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fragmentation functions with a Monte Carlo representation of their uncertainties. We discuss the quality 
of the determination, in particular its dependence on higher order corrections.
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1. Introduction

In a recent paper [1], we presented a determination of the frag-
mentation functions (FFs) [2] of charged pions from an analysis 
of hadron-production measurements in single-inclusive electron-
positron annihilation (SIA) and semi-inclusive deep-inelastic scat-
tering (SIDIS). The analysis, accurate to next-to-leading order (NLO) 
in perturbative quantum chromodynamics (QCD), utilised a frame-
work that combines a neural network parametrisation of FFs (op-
timised through knowledge of the analytical derivative of neural 
networks with respect to their parameters) with a Monte Carlo 
representation of FF uncertainties. This approach — which has been 
extensively used by the NNPDF Collaboration to determine the 
parton distribution functions (PDFs) of the proton [3–6] and of nu-
clei [7–9] — allowed us to reduce model bias in FF parametrisation 
as much as possible, and to faithfully propagate experimental and 
PDF uncertainties into FFs. These features are essential to achieve 
the methodological accuracy of FFs that are utilised to analyse, 
e.g., high-precision hadron production measurements at the Large 
Hadron Collider (LHC) and, in the future, at the Electron Ion Col-
lider (EIC) [10].

Methodological accuracy is however only one component of the 
overall accuracy of the FF determination. Other important compo-
nents are the accuracy of the experimental and theoretical inputs 
that also enter the FF determination. Regarding experimental accu-
racy, interplay between SIA and SIDIS measurements was studied 
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at length in Ref. [1], and the latter were found to be essential 
to constrain FFs for individual quark flavours. The two classes of 
measurements are indeed sensitive to different quark FF combi-
nations due to the way in which the corresponding observables 
factorise [11]. Regarding theoretical accuracy, derivation of approx-
imate next-to-next-to-leading order (NNLO) corrections to SIDIS, 
obtained from expansion of the resummed expressions, have been 
completed a few months ago [12].1 Given the long-standing avail-
ability of NNLO corrections to SIA [14–16], and to time-like evo-
lution [17–19], it is therefore natural to extend the framework 
developed in Ref. [1] to NNLO. This is the goal of this paper, in 
which we complement the original pion MAPFF1.0 FF sets [1] with 
their NNLO counterparts.

We also produce analogous kaon FF sets, both at NLO and 
NNLO. Together with pions, kaons represent the most copiously 
produced hadrons in high-energy particle collisions. An accurate 
knowledge of kaon FFs is of crucial importance to use SIDIS mea-
surements (including when the initial-state proton is longitudinally 
polarised) to constrain the (polarised) strange quark and anti-quark 
PDFs.

The MAPFF1.0 pion and kaon FF sets presented in this paper 
extend the available NNLO analyses that are based solely on SIA 
measurements [20,21], as well as the very recent (and to date only) 
NNLO global analysis of pion FFs based on SIA and SIDIS mea-
surements [22]. As for the previous determination [1], the NLO 
and NNLO MAPFF1.0 pion and kaon FF sets are publicly deliv-
ered through the LHAPDF library [23]. The software developed to 

1 Approximate N3LO corrections have also been presented in Ref. [13].
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produce them is also made open source [24]. In Sect. 2 we sum-
marise the experimental, theoretical and methodological input to 
our analysis; in Sect. 3 we discuss the main results; and in Sect. 4
we present a summary and an outlook.

2. Experimental, theoretical, and methodological input

The SIA and SIDIS experimental measurements that are used 
as input to this analysis closely follow those of our previous 
work. For pions, we use exactly the same measurements as in 
Ref. [1], albeit with a different treatment of experimental uncer-
tainties for the COMPASS data [25], see below. For kaons, we use 
SIA measurements performed at CERN (ALEPH [26], DELPHI [27]
and OPAL [28]), DESY (TASSO [29–31]), KEK (BELLE [32] and 
TOPAZ [33]) and SLAC (BABAR [34], TPC [35] and SLD [36]); we 
also use SIDIS measurements performed at CERN by COMPASS [37]
and at DESY by HERMES [38].

In the case of SIA, the data corresponds to the sum of the cross 
section for the production of positively and negatively charged 
kaons, differential with respect to either the longitudinal momen-
tum fraction z of the outgoing kaon carried by the fragmenting 
parton or the momentum of the measured kaon (see Sect. 2.2 in 
Ref. [21] for details). For BELLE, we use the measurement corre-
sponding to an integrated luminosity L = 68 fb−1 [32]. A more 
recent measurement, based on a larger luminosity L = 558 fb−1, 
exists [39]. However we do not consider it because of a poor con-
trol of the degree of correlation of systematic uncertainties, which 
typically exceed in magnitude uncorrelated statistical uncertain-
ties (see Ref. [1]). For BABAR we use the conventional data set, as 
done in other analyses, see e.g. Refs. [21,40,41]. This is in contrast 
to the pion measurement, for which we use the prompt data set. 
The difference between the prompt and conventional data sets is 
that only primary hadrons or decay products from particles with 
lifetime τ shorter than about 10−11 s are retained in the for-
mer. While prompt and conventional cross sections differ by about 
5–15% for pions, they are almost identical for kaons. As shown 
in previous analyses of pion FFs [21,42,43], the inclusion of the 
conventional pion data set leads to a significant deterioration of 
the statistical quality of the fit. For this reason we do not con-
sider the BABAR conventional pion data set at all. For DELPHI and 
SLD, in addition to the inclusive measurements, we also consider 
flavour-tagged measurements, whereby the production of the ob-
served kaon has been reconstructed from hadronisation of all light 
quarks or of a b quark.

In the case of SIDIS, the data corresponds to the hadron multi-
plicity, i.e. the SIDIS cross section normalised to the corresponding 
inclusive DIS cross section (see Sect. 3 in Ref. [1] for details). For 
HERMES, similarly to what we did in the case of pions, we consider 
the projection of the fully differential measurement as a function 
of the transferred energy Q 2 and of z in individual bins of the 
momentum fraction x carried by the incoming parton. We discard 
the bins with z < 0.2, which are used to control the model de-
pendence of the smearing-unfolding procedure, and with z > 0.8, 
which lie in the region where the fractional contribution from ex-
clusive processes is sizeable.

The kinematic coverage of the pion and kaon data is similar, 
see Sect. 2 of Ref. [1] for a detailed discussion. Kinematic cuts, to 
select only data points for which perturbative fixed-order predic-
tions are reliable, are as in Ref. [1] for pions. Specifically, for SIA 
we retain only the data points that fall in the interval [zmin, zmax], 
with zmin = 0.02 for experiments at a centre-of-mass energy equal 
to M Z and zmin = 0.075 for all other experiments, and zmax = 0.9
for all experiments. For SIDIS, we retain only the data points satis-
fying Q > Q cut, with Q cut = 2 GeV. In the case of kaons, we adopt 
exactly the same kinematic cuts as in the case of pions, with the 
exception of the value of zmin used for the BELLE and BABAR ex-
2

periments, which is set to 0.2. The reason being that the onset of 
small-z corrections at the centre-of-mass energy of B factories oc-
curs for kaons at a higher value of z than it does for pions. We use 
the same set of cuts in the NLO and NNLO fits. In principle, differ-
ent cuts could be defined depending on the perturbative order to 
maximise the amount of experimental information included in the 
fit. However, we prefer to be conservative, and use the same cuts 
determined in Ref. [1], where in particular a scan of the fit quality 
upon variation of Q cut was performed. A similar study will be dis-
cussed further below, after which we will show that slightly less 
restrictive SIDIS cuts could be used without significantly spoiling 
the fit quality. However, these may alter the FF accuracy or preci-
sion, as we will also discuss.

Information on correlations of experimental uncertainties is 
taken into account whenever available, as detailed in Sect. 2 of 
Ref. [1]. In contrast to Ref. [1], however, we no longer consider 
the systematic uncertainty for the COMPASS measurements [25,37]
to be 100% correlated across bins. We instead implement the rec-
ommendation to split the systematic uncertainty into two compo-
nents, and take only the largest component (which amounts to 80% 
of the total systematic uncertainty) to be 100% correlated across 
bins. The remaining component is treated as fully uncorrelated, 
and is added in quadrature to the statistical uncertainty. This treat-
ment is applied equally to pion and kaon measurements. In this 
respect, the NLO fit of pion FFs that we will present below differs 
from that of Ref. [1]. Further below we will also discuss how the 
fit quality and FFs are affected by variations in the treatment of 
experimental correlations in the COMPASS measurements.

The theoretical setup of our analysis closely follows that dis-
cussed in Sect. 3 of Ref. [1]. New to this determination is the 
inclusion of NNLO corrections to time-like DGLAP evolution equa-
tions and to SIA and SIDIS coefficient functions. Corrections to evo-
lution equations and to SIA build upon various implementations 
and benchmarks carried out in previous work [21,44–46]. Correc-
tions to SIDIS are instead taken from Ref. [12]. These corrections 
were derived using the threshold-resummation formalism. They 
are therefore approximate in that they only include the dominant 
contributions associated with the emission of soft gluons. Never-
theless, they are sufficiently accurate for our purpose: in Ref. [12]
it was shown that the approximate and exact NLO results, which 
are both known, differ only by a tiny amount in the kinematic re-
gion relevant to the SIDIS data considered in this work (see Fig. 1 
in Ref. [12]). The size of this difference is always largely smaller 
than the size of experimental uncertainties. It is reasonable to ar-
gue that the approximate NNLO result would not differ from the 
exact NNLO result, if known, by a larger amount. The unquantified 
uncertainty due to utilising the approximate, in lieu of the exact, 
result is therefore practically negligible. Furthermore, the inclusion 
of the dominant NNLO terms is expected to reduce the dependence 
of the cross section on the renormalisation and factorisation scales. 
This is what happens, as also shown in Ref. [12], see in particu-
lar Fig. 3 there. Finally, excellent perturbative stability of the SIDIS 
cross section was found very recently by extending the derivation 
in Ref. [12] to N3LO [13].

As in Ref. [1], we use the NNPDF3.1 [5] PDF sets as input to 
the computation of SIDIS cross sections, specifically those obtained 
assuming that charm is perturbatively generated. The perturbative 
order of the PDF set is taken consistently with the perturbative 
order of the FF analysis. We have explicitly verified, e.g. by using 
the more recent NNPDF4.0 parton sets [6], that the dependence of 
our results on the choice of the PDFs is very weak, due to can-
cellations that occur in the multiplicity ratio, see also Ref. [1]. Be-
cause no heavy-quark mass corrections have been determined for 
SIDIS, our analysis is carried out in the zero-mass variable-flavour-
number scheme. In this scheme all active partons are treated as 
massless, but a partial heavy-quark mass dependence is introduced 
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by requiring that sub-schemes with different numbers of active 
flavours match at the heavy-quark thresholds. The values of the 
charm- and bottom-quark thresholds are set to mc = 1.51 GeV and 
mb = 4.92 GeV, respectively, consistently with the NNPDF3.1 input 
PDF sets. Heavy-quark FFs are not set to zero below their respec-
tive thresholds, but are mathched2 and kept constant, i.e. they do 
not evolve. Their contribution is suppressed by PDFs in SIDIS (see 
Sect. 3 in Ref. [1] for details). We finally note that isoscalarity of 
the SIDIS targets is taken into account by assuming exact SU(2) 
symmetry between protons and neutrons; no nuclear corrections 
are taken into account, as are no target or hadron mass correc-
tions.

The statistical framework used in this analysis to infer FFs from 
experimental data is also the same as in Ref. [1]. Ingredients of the 
framework are the representation of experimental uncertainties 
into FFs by means of Monte Carlo sampling, and the parametri-
sation of FFs by means of neural networks. In the first respect, 
all of our FF sets are made of Nrep = 200 Monte Carlo replicas. 
In the case of SIDIS, a different PDF replica is chosen at ran-
dom from the NNPDF3.1 parton set for each fitted FF replica. This 
ensures the propagation of PDF uncertainties into FFs. In the sec-
ond respect, we consider, separately for pions and kaons, a single 
one-layered feed-forward neural network with one input node cor-
responding to the momentum fraction z, 20 intermediate nodes 
with a sigmoid activation function, and 7 output nodes with a lin-
ear activation function. This architecture amounts to a total of 187 
parameters.

The output nodes correspond to the independent FFs of the 
positively charged hadrons that we fit. In the case of pions, these 
are given by Eq. (10) in Ref. [1]. In the case of kaons, these are 
obtained from those for pions by exchanging d and s quarks, that 
is:

{D K +
u , D K +

s̄ , D K +
s = D K +

ū , D K +
d = D K +

d̄
,

D K +
c = D K +

c̄ , D K +
b = D K +

b̄
, D K +

g } ;
(1)

FFs for negatively charged hadrons are obtained from the positively 
charged ones by charge conjugation. The output nodes are squared 
to avoid large, unphysically negative FFs. The parametrisation is 
introduced at the initial scale μ0 = 5 GeV, as in our previous anal-
ysis [1]. Because this value is above the bottom quark threshold, 
we can parametrise the charm- and bottom-quark FFs, which re-
ceive large non-perturbative contributions, on the same footing as 
light quark FFs; FFs are then evolved to the scale of the SIDIS data 
(which can be lower than Q 0) in our fit. Our parametrisation does 
not include any power-like function to control the low- and high-z
behaviours of FFs; however we require them to vanish at z = 1 by 
subtraction of the neural network itself, see also Ref. [21].

Optimisation of the neural network parameters is achieved by 
minimisation of the χ2, see e.g. Eq. (21) in Ref. [1] for the exact 
definition used. Cross-validation is used to avoid overfitting, with 
a 50% training fraction for all of the data sets that contain more 
than 10 data points, otherwise the training fraction is 100%. Min-
imisation is realised with the Levenberg-Marquardt algorithm as 
implemented in the Ceres Solver package [48]; analytical deriva-
tives with respect to the parameters of the neural network are 
provided by the NNAD library [49].

3. Results and discussion

In Table 1 we report the number of data points, Ndat, and the 
value of the χ2 per data point, χ2/Ndat, for each data set included 

2 In both the NLO and the NNLO fits, FF heavy-quark matching conditions are 
implemented to O(αs), i.e. NLO, using the results of Ref. [47]. Indeed, the O(α2

s ), 
i.e. NNLO, corrections to the matching conditions are currently unknown.
3

in our pion and kaon fits at NLO and NNLO. Values corresponding 
to the SIA, SIDIS, and global data sets are also displayed. Inspection 
of Table 1 allows us to draw two observations.

First, we notice that the fit quality, as measured by the χ2

per data point, reveals a generally good description of the entire 
data set, for both pions and kaons, and separately for SIA and 
SIDIS measurements. Anomalously small values of the χ2 per data 
point are found for some data sets, that have low statistical signifi-
cance because of either their limited number of data points (TASSO 
and HERMES) or their large uncorrelated uncertainties (BELLE), see 
Refs. [1,21]. The fit quality of the NLO pion fit is better than that 
found in Ref. [1]. The two fits, albeit based on the same data set 
and methodology, differ for the treatment of correlations in the 
COMPASS measurement. This is the reason for the reduction of the 
total χ2 per data point from 0.90 in Ref. [1] to 0.68, as we will 
further discuss below.

Second, we notice that the dependence of the fit quality on the 
perturbative accuracy of the fit is opposite for pion and kaon FFs. 
When moving from NLO to NNLO, the total χ2 per data point de-
teriorates from 0.68 to 0.76 in the former case, while it improves 
from 0.62 to 0.55 in the latter case. This behaviour is somewhat 
surprising given that NNLO corrections are independent from the 
hadron species. Also, the deterioration equally affects SIA and SIDIS 
data for pions, as does the improvement for kaons. The reasons for 
this behaviour, which differs from what was observed in a similar 
NNLO analysis [22], are only partly understood, as we will discuss 
below.

Figs. 1 and 2 display, for positively charged pions and kaons 
respectively, a comparison of the FFs (times the longitudinal mo-
mentum fraction z) obtained from our NLO and NNLO fits. For 
pions, we show Dπ+

u , Dπ+
d , Dπ+

d̄
, Dπ+

s+ , Dπ+
b+ and Dπ+

g ; for kaons, 
we show D K +

u , D K +
s , D K +

s̄ , D K +
d+ , D K +

b+ and D K +
g . In both cases, FFs 

are displayed at the parametrisation scale μ = 5 GeV, their expec-
tation values and uncertainty bands correspond to the mean and 
standard deviation computed over the ensemble of FF replicas, and 
the lower insets display the FFs normalised to the NLO FFs.

Inspection of Figs. 1 and 2 reveals that inclusion of NNLO cor-
rections results in a suppression of quark FFs, and in an enhance-
ment of the gluon FF in the large-z region, z � 0.5. This behaviour 
is expected: quark FFs ought to be suppressed to counteract the 
enhancement of theoretical predictions for SIA and SIDIS cross sec-
tions induced by NNLO corrections [12,50]. At the same time, the 
gluon FF is enhanced to accommodate stronger evolution effects. 
The size of the suppression depends on the quark flavour and on 
the hadron species: the instances in which this is more marked are 
for Dπ+

u , Dπ+
d , Dπ+

b+ , D K +
u , and D K +

b+ . In these cases, the suppression 
can be as large as 10-20%. By comparison, the quark FF uncer-
tainty is only about a few percent. The enhancement of the gluon 
FF can be as large as 60%. Because the uncertainties on the gluon 
FF are significantly larger than for quark FFs, the enhancement is 
just such that the outer edges of the NLO and NNLO uncertainty 
bands touch each other: this corresponds to a 

√
2 difference of a 

standard deviation. Be that as it may, in all of these cases the im-
pact of NNLO corrections on FFs is statistically significant.

While the qualitative effect of NNLO corrections on the FFs dis-
played in Figs. 1-2 is expected, their quantitative effect on the pion 
FF fit is more difficult to interpret. In particular, it is surprising that 
the inclusion of NNLO corrections does not improve the fit quality, 
as already observed above. In an attempt to investigate the rea-
son(s) for this behaviour, we have carried out a set of additional 
studies, which also served the purpose to test the stability of our 
results.

The first of such studies consists in varying the kinematic cut 
on the virtuality Q , Q cut, in the analysis of SIDIS data. The study 
is similar to the one carried out in Sect. 5.3.3 of Ref. [1]: we have 
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Table 1
The number of data points, Ndat , and the χ2 per data point, χ2/Ndat , for each hadronic species and perturbative order 
considered in the fits of this analysis.

Experiment Ref. h = π h = K

Ndat χ2/Ndat χ2/Ndat Ndat χ2/Ndat χ2/Ndat

NLO NNLO NLO NNLO

BELLE h± [32] 70 0.14 0.13 70 0.39 0.41
BABAR h± [34] 39 0.91 0.76 28 0.36 0.25
TASSO 12 GeV h± [29] 4 0.90 0.92 3 0.85 0.87
TASSO 14 GeV h± [30] 9 1.33 1.35 9 1.24 1.22
TASSO 22 GeV h± [30] 8 1.65 1.81 6 0.89 0.90
TPC h± [35] 13 0.23 0.25 13 0.38 0.40
TASSO 30 GeV h± [29] 2 0.30 0.34 — — —
TASSO 34 GeV h± [31] 9 1.08 1.48 5 0.07 0.06
TASSO 44 GeV h± [31] 6 1.13 1.37 — — —
TOPAZ h± [33] 5 0.24 0.37 3 0.10 0.11
ALEPH h± [26] 23 1.24 1.46 18 0.49 0.48
DELPHI (inclusive) h± [27] 21 1.31 1.25 23 0.97 0.99
DELPHI (uds tagged) h± [27] 21 2.68 2.89 23 0.44 0.38
DELPHI (b tagged) h± [27] 21 1.58 1.73 23 0.42 0.45
OPAL h± [28] 24 1.63 1.79 10 0.39 0.36
SLD (inclusive) h± [36] 34 1.05 1.13 35 0.83 0.67
SLD (uds tagged) h± [36] 34 1.59 2.16 35 1.37 1.52
SLD (b tagged) h± [36] 34 0.55 0.68 35 0.75 0.77

Total SIA 377 1.03 1.15 339 0.58 0.57

HERMES h− d [38] 2 0.41 0.32 2 0.18 0.13
HERMES h+ p [38] 2 0.01 0.02 2 0.05 0.04
HERMES h− d [38] 2 0.17 0.11 2 0.58 0.48
HERMES h+ p [38] 2 0.35 0.32 2 0.56 0.43
COMPASS h− [25,37] 157 0.48 0.55 156 0.74 0.59
COMPASS h+ [25,37] 157 0.62 0.72 156 0.76 0.67

Total SIDIS 322 0.47 0.52 320 0.64 0.54

Global data set 699 0.68 0.76 659 0.62 0.55
repeated our NLO and NNLO fits, for both pions and kaons, varying 
the value of Q cut in the range [1.00, 2.00] GeV in steps of 0.25 GeV. 
The value of the χ2 per data point corresponding to the global 
data set for each of these fits is displayed in Fig. 3 for pions (left) 
and for kaons (right). The number of data points included in each 
fit is also indicated.

As one can see from Fig. 3, the value of the χ2 per data point 
increases as the value of Q cut is lowered, irrespective of the hadron 
species. Interestingly, for both pions and kaons, the rise is steeper 
at NNLO than at NLO; that is, the fit quality of the NNLO fit dete-
riorates much faster than that of the NLO fit as the value of Q cut
is decreased. While for pions, as already noted, the global χ2 per 
data point is always larger at NNLO than at NLO, for kaons the rise 
is such that the quality of the NNLO fit becomes worse than that 
of the NLO fit if Q cut = 1 GeV.

We have nevertheless verified that, in our framework, the fit 
quality of the pion FFs at NNLO is always better than its NLO coun-
terpart if SIA or SIDIS data sets are fitted separately. This at least 
confirms that the expected perturbative convergence is recovered 
for each individual process. These fits have however exposed how 
relevant the interplay between SIA and SIDIS measurements is. On 
the one hand, the pion FFs determined by fitting only SIA data can-
not be used to predict SIDIS data, because FFs for different quark 
flavours cannot be disentangled, see e.g. Sect. 3 in Ref. [21] and 
Sect. 3 in Ref. [1]. On the other hand, the pion FFs determined by 
fitting only SIDIS data do not provide a good description of SIA 
data, because the two classes of measurements probe somewhat 
disconnected kinematic regions, see e.g. Fig. 1 in Ref. [1]. In par-
ticular, SIDIS measurements probe FFs at rather low energies (a 
few GeV); they should therefore be evolved at higher energies (up 
to the Z -boson mass) with large extrapolation uncertainties. The 
reason why the quality of the pion FF NNLO fit becomes consis-
tently worse than its NLO counterpart when SIA and SIDIS mea-
surements are fitted together, be it the inconsistency of specific 
4

data sets and/or the increased relevance of other theoretical cor-
rections (such as power-suppressed corrections), is left to future 
study.

The deterioration of the quality of the pion FF fit upon reduc-
tion of the value of Q cut has also partly been observed in Ref. [22]. 
There, however, the NNLO fit became worse than its NLO counter-
part only for values of the cut on the virtuality Q cut �

√
2.00 GeV. 

This is different from what we observe. Even if the analysis in 
Ref. [22] and ours are based on a similar data set, they however 
differ for the FF parametrisation and optimisation methodology. 
Understanding the origin of the discrepancy between the two sets 
of results would require a careful benchmark which goes beyond 
the scope of this paper.

However, the results in Ref. [22] and ours question whether, at 
such small values of Q , the leading-power factorisation framework 
used to describe SIDIS measurements is reliable. Poorly known 
power corrections, including interplay between initial- and final-
state hadron mass effects [51,52], may become dominant, or the 
fragmentation regime may not even hold [53–55]. For all of these 
reasons, while the fit quality — as quantified by the value of the χ2

per data point — may remain acceptable for values of Q cut smaller 
than the one chosen as default in our fits (Q cut = 2 GeV), we con-
sider that the latter remains conservative against these effects. We 
have explicitly checked that the lower the value of Q cut, the larger 
the distortion of the FFs (up to a couple of standard deviations at 
intermediate values of z for quark FFs), for either pions or kaons 
and irrespective of the perturbative order, in comparison to those 
displayed in Figs. 1 and 2.

The second study consists in investigating the role of the cor-
relation model adopted to analyse the COMPASS SIDIS data. As 
already mentioned, in contrast to our previous analysis [1], we no 
longer assume the entirety of systematic uncertainties to be 100% 
correlated, but only a fraction of them equal to 80%. The remaining 
fraction of each systematic uncertainty is treated as fully uncor-
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Fig. 1. Comparison of the NLO and NNLO FFs for positively charged pions. We display the Dπ+
u , Dπ+

d , Dπ+
d̄

, Dπ+
s+ , Dπ+

b+ and Dπ+
g FFs at μ = 5 GeV. Expectation values and 

uncertainties correspond to the mean and standard deviation computed over the ensemble of FF replicas. For each FF we plot the absolute distributions in the upper panels 
and their ratio to the central value of the NLO FFs in the lower ones.
related, and is added in quadrature to the statistical uncertainty. 
This correlation model was singled out in the papers in which the 
COMPASS measurements were presented [25,37]. As already men-
tioned, the effect of this change is a significant reduction of the 
χ2 per data point in comparison to the NLO pion fit of Ref. [1]; 
FFs are affected by fluctuations not large than a standard devia-
tion, as one can infer by comparing Fig. 1 with Fig. 6 in Ref. [1], 
and as we have explicitly checked.

That being said, we repeated our NLO and NNLO fits for the 
pion FFs with two alternative decorrelation models: one in which 
the systematic uncertainties of the COMPASS data are 100% corre-
lated; and one in which the systematic uncertainties in the COM-
PASS data are 100% uncorrelated. The fits are repeated for each 
value of Q cut considered above. Our aim is to investigate whether 
the NLO and NNLO values of the global χ2 per data point follow 
the same pattern observed in our default fits as Q cut is varied.

The results are displayed in the left panel of Fig. 3, from which 
we draw two observations. First, the fit quality of the NNLO fit al-
ways remains worse than that of the NLO fit, irrespective of the 
correlation model used in the COMPASS data and of the value of 
Q cut. Second, the correlation model affects the fit quality signifi-
cantly: as the amount of correlation increases, not only the value 
of the global χ2 per data point becomes higher, but also the dete-
rioration of the fit quality occurs at larger values of Q cut. Further-
more, we have explicitly checked the effect of the decorrelation 
5

model on the fitted FFs. We have generally found that, irrespec-
tive of the value of Q cut and of the perturbative order, pion FFs 
vary very little in comparison to our default if the systematic un-
certainties in the COMPASS measurements are treated as fully un-
correlated. In particular, the variation is significantly smaller than 
that due to NNLO corrections, see Fig. 1. Note however that differ-
ences in the χ2 per data point may be similar. For instance, with 
Q cut = 2 GeV, the difference in χ2 per data point between the de-
fault NLO and NNLO fits is 0.08; the same difference between the 
NNLO fits, in which the COMPASS systematic uncertainties are ei-
ther partly correlated (our default) or fully uncorrelated, is 0.09. 
Distortions appear if the same systematic uncertainties are treated 
as fully correlated. However, the size of the distortion between fits 
with the same value of Q cut typically does not exceed one stan-
dard deviation. These results illustrate the paramount importance 
of a careful estimate of experimental correlations — and of their 
proper treatment in the fit — to correctly interpret the fit quality 
in terms of χ2 per data point.

4. Summary and outlook

In this paper we have extended the determination of NLO pion 
FFs of Ref. [1] in two respects. First, pion SIA and SIDIS measure-
ments have now been analysed up to NNLO accuracy in pertur-
bative QCD. Second, we have also determined companion kaon FF 
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Fig. 2. Same as Fig. 1 for kaons, now displaying D K +
u , D K +

s , D K +
s̄ , D K +

d+ , D K +
b+ and D K +

g .

Fig. 3. The value of the total χ2 per data point as a function of the cut on Q , Q cut , applied to the SIDIS data in the pion (left) and kaon (right) FF fits. For each value of 
Q cut , the number of data points included in the fits are also displayed. Both NLO and NNLO fits are considered. In the case of the fit of pion FFs, various correlation models 
for the COMPASS data are taken into account, see the text for details.
sets. Our study is based on a consolidated framework that com-
bines a neural-network parametrisation of FFs with a Monte Carlo 
representation of their uncertainties. This framework ensures that 
model bias is reduced as much as possible, and that experimental 
and PDF uncertainties are faithfully propagated into FFs.

We have found that inclusion of NNLO corrections does not im-
prove the quality of the pion FF fit, as measured by the χ2 per 
data point, but it does for the kaon FF fit. Although the modifica-
6

tions of the NNLO FFs are qualitatively as expected with respect 
to the NLO FFs, the reason for the quantitative behaviour requires 
further investigations, possibly in the context of a benchmark with 
other FF sets, such as those determined in Ref. [22]. As also noted 
in Ref. [22], poorly known power corrections, beyond the leading-
twist factorisation formalism used here, may play a role in the 
kinematic region covered by current SIDIS measurements. Indeed, 
we have observed a fast deterioration of the fit quality if the cut 
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on the virtuality of the SIDIS process is lowered, with the deteri-
oration in the NNLO fit being more remarkable than in the NLO 
fit. We have finally exposed the importance of a correct estima-
tion and treatment of experimental correlations to interpret the fit 
quality in terms of the χ2 per data point.

Our NNLO pion and kaon FF sets, being the only ones to be 
publicly delivered to date, could be used in a number of computa-
tions that require a matching perturbative accuracy. For example, 
to make predictions of SIDIS cross sections measured by the future 
EIC at higher energy. Or to determine, for the first time at NNLO, 
longitudinally polarised PDFs from a simultaneous analysis of po-
larised inclusive deep-inelastic scattering and SIDIS measurements. 
Or else to serve as baseline for the parametrisation of transverse-
momentum-dependent FFs.

The results presented in this paper have been obtained with the 
public code available in Ref. [24], see

https://github .com /MapCollaboration /MontBlanc.

For each perturbative order and hadron species (pion and kaon), 
we deliver the FF sets for the positively charged hadrons, for the 
negatively charged hadrons and for their sum. The names of the FF 
sets are as follows:

• NLO, pion: MAPFF10NLOPIp, MAPFF10NLOPIm,
MAPFF10NLOPIsum;

• NNLO, pion: MAPFF10NNLOPIp, MAPFF10NNLOPIm,
MAPFF10NNLOPIsum;

• NLO, kaon: MAPFF10NLOKAp, MAPFF10NLOKAm,
MAPFF10NLOKAsum;

• NNLO, kaon: MAPFF10NNLOKAp, MAPFF10NNLOKAm,
MAPFF10NNLOKAsum.

These FF sets are available from Ref. [24], where notebooks con-
taining reports of the fits are also provided, and from the LHAPDF

library [23]. Note that the NLO pion FF sets replace those delivered 
in the previous paper [1].
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