p+18

)
I(0) . (46)

We will conclude the proof by showing that R′(6) > 0. By continuity, this eventually 
guarantees the existence of δ > 0 so that Np = 3 for every p ∈ (6 − δ, 6).

Differentiating (46) with respect to p we obtain

R′(p) =

(
− 9

√
p+18√

p(p+18)2

(
18

p+18

) 4−p
p−2 − 2

(p−2)2
∫ 1√

p
p+18

(1 − s2)
4−p
p−2 ln(1 − s2) ds

) ∫ 1
0 (1 − s2)

4−p
p−2(∫ 1

0 (1 − s2)
4−p
p−2

)2

+
2

(p−2)2
∫ 1√

p
p+18

(1 − s2)
4−p
p−2 ds

∫ 1
0 (1 − s2)

4−p
p−2 ln(1 − s2) ds(∫ 1

0 (1 − s2)
4−p
p−2

)2 .

(47)

According to the previous expression, the numerator of R′(6) reads⎛⎜⎝− 1
16

√
3
− 1

8

1∫
1
2

(1 − s2)− 1
2 ln(1 − s2) ds

⎞⎟⎠ π

2 + 1
8

(π
2 − π

6

) 1∫
0

(1 − s2)− 1
2 ln(1 − s2) ds ,

that can be rewritten as

π

16

⎛⎜⎝−1
3

1∫
0

(1 − s2)− 1
2 ln(1 − s2) ds− 1

2
√

3
+

1
2∫

0

(1 − s2)− 1
2 ln(1 − s2) ds

⎞⎟⎠ . (48)

The first integral in the above bracket can be computed explicitly making use of poly-
logarithmic functions

1∫
0

(1 − s2)− 1
2 ln(1 − s2) ds = −π ln 2 . (49)

Furthermore, since (1 − s2)− 1
2 ln(1 − s2) is a decreasing function of s on 

[
0, 1], we have
2
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1
2∫

0

(1 − s2)− 1
2 ln(1 − s2) ds ≥

1
2∫

0

2√
3

ln
(

3
4

)
ds = 1√

3
ln
(

3
4

)
.

As it holds

π ln 2
3 >

1
2
√

3
− 1√

3
ln
(

3
4

)
,

combining with (47), (48) and (49) we have R′(6) > 0, and the proof is complete. �
5. Proof of Proposition 1.4

In this section we prove the orbital stability of the radial stationary state ηω(μ)
0 , even 

for values of the mass for which there is no ground state. The proof of Proposition 1.4
strongly relies on a method introduced in [5], which is essentially based on the reduction 
of an infinite-dimensional problem to a finite-dimensional one. The argument of [5] ex-
tends almost straightforwardly to our setting. The idea of the method is the following. 
We map continuously every function in the mass constrained space into another function 
made of pieces of solitons, whose energy is lower than the one of the original function. 
Then, we prove that the radial stationary states are local minimum points for the energy 
among functions with the same mass and made of pieces of solitons. Thus, a fortiori, 
they are local minima in the whole mass constrained energy space, and therefore, due to 
the general stability theory, they are orbitally stable. Here we limit ourselves to sketch 
the main steps of the proof, explicitly pointing out the minor differences with respect to 
[5] whenever occurring.

Proof of Proposition 1.4. Owing to Theorem 3 in [45], the orbital stability of ηω(μ)
0 is 

equivalent to its local minimality for Fp,q in H1
μ(SN ), hence we prove that ηω(μ)

0 is a local 
minimum for the energy in H1

μ(SN ).
Following [5, Definition 2.1], we fix μ > 0 and define the multi-soliton manifold M as 

the subspace of H1
μ(SN ) made of all the functions whose restriction to each half-line Hj

of SN gives a piece of soliton, i.e.

M :=
{
u ∈ H1

μ(SN ) : uj = φωj
(· + aj), for some ωj , aj ∈ R, j = 1, . . . , N

}
.

Given a function η ∈ H1
μ(SN ) such that η(0) �= 0, we define the multi-soliton transfor-

mation of η as the unique function Ση ∈ M so that the restriction (Ση)j of Ση to the 
half–line Hj satisfies

(Ση)j := φω(mj ,h)(· + a(mj , h)),

where
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mj :=
∫
Hj

η2
j dxj , j = 1, . . . , N, and h = |η(0)|,

and φω(mj ,h)(· +a(mj , h)) is the unique piece of soliton with mass mj and φω(mj ,h)(a(mj ,

h)) = h. For every given values of mj , h, the uniqueness of such φω(mj ,h)(· + a(mj , h))
has been proved in [11, Theorem 4.1]. Furthermore, by [5, Remark 3.4] we have for every 
η so that η(0) �= 0

Fp,q(Ση) ≤ Fp,q(η) ,

and equality holds if and only if η ∈ M, that is Ση ≡ η. In light of this and of the 
continuity of Σ [5, Proposition 3.2], to show that ηω(μ)

0 is a local minimizer of Fp,q in 
H1

μ(SN ), it is enough to prove that it locally minimizes the energy in M. Note that 
η
ω(μ)
0 ∈ M for every μ > 0.

We observe that any given function ϕ ∈ M corresponds to a point P =
(m1, . . . , mN−1, h) ∈ (0, +∞)N , where mj is the mass of the restriction ϕj of ϕ to 
Hj , j = 1, . . . , N − 1, and h = |ϕ(0)|. Therefore, it is natural to define the reduced 
energy function r : (0, +∞)N → R as

r(P ) := Fp,q(ϕ),

which can be conveniently decomposed as follows

r(P ) =
N−1∑
i=1

e(mi, h) + e

(
μ−

N−1∑
i=1

mi, h

)
,

where e : (0, +∞) ×R+ → R is given by

e(m,h) := 1
2‖φ

′
ω(m,h)(· + a(m,h))‖2

L2(R+) −
1
p
‖φω(m,h)(· + a(m,h))‖pLp(R+) −

1
qN

hq.

Thus, setting h̄ = |ηω(μ)
0 (0)|, the local minimality of ηω(μ)

0 in M is equivalent to the local 
minimality for r of the point P =

(
μ
N , . . . , μ

N , h̄
)
.

Since P is an internal point of (0, +∞)N and it is a stationary point for r as ηω(μ)
0 is 

a critical point for Fp,q, to conclude it is then sufficient to prove that the Hessian matrix 
of r evaluated at P is positive definite. By straightforward computations,

∂2r

∂mi∂mj
(P ) = (1 + δij)

∂2e

∂m2

( μ

N
, h̄
)
,

∂2r

∂h2 (P ) = N
∂2e

∂h2

( μ

N
, h̄
)
,

∂2r (P ) = 0 ,

∂mi∂h
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where δij denotes as usual the Kronecker’s symbol of i, j. By elementary linear alge-
bra, one easily sees that the Hessian matrix has three eigenvalues: N ∂2e

∂m2

(
μ
N , h̄

)
with 

multiplicity 1, ∂2e
∂m2

(
μ
N , h̄

)
with multiplicity N − 2 and ∂2e

∂h2

(
μ
N , h̄

)
with multiplicity 1. 

Therefore, to show that the Hessian matrix is positive definite, we need to prove that

∂2e

∂m2

( μ

N
, h̄
)
> 0 (50)

and

∂2e

∂h2

( μ

N
, h̄
)
> 0. (51)

The proof of (50)–(51) is analogous to the one of inequalities (4.2)–(4.3) of [5]. The main 
idea is to consider the variations

f1(t) := r(m(t), h̄) and f2(t) := r
( μ

N
, . . . ,

μ

N
, h̄ + t

)
, t ∈ (−ε, ε)

where m(t) =
(
μ
N + t, μ

N , . . . , μ
N

)
.

It is plainly seen that

f ′′
1 (0) = 2 ∂2e

∂m2

( μ

N
, h̄
)

and f ′′
2 (0) = N

∂2e

∂h2

( μ

N
, h̄
)
.

Note that f1(t) corresponds to an exchange of mass t between the first and the N–th 
half–lines, without involving the remaining N − 2 ones. Hence,

f1(t) − f1(0) = f1(t) − r
(
P
)

= F̃p,q (ϕt,R) − F̃p,q (ϕ0,R)

where ϕt, ϕ0 ∈ H1
2μ
N

(R) denote respectively the restriction to the line H1 ∪ HN of the 

function ηt ∈ M corresponding to the point (m(t), ̄h) and of the stationary state ηω(μ)
0 , 

and F̃p,q : H1
2μ
N

(R) → R is given by

F̃ (u,R) = 1
2‖u

′‖2
L2(R) −

1
p
‖u‖pLp(R) −

2
qN

|u(0)|q .

Here is the point where we need to argue slightly differently with respect to [5]. Indeed, we 
now rely on the results of [28], which guarantees that ϕ0 as above is a global minimizer of 
F̃p,q in H1

2μ
N

(R). Coupling with the stability result in [45, Theorem 3.4], this immediately 

yields

f1(t) − f1(0) ≥ C‖ϕt − ϕ0‖2
L2(R)

for some constant C > 0 and t small enough. Moving from the previous inequality, and 
repeating the same calculations as in [5, pp. 7411], we eventually obtain
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f1(t) − f1(0) ≥ Ct2 ,

that coupled with f ′
1(0) = 0 ensures f ′′

1 (0) ≥ C > 0. This proves (50). Since the same 
argument developed for f2 leads to (51), we conclude. �
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