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Summary

Today, there are many publicly available data sources. But the data is
heterogeneous and complex (diverse, multi-modal, sparse, and noisy). In
particular, the availability of information from social media, such as Twit-
ter, has both advantages and disadvantages: social media messages can
potentially provide information not available otherwise, but these messages
are short, noisy, and not infrequently contain grammatical and linguistic
errors.

The claim of this research is that the availability of publicly available
information can be leveraged to fulfill various tasks. Taking as an example
the cultural heritage domain, the context from which this research starts
from, the fruition of the domain information can take advantage of the
development of tools capable of signaling to the various classes of users
(such as the public, local governments, researchers) the entities that make
up the domain and the relationships existing among them.

This research aims at developing novel algorithms and tools for lever-
aging multi-modal, sparse, and noisy data available from multiple public
sources. In doing so our models make use of multi-modal features extracted
by existing deep neural models to improve the performance on various tasks.

There are a number of challenges that must be addressed:

• Data Volume: Social media generates vast amounts of data, including
images, leading to challenges in storage, processing, and analysis.

• Data Quality: Textual data from social media are oftent very short
and contains grammatical errors, images can be poorly correlated to
the textual portion .

• Data Labeling: Manually labeling image data for supervised learn-
ing tasks such as classification can be time-consuming and resource-
intensive.

• Multimodal Integration: Integrating textual and visual information for
information extraction is a complex task.
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• Computational costs: Multimodal neural models require significant
computational and time resources to be implemented, trained and an-
alyzed

Named Entity Recognition on Twitter messages is the first tasks to be
explored with the aim of finding entities related to the cultural heritage
domain. We developed models that integrate textual and visual information
and use an approach inspired by factorization machines to analyze and
leverage the interaction inside and between these modalities.

The exploration of this natural language processing task within a multi-
modal context has prompted examination of algorithms capable of indicat-
ing the most relevant information from the available data to achieve the
objectives of a specific task.

This type of algorithm goes under the name of attention mechanism and,
within the scope of sparse and noisy multi-modal data of this thesis,this
has led to researching novel algorithms that can be used to address the
problem of finding relevant information within the noisiness of the data.
An attention mechanism, inspired again by factorization machines, has been
devised, implemented and applied on a task where portions of captions must
be linked to specific regions of related images.

Attention-like algorithms can also be used to address the issue of data
sparsity by determining the most suitable information to utilize when em-
ploying data augmentation techniques. In this regard, three different algo-
rithms are proposed in this thesis. All of them are applied on the embed-
dings created by existing neural network models with two goals in mind.
The first goal is to be able to determine the diversity, with respect to the
available data obtained by modifying the data. The second goal is to assess,
on a classification task, the performance impact of data augmentation based
on the different degrees of diversity added to the original dataset.

Data augmentation techniques can also play a role to address the problem
of domain adaptation where a model trained on a domain is applied on a
different domain, in this context data augmentation can help to reduce the
difference between the domains. We study the results of the application
of two different strategies of features level augmentation on three different
benchmark multi-domain data sets in order to obtain indication on the most
effective approach.
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Chapter 1

Introduction

Nowadays, many public data sources are available on the most varied topics.
Along with the data availability, there is an increasing desire to use this

data in order to improve the offering and the creation of these assets. One
obstacle in achieving this goal is the heterogeneity and complexity of this
data, they are diverse, multi-modal, sparse and noisy, each one of these
characteristics brings a challenge.

This is particularly true for data coming from social media. They provide
a huge amount of data so it comes natural to try to exploit them. Consider
the case of microblogging platforms (such as X, the former Twitter [1]) the
messages posted by the users can potentially provide information in great
quantity and very up to date, not available otherwise, yet such messages
are short, noisy, not rarely contain idiomatic expression and are not exempt
from grammatical and linguistic errors.

The claim of this research is that availability of publicly available infor-
mation can be leveraged to fulfill various tasks, such as detect particular
fragment of information or discover properties of the information itself that
can in turn be used for other purposes. For example, in the cultural heritage
domain, the first domain of application of this research the information can
be improved with tools capable of signaling to the various classes of users
(such as the public, local governments, researchers) the entities that make
up the domain and the relationships existing among them.

Given this context, one of the task that can be performed is the so called
Named Entity Recognition (NER), a task of supervised learning where a
model is trained on a corpus of texts where some portion of text are tagged
with the name of a category belonging to a predefined set depending on the
domain of interest. These tagged portions of text are called named entities.
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Possible examples are of such categories are: Person, Organization, Location
or Other. After the training, the model can detect such named entities on
texts never seen before.

It is a task that has seen an evolution both in methodology and in types of
data of application, going from solutions applying predefined rules on very
well-structured texts to solutions using neural networks and large language
models on very sparse and noisy text, eventually accompanied by visual
information [2], [3].

Information obtained from social media allows this kind of approach of-
fering the possibility of having the simultaneous availability of text and
images, a setting termed as multi-modal, and this research uses the X (for-
mer Twitter) messages for finding Named Entities in the categories of Artist,
Artworks, Artistic movements and Venues.

The experience in dealing with this task has lead to take into considera-
tion a more general and underlying issue, that is, if it is possible to improve
an algorithm by leveraging a new methodology to increase its ability to
consider the relations between inputs of different modalities in order to give
importance to the relations more important for the task at hand and de-
crease the contribution of the less important relations. A class of algorithm
known in the literature as “attention mechanisms” [4, 2, 5].

Drawing inspiration from a comparison in the fields of biology and psy-
chology, the attention mechanism is an attempt to mimic the action of
selectively focusing on a few relevant parts, ignoring others, a behavior
that human beings perform instinctively. Inside a machine learning algo-
rithm, this translates into operations on the numerical representation of the
data that somehow increase or decrease the data importance in relation to
achieving a desired task.

The concept of attention appeared in the context of the machine trans-
lation task where a sequence of words must be processed to be translated
in another language [6, 7]. This sequence processing involves a number of
problems related to: the representation of the words, the length of the se-
quence, the position and relation of the words inside the sequence. The
representation of a word as a real valued vector is called an embedding. A
requirement for such embeddings to be meaningful is that words with simi-
lar meaning must be transformed in embeddings that are close in the target
vector space and words with very different meaning must be transformed in
vectors that are far away in the target vector space.

The evolution of the creation of these embeddings has today led to the
10



1 – Introduction

ability to create embeddings that also take into account the context within
which an embedding is created, in order to distinguish the language changes
that a word can undergo within different contexts. Just to give an example,
consider the phrases “Bank of a river” and “Bank robbery” [8, 9] .

The length of sequences can be a problem for lengthy sequences because
simple sequential processing can lead to a “forgetting” behavior where pre-
vious words lose importance as the phrase proceeds. Last but not least,
relations between words inside a phrase can be quite complicated and re-
lated words can also be far away inside a phrase.

Attention in some way addresses these problems by giving a way to ana-
lyze the embeddings of an entire sequence in search for important relation
and giving scores that highlight the important parts. This can also be used
to address the problem of the noisiness and sparsity of the information [4].

Attention is not confined to natural language processing problems. Dif-
ferent types of attention have also been developed in the computer vision
field. For example, in tasks involving the recognition of objects or trying to
relate portions of texts to part of images [10, 5].

In this research we explore a mechanism that addresses this last type of
setting, where texts and images are simultaneously available. This is called
a multimodal setting. In a multimodal task, it is interesting to analyze the
relations inside the modality separately, but is also important to analyze
cross modal interactions and try to see how they contribute.

A further consideration about attention, beyond its use to overcome
shortcomings in the information available, is to explore its ability to give in-
sight into the available information with the aim of driving an augmentation
schema during the training of a model.

Data augmentation is a technique used in machine learning to increase
the performance of a model on some given task. The underlying belief is
that the available information in the training dataset is somehow insufficient
to give a model the ability to fully recognize the data it will face after the
training [11]. It has sometimes been compared to giving to the model some
sort of "imagination" [12] where the model is confronted with data that are
not real but are plausible modifications of the real data. These modified
data are added to the training set so that the model is trained on more
diverse data and, subsequently, correctly interprets previously unseen data
after training.

Obviously, some caution must be taken because, in a context of super-
vised learning, it must be assured that the label of the original image still
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applies to the transformed data [13]. The transformations that can be ap-
plied to the data can be roughly categorized as follows [11, 12].

Geometric transformations. In computer vision, geometric transforma-
tions are applied to the full image in order to have different versions of the
same image. Rotation, translation, mirroring along horizontal or vertical
axes are examples of this types of transformation.

Photometric transformations. Given an image, these types of transfor-
mations are applied at pixel level. In this way, it is possible to modify
properties such as contrast, luminosity or color balancing.

Feature level transformations. These are more general transformations
because, given the fact that they are applied to the vectors generated by a
neural network, they are somehow independent on the modality of the data
(text, image, ...), addition of gaussian noise or interpolation of vectors are
example of these types of transformations.

Independently of the transformations, however, a question is if there are
portions of the training dataset that is more useful to add to the training
set, after some modifications, to obtain a benefit in performance, or if it is
possible to devise an augmentation schema particularly suitable to the type
of data and model used.

Researching these topics has led to taking into consideration the tech-
nique of transfer learning where information obtained by large models trained
on huge amount of data is used on different or more specific tasks.

Three approaches have been researched, each of them aimed at identifying
a "measure" of diversity so that one can decide how much diversity is more
useful to inject in the training dataset. The range in this way goes from
minimum diversity (or more of the same) addition, to maximal amount of
diversity.

• The first approach is based on factorization machines [14]. By analyzing
the interactions between the samples features, this method seeks to
quantify the level of diversity present in the dataset.

• The second approach leverages transfer learning and cosine similarity.
Here, cosine similarity is utilized to compare data representations de-
rived from pretrained models that have been trained on large datasets.
This method offers a simple means to quantify diversity by measur-
ing the angular difference between embeddings. Since it operates on
vectors, it can be applied irrespective of the original modality of the
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1 – Introduction

data. When used on the embeddings of both the original and trans-
formed data, it enables the creation of distributions of diversity mea-
sures. These distributions can then be used to determine the extent
of diversity being added to a new training dataset and to evaluate its
impact on model performance.

• The third approach is based on Euclidean Distance in conjunction with
a Support Vector Machine (SVM) classifier [15]: Euclidean distance is
a measure of the straight-line distance between two points in Euclidean
space. When used in conjunction with an SVM classifier, it allows
for geometric considerations regarding the diversity of the data. By
calculating the Euclidean distance between data points and examining
their spatial distribution, insights into the diversity of the dataset can
be gained.

Each of these approaches offers a different perspective on measuring di-
versity within a dataset. While factorization machines provide a more holis-
tic understanding of diversity through feature interactions, cosine similarity
and Euclidean distance offer more direct measures based on the similar-
ity or dissimilarity of data points. The utilization of Euclidean distance
with SVM classifier adds a geometric aspect, allowing for a deeper analysis
of the dataset’s diversity and informing augmentation strategies. By em-
ploying these approaches, one can better understand the diversity present in
the training dataset and make informed decisions about injecting additional
diversity as needed for improved model performance.

Finally, research on transfer learning and data augmentation led us to
address the problem of domain adaptation [16, 17]. In this case a model
trained on a domain is applied on a domain that is somewhat different
from the training domain. Data augmentation in this context can help in
reducing the shift between the domains. We study the impact of in-out and
rotation-based augmentation strategies applied at feature level on a image
classification task using a max-margin and a fully-connected classifiers as
alternative learning models.

1.1 Main contributions of the thesis

The contributions of this research are about an approach inspired by fac-
torization machines from two points of view: the first, in the analysis of
the relationships that exist within and between the modalities integrated in
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a model with application on a NER task and an image caption alignment
task , the second shows the ability to highlight different degrees of diversity
present within a dataset in order to identify the most interesting parts for
data augmentation actions with application on classification task on dataset
composed of text and images.

Remaining in the field of data augmentation, further contributions con-
cern approaches that show the possibility of capturing the diversity present
in the data. Cosine distance and Euclidean distance between representa-
tions of original data and modified data are used with the aim of selecting
the most useful data for augmentation. The Euclidean distance based ap-
proach has a particular focus on the case in which, as a classifier, support
vector machines are used.

Expanding our research in the field of data augmentation and transfer
learning we have addressed the issue of their application in the context of
domain adaptation. Our contribution is in the study of the impact of two
augmentation strategies based on translation and rotation applied at feature
level on different multi-domain data sets in order to obtain indication on the
most effective augmentation approach to reduce the shift between different
domain.

The thesis continues with the following organization.
Chapter 2 introduces the context surrounding the first part of this re-

search, which is concerned with data related to the cultural heritage domain
obtained from Twitter.

Chapter 3 focuses on the more specific task of Named Entity Recognition
(NER). Evolution and previous works are presented. The research done in
this area is described along with the experimental results.

Chapter 4 introduces the concept of attention and a review ot its evolu-
tion.

Chapter 5 deals with the research done on a novel type of attention
inspired by factorization machines, applied on a text-images alignment task.

Chapter 6 is about the research done on data selection for data augmen-
tation and domain adaptation applied on classification tasks.

14



Part I

The Cultural Heritage Domain
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Chapter 2

Background

Today, there are many publicly available data sources, such as online mu-
seum, catalogues (e.g. [18]), Wikipedia (e.g. [19]) and social media (e.g.
[1]), in the cultural heritage domain. The premise of the research is that
the availability of publicly available information related to the cultural her-
itage domain can be significantly improved with tools capable of extracting
useful information for the interested users (the public, local governments,
researchers) such as the mentioning of entities that make up the domain
and the relationships existing among them. However, the realization of this
idea is not easy due to the complexity (multi-modality, sparsity, and noise)
of the data available in this domain. See Figure 2.1.

exposedIn

LTNT LTNT

LTNTLTNT
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SocialMediaText

HistoricalAgeLTNT

TrendingTopic
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LTNT
LTNTLEGENDA 

LTNT: Latent 
SRC: Potential data source

LTNT

SRC: MoMA

SRC: Twitter

SRC: MoMA

Figure 2.1: A simplified Semantic Net diagram outlining some of the data sources and their
contributions to the information available in the cultural heritage domain – here any edge marked
as “LTNT” represents a latent relationship that needs to be extracted
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Given the above context, the focus of this research is on developing novel
algorithms, techniques, and tools for leveraging multi-modal, sparse and
noisy data available from multiple public sources to integrate and enrich
useful information available to the public in the cultural heritage domain.

2.1 The Context

Figure 2.1 is the diagram of a semantic net outlining some of the data sources
and their contributions to the information available in the cultural heritage
domain. For example, one can observe that a number of entities (such as
artwork, artist, exhibition, artistic movement) are available from various
sources. Some of the relationships among these entities can be explicit
in these sources (such as an artwork is being associated to an artist or
an artist being included in an exhibition), while some other relationships,
such as an artist being influenced by an artistic movement or an artist
being interested on a particular subject may be latent. In Figure 2.1, such
latent relationships are highlighted with edges marked as "LTNT" and they
represent areas of interest for this research.

2.1.1 The Role of Social Media

Availability of social media (such as Twitter messages) brings advantages
and disadvantages in this domain:

• How can social media help in this domain?: Social media posts have
the potential to offer unique insights not found elsewhere. Numerous
museums and collections frequently share updates on Twitter regarding
artists, artworks, and exhibitions. Furthermore, online communities
may engage in discussions about specific artistic movements. These
posts not only offer exclusive information but also aid in understanding
existing data and uncovering hidden connections within the field of
interest.

• Challenges in leveraging social media in this domain : Using social
media data for this purpose poses challenges, despite the opportuni-
ties it presents. Twitter messages, in particular, are brief, filled with
noise, and frequently include acronyms, grammatical errors, linguis-
tic mistakes, or slang expressions. Additionally, a significant portion
of messages within this domain are generated automatically via APIs,
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2 – Background

Berthe Morisot︸ ︷︷ ︸
artist

(France, 1841-1895), #impressionism︸ ︷︷ ︸
movement

#painting “Le berceau
′′︸ ︷︷ ︸

artwork

, 1874 ( Musée d
′
Orsay︸ ︷︷ ︸

venue

, Paris).

The Minimalist Art Movement︸ ︷︷ ︸
movement

Is Fundamentally “SIMPLICITY “ DonaldJudd︸ ︷︷ ︸
artist

was a leading figure in his contri-

butions. “F abricated“︸ ︷︷ ︸
artwork

1981-82 @americanart

Happy Birthday Mark Rothko︸ ︷︷ ︸
artist

1903 -1970 Visit The Abstract Expressionism︸ ︷︷ ︸
movement

show at the RA London︸ ︷︷ ︸
venue

- Read

Review Here: https://goo.gl/8hD4QR

Figure 2.2: Sample Twitter messages and associated entity types

lacking linguistic structure. Given their brevity, these messages often
lack sufficient context for easy interpretation.

In fact, our experience with Mechanical Turk [20], in agreement with
other experiences [21], has shown that even manually labeling portions
of the messages for a supervised methodology is difficult due to the
underlying ambiguities.

2.1.2 A Multi-Modal Approach

It is important to note that social media, in this context, is often multi-
modal in that many messages in this domain are accompanied by visuals
– our experience has shown that roughly 30% of the messages have one or
more associated images.

In recent times, there has been a growing interest in research focusing
on joint learning from sources with different modalities [22, 23, 24]. This
interest has been further fueled by the advancement of deep learning tech-
niques, leading to increased utilization of such approaches across a range of
domains, including image understanding and annotation. [25], and natural
language processing [3].

In theory, visuals can aid in providing context essential for enhancing the
interpretation of social media messages for efficient information extraction
and integration. However, in practice, these visuals vary greatly, encom-
passing images of artwork, images of artists, snapshots of exhibition venues,
or promotional flyers, often lacking descriptive labels themselves. Conse-
quently, harnessing such visual data to implement a multi-modal approach
proves challenging. The subsequent section outlines some tasks feasible
within this framework.
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2.1.3 Possible Tasks

Given the context described so far, exploring social media content to find
hidden information involves several tasks. These tasks include understand-
ing and discovering connections between different pieces of information ex-
pressed in natural language.

Namely:

• Named Entity Recognition (NER): a task of information extraction that
seeks to locate and classify named entities mentioned in unstructured
text into pre-defined categories such as person names, organizations,
locations, ... [26, 27].

• Entity Linking (EL): the task of relating a certain text to one or more
entities [28, 29].

• Mention Detection (MD) : the task of identifying a portion of text
where an interesting entity is present [30].

• Candidate generation (CG): The task of finding the best possible enti-
ties to be assigned to a found citation [31].

• Entity Disambiguation (ED): the task of assigning the best (possibly
the right) entity (among the available ones) to the detected citation
[32].

• Topic modeling: The task of detecting groups of words defining a num-
ber of topics discussed in a corpus of ducuments [33].

• Relationship detection: The task of detecting relations among entities
in a domain [34].

Research on the listed tasks has been performed with a possible final
target of recommendation, information retrieval, information augmentation,
knowledge discovery for a better understanding of the available information
from the entities owning the information and a better fruition from the
general public.

All of these tasks have been explored in different scenarios character-
ized by an ever-increasing degree of uncertainty and ambiguity, from large
corpora of documents about well-defined topics and entities and from well-
defined entities up to collections of very short texts with little contextual
information and a lot of ambiguities with respect to entities, arguments and
scope.
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2 – Background

An example of the first scenario is a collection of research articles and
research authors to detect research topics and related researchers. An ex-
ample of the second scenario is a collection of tweets used to detect events
and participating people, e.g. concert-musician, conference-scientist.

The focus of the first part of the research is in the context of this second
scenario, where ambiguity and uncertainty are quite high and will address
a task of Named Entity Recognition (NER) in the context of microblogging
messages related to Cultural Heritage information.
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Chapter 3

Dealing With Noisy
Information - Named Entity
Recognition

In general, works on tasks listed in the previous chapter propose different
methodologies to fulfill one or more of them, reducing the impact of the
available information shortcomings.

In the following there is an overview of how NER task has been addressed
in the past.

3.1 Named Entity Recognition

A Named Entity (NE) is a word or a group of words that clearly identifies
one item among others in a text. In the general domain, typical examples
of named entities are organization, person, and location names.

NER is the task of locating named entities in text and classifying them
into predefined categories.

Formally, given a sequence of tokens s = w1, w2, ..., wN , NER is to output
a list of tuples Is, Ie, t, each of which is a named entity mentioned in s.
Is ∈ [1, N ] and Ie ∈ [1, N ] are the start and the end indexes of a named

entity mention; t is the entity type from a predefined category set.
As an example, applying a NER system to the phrase “Mary said that

The Ritz was a great hotel option to stay in London."” in search for the
categories PERSON, LOCATION, and ORGANIZATION would produce:
(Mary, PERSON) said that The (Ritz, ORGANIZATION) was a great hotel
option to stay in (London, LOCATION)’.
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In the following some areas that have an influence in the development of
a NER system.

3.1.0.1 The Language, Domains and Textual Genre

The majority of the works are applied to English language documents. How-
ever, the works related to other languages or that are multilingual are in-
creasing.

Along with the ‘general domain” characterized by persons, organizations
and locations, many other domains are an object of research, so other ex-
amples of categories and domain are gene, protein, drug and disease names
in the biomedical domain or “protein”, “DNA”, “RNA”, “cell line” and
“cell type” (e.g., D. Shen et al. 2003, B. Settles 2004) in the bioinformatics
domain. Artist, artwork, title are entities in the cultural heritage domain
which is part of this research.

Sometimes, in addition to the specific categories, an “Other” or “Mis-
cellaneous” category is added to gather entities related to the domain but
not falling in the other well defined categories. As one can imagine, this
brings a certain amount of specialization in a NER system, so that it is
not immediate to move a NER system across different domains or create a
multi-domain system.

Also the textual genre (scientific, journalism, emails) has an impact mov-
ing a NER system between corpora of different genres produces very differ-
ent results.

3.1.1 Evolution of NER Systems

What is considered the first research paper on recognizing named entities in
documents was presented by Lisa F. Rau (1991) [26] at the Seventh IEEE
Conference on Artificial Intelligence Applications. It was based on heuristics
and handcrafted rules to extract company names.

In general, earlier attempt relied on handcrafted rules, lexicons, ortho-
graphic features, ontologies and human experts. A following approach was
to create NER systems based on features-engineering and machine learning
(Nadeau and Sekine, 2007) [27]. At last, neural network NER with Col-
lobert et al. (2011) [35] systems with minimal feature engineering, began
to appear. Neural network models are appealing because they usually do
not rely on domain specific resources like ontologies, and thus are somewhat
less domain dependent.

In the following more details on the different approaches.
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Rule-based Historically, the first rule-based NER systems rely on hand-
crafted rules. Rules can be designed based on domain-specific docu-
ments corpora [26], syntactic-lexical patterns [36], reference dictionar-
ies [37].
Rule-based systems work very well when rules, patterns and dictio-
naries are well thought of and complete, which is difficult to achieve,
usually they cannot be transferred to different domains.

Unsupervised Learning Clustering can be leveraged for the creation of
a NER system [38]. It can be used to extract named entities from
clustered groups based on context similarity.

Feature-based Supervised Learning Supervised learning for NER is es-
sentially a multi-class classification or sequence labeling task.
It requires annotated data samples and features must be designed to
represent each training example. Machine learning algorithms are then
utilized to learn/train a model to recognize similar patterns from un-
seen data.
Supervised NER systems require feature engineering. Feature vector
representation where words are represented by numeric, boolean or
nominal values.
Word-level features such as tagging, list lookup features have been
used, feature design is in itself a research area.
Based on the chosen features, many algorithms have been applied: Sup-
port Vector Machines (SVM) [15], Decision Trees [39], Hidden Markov
Models (HMM) [40], Conditional Random Fields (CRF) [41, 42], ...

3.1.2 Neural Network for NER

In recent years, Neural Network-based NER models achieved state-of-the-
art results. Compared to the previous approaches, deep learning is beneficial
in discovering hidden features automatically.

3.1.2.1 Neural Networks and Deep Learning

Neural Networks and Deep Learning
Neural networks are composed of multiple processing layers to learn rep-

resentations of data with multiple levels of abstraction. The typical layer’s
behavior consists of the forward pass and backward pass. The forward pass
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computes a weighted sum of the layers’ inputs from the previous layer and
passes the result to the next layer, through a non-linear function. The back-
ward pass computes the gradient of an objective function with respect to
the weights of a multilayer stack of modules via the chain rule of derivatives.

The advantage of Neural Networks is the capability of representation
learning and semantic composition using both vector representation and
neural processing. This allows a machine to take in input the raw data and
to automatically discover latent representations and processing needed for
detection and/or classification.

A possible categorization of modern neural architectures for NER is based
upon their representation of the words in a sentence. For example, represen-
tations may be based on words, characters, sub-word units or a combination
of these. The next two paragraph introduce the first two cases.

3.1.2.2 Word Level Architecture

In a word level architecture (see Figure 3.1), the words of a sentence, repre-
sented by their word embedding, are given as input to a Recurrent Neural
Network (RNN), a type of network where the hidden layers are used to “re-
member” previous inputs, which is a necessary requirement for some tasks,
such as predicting the next word in a sentence.

Figure 3.1: Word level NN architecture for NER [43]

3.1.2.3 Character Level Architecture

In this architecture, a sentence is considered to be a sequence of characters,
see Figure 3.2.
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Figure 3.2: Character level NN architecture for NER [43]

This sequence is passed through an RNN, predicting labels for each char-
acter. Character labels are then transformed into word labels via post pro-
cessing. The potential of character NER neural models was first highlighted
by Kim et al. (2016) [44] using highway networks over convolution neural
networks (CNN) on character sequences of words and then using another
layer of Long Short-Term Memory network (LSTM) [45] + softmax for the
final predictions.

3.1.2.4 About the Representations as Embeddings

Typically, these representations are pre-trained over large collections of text,
as input. The pre-trained word embeddings can be either fixed or further
fine-tuned during NER model training. Commonly used word embeddings
include Google Word2Vec [46], [47], Stanford GloVe [48] .

In this case, the embedding of a word is always the same. There is no
contextual information in the embedding itself.

Peters et al. [8] proposed ELMo (“Embeddings from Language Mode”)
representations, which are computed on top of two-layer bidirectional lan-
guage models. ELMo is character-based in its input the learnt representa-
tions are at word level. ELMo looks at the entire sentence before assigning
each word in it an embedding.

This new type of deep contextualized word representation is capable of
modeling both complex characteristics of word usage (e.g., semantics and
syntax), and usage variations across linguistic contexts (e.g., polysemy).
For instance, for the phrase “He went to the prison cell with his cell phone
to extract blood cell samples from inmates”, ELMo would generate different
vectors for the three vectors representing the word “cell”.

In 2019 Devlin et al. [9] proposed a new language representation model
called BERT, Bidirectional Encoder Representations from Transformers.
BERT uses masked language models to enable pre-trained deep bidirec-
tional representations. given a token (a sub-word), its input representation
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is comprised by summing the corresponding position, segment and token
embeddings. Pre-trained language model embeddings often require large-
scale corpora for training, and intrinsically incorporate auxiliary embed-
dings such as position and segment embeddings, so it can be considered an
hybrid architecture.

BERT represents input as subwords and learns embeddings for subwords.
It has a vocabulary that is about 30,000 subwords. The model is trained
on a corpus with a large number of words ( millions). Representing input
as subwords as opposed to words strikes a balance between character based
and word based representations.

Character and sub-word level representation models like ELMO and
BERT have the ability to output embeddings for out of vocabulary words
(OOV), that is, words never seen before by the model.

3.1.2.5 Going Beyond the Text

Along with the improvements in the creation of embeddings for the text,
there is, however, the problem that sometimes it is desirable to expand
the contextual information for a NER task with other information that is
associated with the text. A typical example are the images associated with
the text messages on social networks. Not rarely the image is helpful to
disambiguate or make explicit the meaning of the text.

There isn’t a large amount of literature in this field, a previous work on
NER applied to Twitter messages making use of the associated images is by
Zhang, et al. [2]

Figure 3.3: Multimodal architecture from Zhang et al. paper [2]
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In Figure 3.3 the used architecture is displayed. Regarding the textual
part, two LSTM are used in order to process the inputted text both in the
forward and backward direction in order to extract the textual features. As
for the visual part, the image features were extracted from 16-layer VGGNet
[49].

A first remark is that depending on the task/methodology at hand, one
can decide to extract features at different points from the VGGNet network,
for example, to preserve spatial information regarding an image.

A second observation is that here we can see the rise of the issue that
in a multimodal architecture there is the need to find a way to mix in a
meaningful way the different modalities which will be the subject of the
second part of this thesis.

3.1.3 The Dataset

The first part of this research is about researching a NER task on text
characterized by noisiness and sparsity but associated with images that can
potentially provide additional context. In order pursue this goal an English-
language dataset was built using the Twitter API and collecting tweets with
their associated images. The queries looked for messages related to artists,
artworks, artistic movements and venues (museums, galleries, ...)

The entities in the text messages are manually labeled by Mechanical
Turkers [20], using the IOB2 tagging scheme [50], [21]. the final dataset is
composed of 2100 messages and associated images.

Figure 3.4: Example of BIO tagging

3.1.3.1 BIO Tagging

The IOB format (short for inside, outside, beginning), or BIO format, is
a common tagging format for tagging tokens in a chunking task in com-
putational linguistics (ex. named-entity recognition). It was presented by
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Ramshaw and Marcus in their paper "Text Chunking using Transformation-
Based Learning", 1995 [51]. The I- prefix before a tag indicates that the
tag is inside a chunk. An O tag indicates that a token belongs to no chunk,
the B- prefix before a tag indicates that the tag is the beginning of a chunk
that immediately follows another chunk without O tags between them. It is
used only in that case: when a chunk comes after an O tag, the first token
of the chunk takes the I- prefix.

In this work, a similar format, the IOB2 format, is used. It is the same
as the IOB format except that the B- tag is used at the beginning of every
chunk (i.e. all chunks start with the B- tag) as in Figure [50]. In a NER
task, the tags represent the classes used to classify the named entities.

In our case the BIO tagging of the entities is as follows:

• B-A: begin of an artist name.

• I-A: inside an artist name.

• B-M: begin of an artistic movement name.

• I-M: inside an artistic movement name.

• B-V: begin of a venue name.

• I-V; inside a venue name.

• B-W; begin of an artwork title.

• I-W; inside an artwork title.

3.1.3.2 Amazon Mechanical Turk

Classification tasks often need large amounts of labeled data, but obtaining
such large dataset of annotated data is not easy. Traditionally, annotated
training data has been provided by experts or by the researchers themselves,
often at great time and money costs. Recently, attempts have been made
to leverage non-expert annotations through the Amazon Mechanical Turk
(AMT) service to create large training datasets.

Named entity recognition is a task where usually, in terms of available
data, more is better, so an attempt to use this approach has been made and
mechanical turk workers contributed to the creation of the dataset.

AMT workers were selected among english speakers and asked to label
tweets according to the categories relevant for our research (artists, artwork,
artistic movement, venues). Through the AMT interface, they were able to

30



3 – Dealing With Noisy Information - Named Entity Recognition

see the tweets and they were asked to annotate them. For the sake of speed,
they had to surround what they consider a relevant portion of text with the
following annotations: [[A text]] for an artist, [[W text]] for an artwork title,
[[V text]] for a venue, [[M text]] for an artistic movement.

In this way the message “Marc Chagall is a painter” would be changed
in “[[A Marc Chagall ]] is a painter ” . Obviously the quality of the label-
ing strongly depends on the skill and dedication of the AMT worker. A
subsequent script was used to bring the text to the desired IOB2 format.

3.1.4 BERT and Models

As mentioned in the previous chapter, BERT was introduced by Google in
2018 [9].

BERT, Bidirectional Encoder Representations from Transformers, is based
on the transformers architecture where every output element is connected
to every input element. In its name it highlights the bidirectionality of
its working. Different from previous models, BERT can read its input in
both left to right and right to left directions. This enables BERT to create
embeddings capturing good contextual information, which allows for the
disambiguation of polysemous words, or words with multiple meanings.

Bert uses a 30,000 WordPiece vocabulary on input. It was trained on
a dataset made of Wikipedia data (2.5B words) and BookCorpus (800M
words) and required 4 days for its training. BERT, in its research stages,
achieved groundbreaking results in various natural language understanding
tasks, including sentiment analysis, semantic role labeling, sentence classi-
fication.

This approach of using a network (pre) trained on a generic task and
then applied (fine-tuned) for a specific task such a classification, can also
be applied to a task on Named Entity Recognition. This can be done using
the pre-trained BERT model made available by the Hugginface project.

In Figure 3.9 there is what can be considered the baseline model archi-
tecture for using BERT for a NER task.

BERT uses a specific representation of the language and does not work
at word level but at sub-words (tokens) level. This implies that in order
to use the model, the sentences and their labels (the BIO tags) must be
preprocessed so the words in the sentences must be tokenized and the BIO-
tags are distributed/re-assigned on the single tokens. Moreover, [CLS] token
is inserted at the beginning of the first sentence and a [SEP] token is inserted
at the end of each sentence.
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This can be done using the tokenizer class made available by the Hug-
gingface project. The results of this process is illustrated in the following
examples where the ## sequence of characters means that the word has
been split in tokens belonging the BERT vocabulary. In this way, BERT
can handle (up to a point) never seen words or misspelled words.

The phrase:

There are many french painters.

is tokenized as

[CLS] /there/ are/ many/ french/ painters /[SEP]

As one can see, since the words are all in the dictionary there is no
modification between words and tokens.

But if we look at the phrase

Monet was a french impressionist painter

the tokenization becomes.

[CLS] /mon /##et /was /a /french /impression /##ist /painter /[SEP]

Where it is possible to see the mechanism that allows BERT to handle
previously unseen words by splitting them in known tokens.

As a consequence, the classification made by leveraging BERT is done
at token level and, when finished, the original words must be reconstructed
and a decision must be made on how to reassign the label in the presence of
tokens (belonging to the same word) having different classification, which
is one of the issues linked to the evaluation of a NER system results that
will be addressed in a subsequent paragraph.

3.1.5 FAM for NER

The research on named entity recognition intends to explore the possibility
of using the simultaneous availability of text and images present in the
context of Twitter messages related to cultural heritage in the hypothesis
that images can contribute to improving the information context that can
be used to identify names of artists, titles of works of art, names of artistic
movements and venues (exhibition places, museums, etc., ...).

We intend to use an approach inspired by factorization machines, intro-
duced in the next paragraph, an algorithm capable of analyzing the corre-
lations that occur within the inputs supplied to it.
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3.1.5.1 Factorization Machines

Factorization machines (FMs) is a model introduced by Stephen Rendle
in 2010 [14] related to factorization models. It is a approach that is well
suited for settings characterized by sparsity in the data. It embeds features
into a latent space and models the interactions between features via inner
product of their embedding vectors for efficiently using the second-order
feature interactions according to the following model.

ŷ := w0 +
n∑

i=1
wixi +

n∑
i=1

n∑
j=i+1

⟨vi,vj⟩xixj (3.1)

Where the model parameters that have to be estimated are

w0 ∈ R, w ∈ Rn, V ∈ Rn×k (3.2)
Where:

• w0 is the global bias.

• wi models the strength of the i-th variable.

• ŵi,j :=< vi, vj > i models the interaction between the i-th and j-th
variable

And ⟨·, ·⟩ is the dot product of two vectors of size k:

⟨vi,vj⟩ :=
k∑

f=1
vi,f · vj,f (3.3)

A row vi within V describes the i-th variable with k factors. k ∈ N+
0 is

a hyperparameter the defines the number of latent factors that ones deems
necessary to use for the problem at hand like in matrix factorization for
recommender systems.

The last term in equation 3.1 can be expressed in the following way:
n∑

i=1

∑
j=i+1

< vivj > xixj = 1
2

k∑
f=1

((
n∑

i=1
vi,fxi)2 −

n∑
i=1

v2
i,fx

2
i ) (3.4)

Bringing the computational complexity from O(kn2) to O(kn).
The choice of k is particularly critical in that the number of latent vari-

ables should be able to correctly capture the complexity of the information
available in the data. In sparse contexts, a small k would be preferable,
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because there is not enough data to estimate complex interactions. In such
cases limiting k , and consequently, the expressiveness of the factorization
machine, enhances generalization, resulting in improved interaction matri-
ces when dealing with sparsity.

Factorization machines can be adapted to different tasks such as regres-
sion and classification. For regression ŷ can be used directly by minimizing
the mean squared error between the model prediction and target value, e.g.
1
N

∑N(y − ŷ)2.
It is possible to adapt them for a multiclass classification task, which

is our case in the first part of the research, by adding a dimension, of size
equal to the number of classes, to each of the parameters w0, w, so they
become vectors, and to the matrix V , that becomes a 3-D tensor as in figure
3.5. The computations of equations 3.1 are then applied individually to the
slices, since there is no interference among them. The result will be a vector
of size equals to the number of classes on which a softmax can be applied
to select the current prediction.

Figure 3.5: V matrix of a factorization machine extended as tensor for a multiclass classification
task.

We propose a methodology inspired by Factorization Machine to analyze
the interaction between textual and visual features in order to work as
an attention mechanism layer for improving the performance of a neural
network.

3.1.5.2 Ideal Features and Visual Dictionaries

Mixing textual and visual information is not an easy task, and it is not easy
to assess the contribution of the modalities, especially for the visual part,
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so, in order to have a term of comparison, in this respect two strategies were
devised.

Both strategies creates syntehetic visual information that, since are gen-
erated from the labeled messages, perfectly match the textual portion of
the information. The idea is to remove the ‘’noise” (light conditions, poorly
related images,... ) that a real image introduces

The first strategy creates vectors of “ideal features” (embeddings) start-
ing from the textual part of the message, in this way the entire role of the
visual network is removed. The following algorithm is used:

Ideal features creation algorithms
1: For a given labeled message and given that the number of entities are 8.
2: Create a vector of size of 4096 (the VGG19 embeddings size) and segment it in 8

portions of size 512. So portion 1 is from index 0 to index 511, portion 2 is from index
512 to 1023 and so on.

3: Map the entities to the portions with the following conventions.
• B-A portion 1
• I-A portion 2
• B-M portion 3
• I-M portion 4
• B-W portion 5
• I-W portion 6
• B-V portion 7
• I-V portion 8

4: For each entity in the message the corresponding portion is filled with all ones.

Repeated entities are not captured but in twitter messages this is rarely
the case. Figure 3.6 shows an example for a message containing the name
of an artist (of one word) and the name of an artwork (of one word).

Figure 3.6: Ideal features example.
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In this way it is possible to create a vector of the same size of the em-
beddings that can be obtained from VGG19 that can be interpreted as
the embedding of an image that perfectly matches the text of the Twitter
message. During some of the experiments this “ideal embeddings” will be
injected in the models instead of the VGG19 embeddings.

The second strategy ceates a ‘visual dictionaries” to obtain images that
perfectly match the tagging of the textual part. The algorithm is as follow:

Ideal images creation algorithms
1: For a given labeled message, given that the number of entities are 8.
2: Create an image segmented in 8 different regions according to a chosen grid.
3: Map the 8 entities to the regions accroding to a chosen convention.
4: For each entity in the message fill the corresponding region with a color and/or a

shape.

Examples of such dictionaries are depicted in Figure 3.7 and in Figure
3.8.

Figure 3.7: Visual dictionary example

In Figure 3.7 the image is segmented with a grid that results in a sort of
bar code.
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Figure 3.8: Visual dictionary example

Iin Figure 3.8 the image is segmented in four sectors, each one divided in
two parts, so that the entities are differentiated by the position, the shape
(square, circle triangle and cross), and the filling of the shape, white for the
beginning and black for the inside.

Given the tagging definitions in both figures the central image represents
a message containing the name of an artist made of two words, an artis-
tic movement made of one word and the title of an artwork made of two
words, The latter dictionary was the one used during the experiment having
performed better in some trial.

These “perfect matching” images were given in input to VGG19 and used
in the models. in order to have a term of comparison with the case where
the real images were used.

3.1.6 NER Evaluation

Usually, NER systems are evaluated by comparing their outputs against hu-
man annotations. Exact-match or relaxed/partial match can be quantified
for the comparison.

3.1.6.1 Exact-match Evaluation

NER essentially involves two subtasks: boundary detection and type iden-
tification. In “exact-match evaluation”, an entity is correctly recognized if
a system identifies both its boundary and type simultaneously.

The following quantities are generally used to quantify and analyze the
performance: The numbers of True positives (TP), False positives (FP) and
False negatives (FN) are used to compute Precision, Recall, and F-score.

• True Positive (TP): entity that is returned and also appears in the
ground truth.
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• False Positive (FP): entity that is returned but does not appear in the
ground truth.

• False Negative (FN): entity that is not returned by a NER system but
appears in the ground truth.

Precision refers to the percentage of results which are correctly recog-
nized. Recall refers to the percentage of total entities correctly recognized
by a system.

Precision = #TP
#(TP + FP )

Recall = #TP
#(TP + FN)

A measure that combines precision and recall is the harmonic mean of
precision and recall, the traditional F-measure or balanced F-score:

Fscore = 2 × Precision × Recall
Precision + Recall

Two more metrics are the macro-averaged F-score and micro-averaged F-
score. Both consider the performance across multiple entity types. Macro-
averaged F-score independently calculates the F-score on different entity
types, then takes the average of the F-scores. Micro-averaged F-score sums
up the individual false negatives, false positives and true positives across all
entity types, then applies them to get the statistics.

3.1.6.2 Relaxed-match Evaluation

Some studies [52] [53] use a relaxed-match evaluation. In this case an entity
is considered correctly detected if its type is correctly assigned regardless to
its boundaries as long as there is an overlap with ground truth boundaries..
However, complex evaluation methods are not intuitive and make error
analysis difficult. Thus, these evaluation methods are less used in recent
studies.

3.1.6.3 Models

The development of the models experimented during the research was done
using Pytorch (https://pytorch.org/), a framework for machine learning
applications. Originally developed by Meta AI now is part of the Linux
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Foundation. It is used in research and industrial (Tesla, Uber) contexts.
It supports the implementation and training of neural networks through
the package torch.nn and allows the execution of computation on both the
CPU and the graphics cards (GPU) hardware, which greatly accelerates the
operations involving tensors.

The following images represents three types of models implemented. The
pretrained BERT model is obtained from Huggingface platform (https://huggingface.co/)
while the pretrained VGG16 is obtained from Pytorch project. The models
were trained for 400 epochs with a batch size of 32 using crossentropy loss
and adamW optimizer. During the training the weights of BERT are not
frozen 1.

Figure 3.9: Baseline model (A) for unimodal NER task using BERT

Figure 3.9 shows a model for only text NER, the text embeddings are
obtained using BERT. This is considered the baseline against which observe
the behavior of the model without the contribution of the images (real and
generated) or of the ideal features.

1In all the experiments conducted throughout the research, the number of epochs has been chosen
in order to have a balance between performance improvement, time costs and computational costs.
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Figure 3.10: Model (B) for multi-modal NER task using BERT

Figure 3.10 shows a model for multimodal NER. In this case the text
embeddings are obtained using BERT while the image embeddings are ob-
tained from VGG16. In order to obtain embeddings from the image branch
of the same size of the BERT embeddings, which are vectors of length 768 a
linear layer is applied with an input dimension of 4096 (the size of VGG16
embeddings) and an output dimension of 768. The two embeddings are
then concatenated and sent through a fully connected layer for the final
classification in eight classes. Instead of the images this model can take, as
input, the ideal features described in 3.1.5.2

Figure 3.11: Model (C) for multi-modal NER with a FAM module
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Figure 3.11 shows the model for multimodal NER where is present our
factorization machines inspired approach. In this case, the text embed-
dings are obtained using BERT while the image embeddings are obtained
from VGG16. In order to obtain embeddings from the image branch of the
same size of the BERT embeddings, which are vectors of length 768. The
obtained embeddings are then given in input the Factorization Module
(FAM) implemented as a custom pytorch netwok layer where the factoriza-
tion machine is adapted for a multiclassification setting, with the idea that
the ability of the FAM to analyze the interaction within and between the
vectors will contribute to the improvement of the performance. Instead of
the images, this model can also take, as input, the ideal features described
in 3.1.5.2

3.1.7 Experiments

In the following the experiments performed with results and considerations.
The experiments were conducted utilizing the Chameleon cloud comput-

ing platform [54], employing Nvidia P100, M40, and K80 graphics cards, as
well as on the HPC4AI computing infrastructure at the University of Turin
[55], utilizing Nvidia Tesla T4 graphics cards.

3.1.7.1 Experiment Using Model A and B

This experiment aims at verifying the behavior of a fully connected layer as
classifier (model B) compared to the only text model (model A).

The parameters used are:

• epochs: 400.
• batch size: 32.
• dataset size: 1500 samples

Figure 3.12: F1 scores results using model (B) with ideal features, real images, generated images
and random images.

Observation:
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• In this case, the use of ideal features shows a general improvement on
all the classes with respect to the text-only model. The use of generated
or real images improves on the artist class but not on the other. The
case of text associated with random images is less damaging than one
could expect and indeed improves on the Venue and Artwork classes.

3.1.7.2 Experiment Using Model A and C

.
This experiment aims at verifying the behavior of FAM layer as classifier

(model C) compared to the only text model (model A).
The parameters used are:

• epochs: 400.
• batch szze: 32.
• dataset size: 2100 samples

Figure 3.13: F1 scores results using model (C) with ideal features, real images, generated images
and random images.

Observation:

• With this model, including ideal features along with the text shows
a general improvement in all the classes with respect to the text-only
model. Using generated or real images does seem to damage the per-
formance. The case of text associated with random images is degrades
the performance with the surprising result on the Artistic movement
class.

3.1.8 Experiments on Another Dataset

In order to compare the methodology with a literature example, the model
was applied to a dataset from the Zhang 2018 paper introduced in paragraph
3.1.2.5
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3 – Dealing With Noisy Information - Named Entity Recognition

Figure 3.14: Multimodal NER architecture [2]

In this paper, the named entity recognition is done on the more conven-
tional schema of Location, Organization, Persons and Others.

The dataset is composed of 8,257 tweets posted by 2116 users. The
total number of entities is 12,784. The dataset is splitted into three parts:
training set, development set, and testing set, which contain 4,000, 1,000,
and 3,257 tweets, respectively

Table 3.1 reports the results between the Zhang’s paper results the text
only model (A) using BERT and model (C) using FAM

F1 Score
Entity Zhang’s paper Text-only (model A) Text and real images (model C)

LOC 0,789 0,802 0,796
ORG 0,530 0,570 0,568

OTHER 0,340 0,394 0,387
PER 0,819 0,831 0,840

Table 3.1: Comparison between F1 scores of Zhang’s paper, text only model (A) and multi modal
Model (C)

Observation: In this case the model text only model (A) based on
BERT improves over the Zhang paper’s results, also model (C) is slightly
better than the Zhang’s paper results but compared with the text only
model only the Person category gets benefit from incorporating images.

3.1.9 Some Final Considerations

Here are some key observations drawn from this phase of the research:
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• When available, including ideal features alongside text generally im-
proves performance on the majority of classes compared to a text-only
model.

• The presence of generated or real images can help depending on the
model and classes, but can also deteriorate the performance, as can
be seen for the model including the FAM module. A possible expla-
nation being the very high variability of images associated to the text
messages.

• Interestingly, there are instances where randomly pairing text and im-
ages leads to performance improvements for certain classes.
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Part II

A Novel Attention Mechanism
and Data Augmentation
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Chapter 4

Previous Works on Attention

The attention has now become an important component in current neural
networks solutions and has been researched within diverse application do-
mains. In the following of this chapter an overview of the development of
the attention mechanism is given togheter with its application in different
tasks and settings.

4.1 Different Types of Attention

The concept of attention emerged and evolved, with different flavors, in two
different contexts; neural machine translation and computer vision.

As with neural networks themselves a biological comparison can be used
to give the intuition behind the concept of attention, where, for example,
in the viewing process, the focus is not on the entire scene in front of an
observer but only on some parts that the observer (perhaps instinctively)
considers most relevant for understanding what is in front of him.

Regarding computer vision, in 2014 Mnih et al. [10] proposed a method
to focus on important parts of an image in order to process at high resolu-
tion. The image, instead of being entirely processed at once, is processed
sequentially, attending to different locations considered relevant to the task.

Always in 2014, in the field of neural machine translation, the most com-
mon framework was the sequence-to-sequence (seq2seq) [6] Sutskever et al.
(2014). In seq2seq, there are two recurrent neural networks (RNNs) [56]
arranged in an encoder-decoder architecture: the encoder side reads the
input words one by one to obtain a vector representation of a fixed dimen-
sion, and, conditioned on these inputs, the decoder part extracts the output
words one by one using another RNN.

The main problem with seq2seq is that the last encoder hidden state is
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the only information that the decoder receives, a vector representation that
is like a numerical summary of an input sequence. So, for a long input
text, the decoder receives too little information to output a translation, in
particular, the first word of a sequence leave too few traces in the last hidden
state representation. A situation sometimes called catastrophic forgetting.

A human analogy would be like to start to translate a text only after
having read all the text that must be translated.

The problem was addressed in a 2014 paper by Bahdanau et al. [7] The
idea was to give the decoder not just the information from the last hidden
state but a vector representation from every encoder time step, so that it
could make more informed translations.

Going back to the human analogy, in this case, while reading the text
the translator takes notes he will reuse during the actual translation. The
mechanism by which this additional information from every encoder hidden
state is passed to the decoder is called attention. In this way, the model
doesn’t forget useful parts of the input sequence and can use them (pay
attention to them) for the translation.

Figure 4.1 gives a visualization of Bahdanau attention.

Figure 4.1: Bahdanau’s attention [7], the grey cells highlight the attention put on the words of
the starting language to produce the translation in the target language.

With Vaswani et al. “Attention is All You Need” paper [4] in 2017 a new
transformer architecture was introduced which computed what the authors
named "Scaled Dot-Product Attention" (4.1), realized through the flow
depicted in Figure 4.2.

Attention(Q,K, V ) = softmax(QK
T

√
dk

)V (4.1)
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4 – Previous Works on Attention

Here the notation recalls information retrieval systems and K/V/Q stand
for key/value/query concepts. An intuitive example can be drawn from a
search for videos on a website where the query (the text in the search bar)
is mapped against a set of keys (video title, description, etc.) associated
with videos in a database, the best matches are are then presented as results
along with the associated videos (the values).

An important novelty introduced in the same paper is the so-called self-
attention, which is realized when K and V are equal and enables the model to
weigh the importance of different elements in an input sequence (a phrase),
allowing to capture relations between distant part of the sequence.

Figure 4.2: Scaled dot product attention as descried in Vaswani’s paper [4]

Figure 4.3: Vaswani’s attention.

A further evolution came from computer vision, when in 2015 [5] Xu at
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al. proposed the use of visual attention to the task of image captioning.
They introduced the concept of soft attention and hard attention. Soft
deterministic attention is smooth and differentiable, is trained by standard
back propagation and focuses on smoother regions of the image, while hard
stochastic attention is trained by maximizing an approximate variational
lower bound and focuses on more circumscribed regions of the image. Soft
attention is similar to Bahdanau et al.’s proposal.

Figure 4.4: An example of hard attention on the left aside an example of soft attention on the
right. The difference is in the role of the surrounding part of the image that is excluded in the
hard version and somehow kept into consideration in the soft one

Given that attention was successfully applied to language and vision
problems separately, it was a natural evolution to apply this approach to
tasks where text and images are naturally connected and more generally
where inputs of different nature (textual, visual, auditory, ...) coexist.

A number of tasks belong to this category.
Named Entity Recognition, as adressed by Zhang 2018 paper [2]

introduced in paragraph 3.1.2.5.
Image-caption alignment, like in the paper by by Liu, Mao et al. [57]

where a portion of an image is linked to a portion of a caption introduced
in section 5.1.

The architectures of the models by Zangh and Liu are reported in Figure
3.3 and 4.5, it is possible to see that, despite the difference of tasks, there are
commonalities between these multi-multimodal approaches. In both cases
two distinct neural networks, one for each modality, process the inputs
and then the attention mechanism contributes to the different tasks of the
models.
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4 – Previous Works on Attention

Figure 4.5: BFAN model overall architecture: consists of feature extraction, focal attention and
loss function module. The focal attention module takes the extracted features as input, and then
attends to regions and words interactively [57]

Multimedia Description, generates a natural language textual descrip-
tion of a multimedia input sequence which can be image and video [Cho et
al. 2015] [58].

Even more sofisticated is the task of Human Communication Com-
prehension by Zadeh et al. 2018 [59] that addresses face-to-face com-
munication which involves language, vision and speech modalities simul-
taneously. In this case attention is used to highlight interactions between
different modalities.
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Chapter 5

A Novel Type of Attention
J-FAM

In this chapter a novel type of attention, J-FAM (Joint Factorization Mod-
ule), potentially able to be applied in a multi-modal setting, characterized
by data sparsity, is proposed with the results of experiments of its applica-
tion.

The experiments were conducted utilizing the Chameleon cloud comput-
ing platform [54], employing Nvidia P100, M40, and K80 graphics cards, as
well as on the HPC4AI computing infrastructure at the University of Turin
[55], utilizing Nvidia Tesla T4 graphics cards.

5.1 The Task: Image Caption Alignment

Text image matching is an interesting field of research where an algorithm
tries to find a semantic match between images and texts.

Among the existing works in the field, a paper by Liu et al. [57], “Focus
Your Attention: A Bidirectional Focal Attention Network for Image-Text
Matching”, addresses the problem of finding associations between words
of a caption and portions of a corresponding image, see Figure 5.1. The
paper comes with the availability of the code and the dataset [60], making
it a good term of comparison for the experiments where our approach is
introduced.
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Figure 5.1: Correspondence of the word moped, a low-powered motorcycle, with the region of the
image that contains it.

In Figure 5.2 the Bidirectional Focal Attention Network (BFAN) archi-
tecture of Liu’s paper is presented.

The framework of BFAN consists of a neural network for extracting fea-
tures for the images parts, a neural network for extracting features for the
textual part, a - so called - focal attention module and a loss function mod-
ule.

Figure 5.2: BFAN model overall architecture: it consists of feature extraction, focal attention
and loss function module. The focal attention module takes the extracted features as input, and
then attends to regions and words interactively [57].

BFAN methodology operates in the belief that irrelevant portions of text
and images damage the text-image alignment process. To avoid this prob-
lem, after the features extraction is performed by the two initial neural
networks, two steps are performed in both the text to image and the image
to text directions. In a first step (point 1 in Figure 5.2), BFAN assigns,
using cosine similarity, attention scores S to all the parts in one modality
based on fragments from the other modality. In a second step (point 2 in
Figure 5.2) the scores are compared with their average < S >.

F (x) = S(x)− < S(x) > (5.1)
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5 – A Novel Type of Attention J-FAM

Scores above the average are considered related to relevant fragments
while scores below the average related to irrelevant parts, in this way it is
possible to build an indicator function:

H(X) = I(F (x) > 0) (5.2)

used to multiply by 1 the representation of relevant parts and by 0 the
representations of the irrelevant parts, removing them.

5.1.1 Introduction to J-FAM Attention

In Figure 5.3 two possible areas of insertion of an attention mechanism
inside the BFAN architecture are highlighted. The blue rectangle would
completely remove the focal attention module by substituting it with a fac-
torization machine attention based approach. The green rectangle instead
depticts a scenario where the factorization machine based attention is used
as a pre-processing activity applied on the embeddings extracted for the
image and the textual parts.

Figure 5.3: BFAN model [57], blue and green rectangles denote possible point of insertion of
different types of attention.

This, ultimately, is the way J-FAM is applied, J-FAM is inserted after the
features extraction neural networks but before the first step of computation
of the attention scores described in the previous section. J-FAM acts as a
pre-attention processing of the inputs before they are passed to the logic
of relevance detection of the fragments, in the belief that the applied novel
attention mechanism is able to give improved representations of parts of
texts and images.

Figure 5.4 illustrates the architecture applied.
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Figure 5.4: Proposed model for inserting FAM attention in the BFAN model.

5.1.2 The Methodology

In Liu’s model, a sample, composed of parts of an image and the image
caption, is represented in embedding form by the following two tensors.

• Caption tensor C ∈ Rn×m with n equals to number of words in the
caption and m dimension of the embedding (1024).

• Image tensor I ∈ Ri×m with i equal to the number of relevant parts of
the image (always 36) and m dimension of the embedding (1024).

This implies that the representation of a caption changes for each sample
depending on the number of words in the caption.

A factorization machines inspired algorithm inherits the requirement of
a tabular format for the training data, where the rows are of fixed size and
each row represents a sample. See Figure 5.5.
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5 – A Novel Type of Attention J-FAM

Figure 5.5: Input data shape for a factorization machine based algorithm [14], In our case, a row
is a concatenation of a text related vector and an image related vector.

There is the need to cast the tensor C ∈ Rn×m into a vector C ′ ∈ Ru

and the tensor I ∈ Ri×m into a vector I ′ ∈ Rv so that their concatenation
S ∈ Ru+v will represent a single sample.

Recalling that the training of a neural network is usually done not one
sample at a time, but using batches of samples, it is possible to achieve this
desired result by creating histogram vectors using the result of a cluster-
ization algorithm like k-means, applied at batch level as described in the
following section.

5.1.2.1 The K-means and Histogram Algorithm (KMH)

Let first introduce the k-means clusterization algorithm and the associated
elbow method.

The k-means clustering algorithm works as follows: Given a training
set of vectors x(1), ..., x(m), we want to group the data into a few cohesive
"clusters". Here, we are given feature vectors for each data point x(i) ∈ Rn;
but no labels y(i) (so this is an unsupervised learning setting). Our goal
is to predict k centroids and a label c(i) (belonging to a cluster) for each
datapoint.

The aim is to cluster the embeddings that are more similar because we
believe they are also close in meaning. The algorithm works iteratively.
When the assignments no longer change, the algorithm has converged.
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Algorithm 1 K-means clustering algorithm assuming euclidean distance
1: Initialize cluster centroids µ1, µ2, ..., µk ∈ Rn randomly, These can be random points

in the dataset.
2: Compute the membership degree of all feature vectors in all clusters Ci at iteration t.

C
(t)
i =

{
xp :

∥∥∥xp − µ
(t)
i

∥∥∥2
≤

∥∥∥xp − µ
(t)
j

∥∥∥2
∀j,1 ≤ j ≤ k

}
, (5.3)

3: Recalculate the means (the new centroids) given the assignements found in the previous
step

µ
(t+1)
i = 1∣∣∣C(t)

i

∣∣∣
∑

xj∈C
(t)
i

xj (5.4)

Given an element of the dataset, in addition to the assignment to a clus-
ter, another output that can be obtained from the algorithm is its distance
from the centroid of the class, which can give an idea of how strong its
membership to a class is. This information will be used in conjunction with
others during the experiments.

Obviously, in this process, one must decide the number k of clusters to
be used. An indication for this choice can be obtained using an heuristic
methodology called elbow method.

The elbow method is a method of cluster analysis used to justify the
number of clusters to be used in a clustering algorithm (e,g, k-means).

During the elbow method execution, the number of hypothetical clusters
k is progressively increased. For each value of k, a quantity called Within-
Cluster Sum of Square (WCSS) is calculated. WCSS is the sum of the
squared distance between each point and the centroid in a cluster. After
plotting the WCSS for each k values, the plot can be analyzed (see Figure
5.6). WCSS value is largest when k = 1. As the number of clusters increases,
the WCSS value decreases and it may show a transition point (the elbow)
where the rate of decrease in WCSS slows down, suggesting that adding
more clusters doesn’t significantly improve the clustering quality.

The K corresponding to the transition point is the one used as the “op-
timal” number of clusters. Algorithmically the elbow method can be ex-
pressed as in Algorithm 2.
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Algorithm 2 Elbow method
1: For k = 1,2,3, ...
2: For each k execute k-means
3: Compute the Within-Cluster Sum of Square (WCSS) defined as:

WCSS =
k∑

i=1

∑
x∈Ci

||x− ci||2 (5.5)

where
• k is the number of cluster
• Ci is the i-th cluster
• x is an element in Ci

• ci is the centroids of Ci

4: Create a chart of WCSS for all the chosen k and evaluate the change in slope

As said, it is an heuristic approach, the transition point may not be so
pronounced, resulting in a certain degree of uncertainity in the choice for
the number of clusters.

Figures 5.6 and 5.7 show the result of the application of the elbow method
on a batch of captions and corresponding visual embeddings. It is not so
clear, but a change of slope can be located between 10 and 23 for the captions
and 15 and 35 for the images. It must also be considered that in a batch
there are less embeddings for words than for visual parts since the captions
have around seven to ten words each while the embeddings for each image
are always 36.

Figure 5.6: Elbow method for a batch of captions, with the “elbow area” approximately spanning
from 10 to 23
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Figure 5.7: Elbow method on a batch of parts of images, with the “elbow area” approximately
spanning from 15 to 35

Having introduced K-means and the elbow method, we can describe our
KMH algorithm.

Let u be the number of clusters for text and v the numbers of clusters for
part of images. After the execution of the clusterization, separately for the
embeddings of the words and the embeddings of the parts of images, it will
be possible to build for each caption and each parts of image a corresponding
histogram vector as follows.

Recalling that C’ ∈ Ru and I’ ∈ Rv are the vectors introduced in the
previous section, the single components of the vectors will be valorized in
the following way:

C ′
1 = number of caption’s words in cluster 1

C ′
2 = number of caption’s words in cluster 2

...
C ′

u = number of caption’s words in cluster u

. (5.6)

so that that the vector becomes a histogram of the belonging to the
clusters.

The same happens for the parts of image vector.

I ′
1 = number of parts of image in cluster 1
I ′

2 = number of parts of image in cluster 2
...
I ′

u = number of parts of image in cluster v

. (5.7)

This will be repeated for each sample in the batch so that the final batch
can be defined as B ∈ Rb×(u+v) with b equal to the size of the batch.
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This is a format that can be used to train a factorization machine.

Algorithm 3 gives an algorithmic description of the procedure.

Algorithm 3 KMH algorithm
1: Let the tensor C ∈ Rn×m be the embedded representation of a caption of n words each

one represented by a vector of size m.
2: Let the tensor I ∈ Ri×m be the embedded representation of the parts of a corresponding

image with i equal to the number parts and m the dimension of the embedding.
3: Consider a set of b couples of Cs and Is so that BC ∈ Rb×n×m represents a set of

embeddings of words in captions and BI ∈ Rb×i×m represents a set of embeddings of
parts of images

4: Perform k-means for u cluster on the embeddings of the words in BC and for v clusters
on the embeddings of the parts in BI .

5: define a vector C′ ∈ Ru and a vector I′ ∈ Rv

6: define wi the number of words of a caption in cluster i and pi the number of parts of
an image in cluster i

7: Given the assignment C′
i = wi, C′ will represent the histogram vector associated to a

caption.
8: Given the assignment I′

i = pi, I′ will represent the histogram vector associated to the
visual part.

Also, for each word/part of image the inverse distance from the centroids
is stored with the aim of using it as part of the overall re-weighting mecha-
nism. The inverse is used in order to give more importance to the elements
near to the centroids. This final tensor can be given as an input to the FAM
module.

Figure 5.8 describes a toy example of KMH applied to a four word caption
(word embeddings of size 5) and corresponding image composed of embed-
dings of the relevant image parts (size 6 in the sample) with clustering
effects and vector histogram creation and concatenation .
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Figure 5.8: A toy example (in very low dimensions) of the effect of KMH application on a couple
caption/image inside a batch made of embeddings for a caption of four words and embeddings
for 6 parts of an image. For the caption: 2 words belong to cluster 1 and one word each to cluster
2 and 3, for the image: 3 words belong to cluster 1, 1 word to cluster 2 and 2 words to cluster 3.

In the following sections two more issues will be addressed:
• Training targets.
• How to use the outputs of the factorization machine training as atten-

tion weights.

5.1.2.2 Training Targets

Factorization machines are a supervised algorithm. In order to be trained,
each input data needs a target value and the training aims to minimize
a loss function, such as an MSE loss. In a recommendation system, the
targets can be the marks that users give to items (movies, books, etc...).

The case at hand is different since predefined targets are not present,
so the factorization machine part of the Algorithm is trained assuming a
target value of 1 for each couple caption-image, meaning with this that the
caption and the image are correctly related.

In Figure 5.9 the chart of the training of a FAM on a batch over 3000
epochs with an MSE loss based on L2 norm while in Figure 5.10 is the
chart of the training of a FAM isung an MSE L1 norm . In the case of L2
norm the plateau is reached at around 400 epochs while for the L1 norm is
reached at aornt the 50th epoch and this was the choice when used within
a model.
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Figure 5.9: FAM training over 3000 epocs with MSE L2 norm

Figure 5.10: FAM training over 3000 epocs with MSE L1 norm

5.1.2.3 Extraction and Use of Weights

Recalling the factorization machines equation:

ŷ := w0 +
n∑

i=1
wixi +

n∑
i=1

n∑
j=i+1

⟨vi,vj⟩xixj (5.8)

With respect to equation 5.8 and given our construction of the clustering,
after the training the linear coefficient wi of the factorization machine are
related to the clusters and interpreted as the relevance that a cluster has in
the coupling text-images.

In order to extract weights from the cross part of the model, the matrix
V of equation 3.2 and 3.3 of the weights is multiplied with its transpose to
obtain a matrix
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W = V V T (5.9)

The square root of the diagonal elements of W , Xi =
√
Wii are related

to the clusters.
At the end of the process of clustering and factorization machine training,

three quantities are available for reweighting the original embeddings of the
words in the captions and the embeddings of the parts of the images.

• The inverse distance from the centroids I (size equal to the number
embeddings in the batch.

• the trained FM linear coefficients wi (size equal to the number of clus-
ters)

• the trained FM cross coefficients Xi (size equal to the number of clus-
ters)

With the weights obtained from the FAM we can build a tensor of weights
F of length equal to the number of elements in the embeddings and values
for each element based on the belonging to a particular cluster.

So, if, for example, embeddings ei (e.g. the embedding of a word) belongs
to cluster cj, the corresponding J-FAM weight will be Fi = Fi(wj, Xj) e.g.
Fi = Lj +Xj.

Taking into account the inverted distance Di of embeddding ei from its
centroid, the total weight of the ei embedding will have the form :

Ti = Ti(Di, Fi) (5.10)

There are a number of possible choices for the actual functions applied on
D and F, some of them, with the i index dropped, are listed below. where
Softmax and Normalization are applied to the whole set of distances and
weights to avoid problems of scale.

• T = norm(D) ∗ norm(w +X)

• T = softmax(D) ∗ norm(w +X)

• T = softmax(D) ∗ softmax(w +X)

• T = softmax(norm(D) ∗ norm(w +X))
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The final reweighted embedding will be of the form

ew = e ∗ T (5.11)

ew is then renormalized in order to be processed by the BFAN algorithm.

5.2 The Dataset and the Recall@k Metric

The datasets involved are Flickr30K [61] and MS-COCO [62]. Flickr30K is
a standard dataset for image-text matching, it contains 31,000 images and
155,000 texts in total, each image relates to five texts. Flickr30K is split
into 29K training images, 1K validation images and 1K testing images.
MS-COCO is a large-scale benchmark dataset that contains 123,287 images
with five texts each. The images used are 113,287 for training, 5,000 for
validation and 5,000 for testing.

Liu’s paper is built on top of another work by Lee et al. [63] which pro-
vides precomputed datasets of embeddings correspondings to the portions
of the images from Flick30K and MS-COCO these datasets of embeddings
are the ones actually used..

To compare the results between the Liu’s code and the models experi-
mented the metric used in Liu’s paper is used which is the Recall@K [64]
[57]. It is a common metric in information retrieval. It measures how many
relevant items (true positives) are in the first K results against how many
relevant items exist in the entire dataset, that is, the sum true positives and
false negatives.

Recall@K = truePositives
truePositives + falseNegatives (5.12)

By the definition, one can observe that with recall@K, the score improves
as K increases and the scope of returned items increases, eventually reaching
1 when K is large enough to include all the relevant items, in the worst case,
when K matches the cardinality of the test dataset.

Recall@K is an easily interpretable evaluation metric The lower the K
the harder is the retrieval and a score equal to one means that all relevant
items have been returned.

It is an order unaware metric. It does not indicate where the relevant
items are among the K returned.
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5.3 Experiments with Weights as Multipliers

In this section the results for some experiments using the weigths obtained
from J-FAM as multipliers according to equation 5.11 are reported.

In the tables below there are the results, expressed as Recall@K, of the
experiments.

The Recall@K is reported in both the text to image direction and the
image to text direction. it also reported the sum of these two values.

The weights are obtained with the following function, chosen, among
the various options, to have a distribution of weights where the various
components have been normalized in order to avoid imbalance between the
weights.

T = softmax(norm(D) ∗ norm(w +X)) (5.13)

In each case the J-FAM component was trained for 50 epochs and the
overall model was trained for 15 epochs. The other parameters, number of
J-FAM latents, number of text clusters and number of images clusters were
changed individually after having chosen a default.

Table 5.1 reports the results obtained running Liu’s paper code from
github [60].

Liu’s code Recall@K
R@1 R@3 R@5 R@10

text_to_img 59.9 79.9 86.6 92.2
img_to_text 45.4 65.5 73.3 82.7

sum 105.3 145.3 159.9 174.9

Table 5.1: Liu’s code Recall@K

The following values were considered the default values for the parameters
cited above:

• Number of factorization machine latent: 32
• Number of text clusters: 12
• Numer of image clusters: 30
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Recall@K wih default values
R@1 R@3 R@5 R@10

text_to_img 60.0 79.8 86.8 92.9
img_to_text 44.8 65.4 73.6 82.2

sum 104.8 145.2 160.4 175.1

Table 5.2: Recall@K wih default values

In table 5.3 the results of an experiment with less text clusters, from 12
to 8 are reported.

Recall@K with number of text clusters reduced
R@1 R@3 R@5 R@10

text_to_img 59.0 81.0 86.2 92.8
img_to_text 44.9 65.6 73.3 82.9

sum 103.9 146.6 159.5 175.7

Table 5.3: Experiment with number of text clusters reduced to 8

In table 5.4 the results of an experiment with more text clusters, from
12 to 20 are reported.

Recall@K with number of text clusters augmented
R@1 R@3 R@5 R@10

text_to_img 58.1 79.4 85.6 92.1
img_to_text 44.6 64.3 72.9 82.2

sum 102.7 143.7 158.5 174.3

Table 5.4: Experiment with number of text clusters augmented to 20

In table 5.5 the results of an experiment with less image clusters, from
30 to 25 are reported.

Recall@K with number of image clusters reduced
R@1 R@3 R@5 R@10

text_to_img 58.1 79.4 85.6 92.1
img_to_text 44.6 64.3 72.9 82.2

sum 102.7 143.7 158.5 174.3

Table 5.5: Experiment with number of image clusters reduced to 25

In table 5.6 the results of an experiment with more image clusters, from
30 to 45 are reported.
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Recall@K with number of image clusters augmented
R@1 R@3 R@5 R@10

text_to_img 56.1 79.5 87.2 93.1
img_to_text 44.6 65.2 73.2 82.3

sum 102.7 144.7 160.4 175.4

Table 5.6: Experiment with number of image clusters reduced to 45

In table 5.7 the results of an experiment with less J-FAM latent, from 32
to 27 are reported.

Recall@K with number of J-FAM latent reduced
R@1 R@3 R@5 R@10

text_to_img 59.0 79.6 88.0 93.3
img_to_text 45.1 66.0 73.9 82.6

sum 104.1 145.6 161.9 175.9

Table 5.7: Experiment with number of J-FAM latent reduced to 27

In table 5.8 the results of an experiment with more J-FAM latent, from
32 to 40 are reported.

Recall@K with number of J-FAM latent augmented
R@1 R@3 R@5 R@10

text_to_img 58.1 80.3 86.9 93.0
img_to_text 44.2 64.7 73.1 81.5

sum 102.3 145.0 160.9 174.5

Table 5.8: Experiment with number of J-FAM latent augmented to 40

Observations: Looking at the results, there is not an approach that is
clearly better than the others. The best Recall@1 is the one from Liu’s code.
The best Recall@3 is obtained with the reduced number of text clusters, the
best Recall@5 and Recall@10 are obtained reducing the number of J-FAM
latent.

Conducting additional experiments to obtain a deeper understanding of
these findings would have incurred significant costs in both computational
resources and time. Therefore, we opted to explore an alternative approach
as described in the following section.
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5.4 Experiments with N% of Cluster and M% of Clus-
ter Elements

As written earlier another possible way to use the weights generated by
J-FAM is to use them to drive an augmentation schema at the batch level.

The approach, formalized in Algorithm 4, is to take a portion of the
clusters and inside the chosen clusters, a portion of the samples.

These selected samples are modified, adding gaussian noise, and added
to the batch.

Algorithm 4 Augmentation with w% of clusters and k% of elements of clusters
1: Let W be the vector of J-FAM weights associated to the clusters,
2: Sort W in descending order according to the weights and Let Cw% be the set of clusters

corresponding the first (the highest) w% weights in the sorted W.
3: For each C ′ ∈ Cw%:
4: Let Dk% be the subset of C ′ containing the k% elements which are closest to the

cluster’s centroid.
5: Let S be a training sample ∈ C ′.
6: If S ∈ Dk% then modify it adding gaussian noise with mean 0 and standad deviation

10−5 and add S to the batch.

In the following we presents and discuss the outcomes of the experiments
with this approach.

For these experiments the following settings were used.

• Number of clusters for the captions: 12
• number of clusters for the images: 30
• number of latent features for the factorization machines: 36
• Percentages of clusters with highest values as given by J-FAM linear

weights: 10%, 30%, 90%
• Percentages of elements as ranked by their distance from their cluster

centroid: 10%, 30%, 90%

In the following tables there are the results, expressed as Recall@K, of
the experiments.The models have been trained for 18 epochs each.

Image-to-Text denotes retrieved texts using image query, and Text-to-
Image denotes retrieved images using text query. The Recall@K is reported
in both the text to image direction and the image to text direction. it also
reported the sum of these two values.

Observation. As shown in the tables below, in general, the results the
Liu’s code and the modified version are too close to declare that there is
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a true improvement, but it is possible to observe that the best results are
obtained with the lower values (10% cluster, 10% elements) while adding
more and more samples to the batches seems to damage the performance.

5.4.1 10% High Value Clusters

Liu’s code Recall@K
R@1 R@3 R@5 R@10

text_to_img 63.2 81.6 88.1 94.5
img_to_text 45.1 66.4 74.6 83.1

sum 108.3 148 162.7 177.6

Table 5.9: Liu’s code Recall@K

10% cluster 10% elements Recall@K
R@1 R@3 R@5 R@10

text_to_img 63.8 81.4 87.5 94.0
img_to_text 46.0 66.4 74.5 82.9

sum 109.8 147.8 162.0 176.9

Table 5.10: Recall@K for 10% high value clusters 10% nearest elements

10% cluster 30% elements Recall@K
R@1 R@3 R@5 R@10

text_to_img 60.7 82.0 88.5 94.3
img_to_text 45.3 66.6 74.8 82.5

sum 106.0 148.6 162.9 176.8

Table 5.11: Recall@K for 10% high value clusters 30% nearest elements

10% cluster 90% elements Recall@K
R@1 R@3 R@5 R@10

text_to_img 63.3 82.2 87.7 94.8
img_to_text 46.2 66.7 74.1 83.0

sum 109.5 148.9 161.9 177.8

Table 5.12: Recall@K for 10% high value clusters 90% nearest elements
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5.4.2 30% High Value Clusters

Liu’s code Recall@K
R@1 R@3 R@5 R@10

text_to_img 63.2 81.6 88.1 94.5
img_to_text 45.1 66.4 74.6 83.1

sum 108.3 148 162.7 177.6

Table 5.13: Liu’s code Recall@K

30% cluster 10% elements Recall@K
R@1 R@3 R@5 R@10

text_to_img 62.1 82.8 87.8 94.1
img_to_text 44.8 65.9 73.7 83.0

sum 106.9 148.7 161.5 177.1

Table 5.14: Recall@K for 30% high value clusters 10% nearest elements

30% cluster 30% elements Recall@K
R@1 R@3 R@5 R@10

text_to_img 63.4 82.3 87.6 94.1
img_to_text 44.6 65.7 73.9 82.8

sum 108.0 148.0 161.5 176.9

Table 5.15: Recall@K for 30% high value clusters 30% nearest elements

30% cluster 90% elements Recall@K
R@1 R@3 R@5 R@10

text_to_img 62.2 80.3 86.5 93.7
img_to_text 44.5 65.3 73.3 82.6

sum 106.7 145.6 159.8 176.3

Table 5.16: Recall@K for 30% high value clusters 90% nearest elements

5.4.3 90% High Value Clusters

Liu’s code Recall@K
R@1 R@3 R@5 R@10

text_to_img 63.2 81.6 88.1 94.5
img_to_text 45.1 66.4 74.6 83.1

sum 108.3 148 162.7 177.6

Table 5.17: Liu’s code Recall@K
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90% cluster 10% elements Recall@K
R@1 R@3 R@5 R@10

text_to_img 62.5 80.9 87.0 93.5
img_to_text 44.4 65.5 73.5 82.2

sum 106.9 146.4 160.5 175.7

Table 5.18: Recall@K for 90% high value clusters 10% nearest elements

90% cluster 30% elements Recall@K
R@1 R@3 R@5 R@10

text_to_img 62.4 82.0 88.3 94.6
img_to_text 44.8 65.6 74.4 82.9

sum 107.0 147.6 162.7 177.5

Table 5.19: Recall@K for 90% high value clusters 30% nearest elements

90% cluster 90% elements Recall@K
R@1 R@3 R@5 R@10

text_to_img 61.8 81.9 88.6 94.1
img_to_text 44.8 65.0 73.1 82.5

sum 106.6 146.9 161.7 176.6

Table 5.20: Recall@K for 90% high value clusters 90% nearest elements

5.5 Experiments Removing the Indicator Function

The results of the experiments described in the previous section don’t give a
clear signal of deviation from the results obtained with Liu’s code. A set of
experiments was conducted switching off the indicator function 5.2 in section
5.1 that is keeping all the fragments, while keeping the J-FAM augmentation
schema on. Given the previous results, the experiments were limited to the
case of addition of the 10% best clusters and 10% best elements.

Tables 5.21 and 5.22 show the results for the modified Liu’s code and
for the model with the pre-attention for the experiments conducted on the
Flickr30K dataset.

Tables 5.23 and 5.24 show the results for the modified Liu’s code and
for the model with the pre-attention for the experiments conducted on the
MS-COCO dataset.
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[Flickr30K] Recall@K
attention mask switched off

R@1 R@3 R@5 R@10
text_to_img 65.2 81.6 88.0 92.5
img_to_text 46.8 67.9 76.1 83.3
sum 112 149.5 164.1 175.8

Table 5.21: Recall@K of Liu’s code (indicator function switched off) applied to the flickr30k
dataset.

[Flickr30K] Recall@K
R@1 R@3 R@5 R@10

text_to_img 64.0 83.5 89.4.0 95.2
img_to_text 47.5 68.3 76.0 84.2

sum 111.5 151.8 165.4 179.4

Table 5.22: Recall@K for J-FAM with 10% high value clusters 10% nearest elements and indicator
function swithed off.

Observations:
• A comparison between tables 5.21 and 5.22 shows that J-FAM models

prevails on R@3, R@5 and R@10 but again by a small margin.
• Comparison with the results with the indicator function active, ta-

bles 5.17 and 5.22, shows that the versions with the indicator function
switched off off have better performance.

[MS-COCO] Recall@K,
indicator function switched off

R@1 R@3 R@5 R@10
text_to_img 67.3 87.1 92.8 97.5
img_to_text 55.1 78.5 86.2 93.7
sum 122.4 165.6 179.0 191.2

Table 5.23: Recall@K of Liu’s code (indicator function switched off) applied to the MS COCO
dataset.

[MS-COCO] Recall@K for
10% high value clusters 10% nearest elements

R@1 R@3 R@5 R@10
text_to_img 68.5 87.3 93.2 97.7
img_to_text 55.3 78.6 86.76 94.0
sum 123.8 165.9 179.9 191.7

Table 5.24: Recall@K for J-FAM with 10% high value clusters 10% nearest elements and indicator
function switched off.
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Observations:
• A comparison between tables 5.23 and 5.24 shows again a general im-

provement but with very small differences.
• We encountered two challenges. Firstly, despite utilizing the code pro-

vided on GitHub, replicating the performance documented in Liu’s pa-
per proved unattainable. Secondly, disabling a significant segment of
Liu’s paper algorithm actually resulted in performance improvement.
Further exploration of these findings would have required significant
investments in both time and computational resources. Therefore, we
opted to explore the application of a factorization machine inspired
methodology in a different domain: data augmentation.
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Chapter 6

Data Augmentation

In this part of the research we want to explore methodologies able to give
a measure of diversity between the samples already present in a training
dataset and modified versions of these samples. The goal is to find criteria
able to suggest which portion of a training dataset is better to modify and
use for expanding the number of training samples in order to improve the
performance of a model.

In this chapter, a review of the data augmentation landscape is followed
by the description of the approaches explored during the research activity: a
factorization machine-based approach, a transfer learning approach utilizing
cosine similarity, and an augmentation approach customized for an SVM
classifier employing Euclidean distance.

The experiments were conducted utilizing the Chameleon cloud comput-
ing platform [54], employing Nvidia P100, M40, and K80 graphics cards, as
well as on the HPC4AI computing infrastructure at the University of Turin
[55], utilizing Nvidia Tesla T4 graphics cards.

6.1 Introduction

Data are a very important component for obtaining good performance from
a machine learning algorithm. Given a domain, training an algorithm on
large and representative data almost always results in good performance.
Conversely, training on small and poorly representative data leads to poor
generalization performance no matter how sophisticated an algorithm is.
Unfortunately, in many practical applications, obtaining data in large quan-
tity and of high quality, in terms of labeling and diversity is challenging if
not impossible. Another challenge is that, depending on the task, even very
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large datasets [11] lack the necessary diversity for obtaining good perfor-
mance.

Data augmentation aims to increase the available training data both in
quantity and in diversity, in order to increase the accuracy and the gener-
alization performance of an algorithm. This is done by using the available
data to generate new training samples, that can increase the overall quality
of the training data [11].

6.2 Previous Works
For a given dataset D made of training samples S and corresponding labels
L, augmentation finds transformations T that can be applied to the original
samples S to create additional training data S’ in such a way that the
transformed sample

S′ = T (S)
can still be described with the labels L. These transformations, known as
label-preserving transformation operations in image processing and com-
puter vision literature [13], can vary in their preservation of labels depend-
ing on the dataset.

For instance, mirroring an image in a task involving the classification of
numbers does not preserve labels, whereas it might in a task focused on
classifying fashion items. However, human evaluation still plays a role in
determining the extent of label preservation.

Augmentation approaches can be organized in a few categories as done
in some surveys [11] [12]. In the following each category is taken into
consideration.

6.2.1 Input Space Augmentation

The input space approach directly modifies the input images, completely
or partially, in order to increase variability and improve the models’ gen-
eralization performance. This is an intuitive approach and can be human-
monitored.

Input space modifications can be subdivided in groups that we illustrate
in the following sections.

6.2.1.1 Geometric Transformations

These transformations change the pixels position without modifying the
pixels values. The idea is to expose the network to image variations not
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present in the original training set, but that can be encountered in real sce-
narios. Simple transformations are rotation, shearing, translation, resizing,
reflections, flipping [65] [66].

More complex transformations involve perspective or projective trans-
formations, which are utilized to generate new images presenting different
viewpoints for an observer [67].

6.2.1.2 Photometric Transformations

This type of transformations modify the values of the pixels of the images.
This is done to take into account the fact that an image can be affected by
the camera used to take it and by the shooting conditions. The modification
of the RGB channels of an image is a typical example of a photometric
transformation.

In this way, it is possible to modify visual properties such as brightness,
color, contrast, sharpness and saturation levels. In turn, this can be related
to different shooting conditions such as weather conditions, time of the day
or lighting conditions.

6.2.1.3 Region Level Augmentation

Previously described techniques are applied to the entire image. In time
new techniques appeared that considered manipulation of only portions of
the images, this is done in order to force the models not to focus on specific
portions of an image.

A number of strategies have been devised.

• Region Deletion: during the training process some portions of the im-
ages are deleted in order to introduce diversity. Regions deletion can
also be interpreted as a form of occlusion which can be useful for object
tracking tasks where occlusion can occur as a consequence of a dynamic
environment. It is a form of information dropping that can help the
model to concentrate on the more relevant information. In this respect,
it is similar to dropout but done at the input level and not at feature
level.
An example of this technique is Cutout [68] where random patches are
deleted by replacing them with zero valued pixels. Random Erasing
by Zhong et al. [69] applies a similar approach but with a mask of
random size and values of pixels in the range 0-255.
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Gong et al. [70] tackle the problem of avoiding the deletion of useful
portions of the image. Informative portions of the image are identified
during the training, and only non-informative parts are then deleted.

• Region replacement: instead of deleting portions of the training images,
in this approach, portions of the images are cropped, and then pasted
in random positions on the original image or in different images of the
training set. Possibly these cropped images can be transformed before
being pasted.
This approach aims at avoiding information loss problems due to eras-
ing. An example is [71] where a thumbnail of the same or another
training image is placed at a random place in a training image.
In the case of mixing of different images, the labels also must be mod-
ified accordingly.

• Region combination: In this approach the patches from the same or
different images are added instead than replaced.

6.2.2 Feature Space Augmentation

This approach aims to increase variability by manipulating vectors extracted
from the intermediate layers of deep neural networks.

This type of strategies have interesting characteristics. In theory they al-
low to learn representations invariant to input space image transformations
and manipulating vectors is computationally cheaper than manipulating or
generating images. Moreover, they can be combined with other strategies
and can be independent of the nature of the input.

Some drawbacks, however, exist. The vectors can be difficult (or impossi-
ble) to relate to the original images and modifications not based on domain
knowledge may potentially miss important domain attributes.

A few approaches are reported below.

• Transformation of deep features: Transforming feature vectors extracted
from the internal layers of a model is an attempt to enrich representa-
tion by increasing the diversity in data and improving the performance
of a model by preventing it from learning specific configuration of the
data.
Shen [72] proposes to perform affine transformation (translation, ro-
tation and scaling) while Li [73] injects Gaussian noise into the layers
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of a Convolutional Neural Network (CNN) to increase diversity and
prevent overfitting.

• Mixing of features: this approach aims at enriching learned features by
augmenting them with artificially generated feature vectors or combin-
ing features extracted from different input samples [74].

• Feature elimination: This technique consists in dropping neural con-
nections in order to introduce sparsity in the network. Connections
typically are dropped with a certain probability and result in train-
ing different versions of a base model. The final result averages the
effects of this different version. This prevents overfitting of the data
by encouraging diverse features representation. In a sense, this is the
features level equivalent of the region deletion approach at the input
level.
Aside from suppressing features, it is also possible to enhance features
[75] or avoiding their suppression [76] at least for some random unit.
Some recent works [77], [78] aim at improving on the random deletion
approach by identifying features that can be considered less important
and then proceeding to their elimination.

6.2.3 Image Synthesis

When it’s challenging to obtain real data with distributions that match the
need to work in a setup with controlled parameter distributions, they can be
generated artificially. This approach also gives the possibility to construct
data tailored to the specific task.

6.2.4 Meta-learning

Meta-learning is a relatively new approach that finds application in data
augmentation.

Meta-learning approaches can be divided in two broad classes.

• Deep learning models leverage meta-data that can perform well on dif-
ferent tasks.
In this case, data augmentation uses few-shot learning methods to in-
crease the sample efficiency of machine learning methods.

• Methods devoted to automatically find the best hyperparameters.
79



Applied to augmentation, they search for the augmentation schema
that maximizes the performance of a model on a given task.

Our contributions, described in following sections, aim to determine
whether it’s possible to identify not just the most convenient augmenta-
tion scheme, but which parts of a dataset are most suitable for a particular
augmentation scheme.

6.3 First Approach: FM for Augmentation

This approach explores the hypothesis of exploiting a factorization machines
inspired methodology in a scenario of data augmentation.

As previously stated, our objective is to explore whether the utilization of
factorization machine (FM) can effectively identify the subset of a dataset
that would offer the greatest potential for enriching diversity within a train-
ing dataset via data augmentation techniques.

The idea is to train a FM on the unmodified images/caption and then
make the trained FM predict the set of modified images.

A few samples of the images used is shown in Figure 6.5, they are take
from the dataset detailed in section 6.4.

Figure 6.1: jacket Figure 6.2: t-shirt

Figure 6.3: trousers Figure 6.4: vest

Figure 6.5: fashion items examples
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The images are modified using the following transformations:

• rotation
• flip up-down
• flip left-right
• images with added gaussian noise

The modified images are associated with the original caption.
Similarly to what described in section 5.1.2.2 the FM is trained using

the model in figure 6.6, on the whole training set this time, again, with
the target 1 we designates the correctly associated images/captions in the
training set.

The text embeddings are derived using SBERT, a model introduced by
Reimers et al. in 2019 [79]. SBERT, short for "Sentence-BERT" is a model
designed to produce vector representations of sentences or text fragments.
It extends the popular BERT (Bidirectional Encoder Representations from
Transformers) model to generate embeddings specifically tailored for sen-
tences rather than individual words or tokens.

Figure 6.6: Model used to train the factorization machine. SBERT (for the text) and the custom
CCN neural network (for the images) are used to obtain the embeddings needed as input for the
factorization machine.

In Figure 6.7 an histogram of the results of the training is shown, as
expected the predictions on data used for the training are close to 1.
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Figure 6.7: Distribution of FAM prediction for all the unmodified training data. After the
completion of training, the data are tightly grouped around the value of 1 (the target) as expected.

After the training, the FM is applied to the modified images, the results
of this operation can be categorized as follows:

• Images/captions having FM prediction near to 1. In this case the mod-
ified samples are not very diverse from the samples already seen during
the training,

• Images/captions FM prediction more and more distant from 1. In this
case the modification has created more diverse samples.

From these considerations stems the idea of applying the following steps:

Steps for distribution creation
1: For each of the above transformations
2: Apply the transformation to all the images of the dataset.
3: Obtain the distribution of FM predictions for the transformed dataset.
4: Use the distribution to take decision about what portion of the transformed dataset

use to augment the training dataset.

So, given a set of modified images, the distribution is segmented in five
regions: A, B, C, D, E see Figure 6.8 where region A is the less diverse from
the original training dataset and regions E and D are the most diverse from
the unmodified training dataset.
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Figure 6.8: Qualitative diagram of FM predictions distribution with the inidication of the regions

An annotation: the experiments are performed on many different splits
of the dataset in train and test subsets, in order to take average values of the
performance. What has been observed is that, the distributions, depending
on the split of the dataset (in training and test set), can be quite different
from each other as shown in the following figures (6.9, 6.10, 6.11, 6.12).
They all refer to the distribution of the predictions for images obtained
applyng a 30 degree rotation to the images in the training dataset. What is
different is that the train datasets are from different splits of the full dataset
(indicated by the random seed, used for replicability, in the function that
perform the split).

Figure 6.9: Distribution of FM predictions for images obtained rotating the images of the training
dataset (random seed 5).
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Figure 6.10: Distribution of FM predictions for images obtained rotating the images of the training
dataset (random seed 10).

Figure 6.11: Distribution of FM predictions for images obtained rotating the images of the training
dataset (random seed 1015).

Figure 6.12: Distribution of FM predictions for images obtained rotating the images of the training
dataset (random seed 1020).

The sizes of the regions have been chosen in order to have at least 500
images to add to the training set. The following section illustrates how this
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organization of the data has been used in the experiments.

6.4 Dataset and Experiments

The dataset is derived from the Fashion Product Images (Small) dataset
[80], composed of 44000 fashion products containing images of the products,
a classification (160 classes) of the types of items (shirt, trousers, ...), a
description. Figure 6.13 displays an histogram of the classes showing that
is a quite unbalanced dataset.

Figure 6.13: Small clothes dataset histogram of the classes

To avoid problems due to the unbalancing, it has been reduced to 23
classes each one containing 174 images for a total of 4002 images. 3600
images are used as training set 400 images are used as test set.

The experiments involved images taken from the single regions and from
various unions of the single regions (e.g. BA). In the case of union of regions,
the total number of images added to the training set does not change. The
total number of scenarios is 15. N (not augmented), A, B, C, D, E, P, R
(RANDOM), ABC, AC, ACD, EA, BA, CD, EBA. The R scenario takes
samples without regard for the position of the predictions.

The P scenario takes images from the union of A, B, C: 30% of samples
come from B, 50% of samples come from A and 20% of samples are from C.
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Each of the scenarios corresponds to a different mix of diversity that is added
to the training dataset. For example, taking samples having prediction in
region A means adding the less diverse possible samples to the training set
while taking images having prediction in region E or D means adding the
most possible diverse sample to the training set. But discovering the most
convenient scenario needs experiments.

In Figure 6.14 the model used for the experiments is presented. The
image part is processed by a custom CNN while the textual part is pro-
cessed by a pretrained SBERT model from huggingface. The outputs are
concatenated and sent to a linear layer for the classification.

Figure 6.14: Model used for the experiments on the different regions scenarios.

In the following results and considerations from the experiments are pre-
sented.
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Figure 6.19: Chart of rankings of the various scenarios with respect to their abillity to return the
best results and avoid the worst results

A first approach for looking at the results of these experiments is from
the perspective of the series of the metrics (e.g. the F1 score) of the dif-
ferent runs for each random state and look at the difference of the mean
between the series using a a paired t-test, a test where the null hypothesis is
that the average of the differences between the series of paired observations
is zero. On the other hand given a certain mean difference between the
series it is possible to compute [81] the sample size needed to say that the
difference satisfies a paired t-test having a certain type-I error probability
of rejecting the null hypothesis when true (e.g 0.05) and a certain type-II
error probability of accepting the null hypothesis when false (e.g 0.2) .

In our case, to give an example, for the F1 score series between the
Random setting and the B sector after 190 runs we have a mean of difference
of -0.00092 and a standard deviation of 0.01650 which implies a sample size
of 2527, beyond our computational and time resources.

A different approach to look at the results is described below.
Figure 6.15 displays the average F1-score of the various scenarios after

160 runs, each one with a different random state for the dataset splitting,
the higher the better. the BA and E scenarios are the best ones and the N
(not augmented scenario) is the one with the lowest mean F1 score.

Figure 6.16 displays the average ranking of the scenarios after 160 run.
Also thiis view confirms that E and BA regions are the best choices and the
N scenario, ranking in mean at around the 10th position (9.73) is the one
with the worst performance, confirming that augmentatation helps.

Figure 6.17 displays how many times the scenarios appear at a certain
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ranking.
Figure 6.18 and chart 6.19 display an elaboration on the data of Figure

6.17 aimed at ranking the strategies according to their ability to get the best
results and avoid the worst results. using two scores Sb and Sw obtained in
the following way.

For each strategy (N, R, A, ...), let xi with i = 1,2, ..., 15 be the number
of times such strategy obtains the i-th position.

The ability of the model of getting the best results is expressed by equa-
tion 6.1.

sb =
√√√√ 15∑

i=1
xi(16 − i)2 (6.1)

While the ability of the model of avoiding the worst results is expressed
by equation 6.2.

sw =
√√√√152

15∑
i=1

xi −
√√√√ 15∑

i=1
xii2 (6.2)

Observations.
A first observation is that, for this dataset, augmentation seems to help,

the N scenario is the worst one.
Looking at other scenarios, there are some results that are not really

intuitive. The two best performing scenarios are obtained by taking images
for the regions AB an E.

AB can be interpreted as adding images with a relatively small variety
with respect to the couples already in the train dataset.

On the other hand, the E scenario adds the most diverse images from the
train dataset since samples in region E have FM predictions well below 1.

Other aspects of these results need more investigations, for example the
low performance of augmentation using samples from region D which are
the other most diverse set of samples, this time with prediction above 1.

Also, adding samples taken from the union of BA and E, the EBA sce-
nario, does not match the performance of AB and E scenarios, In this case
a possible explanation could be that the presence of very dissimilar samples
"cancels" the contribution of very similar ones and vice versa.

89



6.5 Second Approach: Transfer Learning

There are other possible way to characterize diversity inside a set of data,
different from using a factorization machine. In the following approach a
methodology named transfer learning associated with cosine similarity is
applied.

Transfer Learning (TL) is a machine learning technique where a model
developed and trained on some domain (the source domain) for some task
(the source task) is somehow reused for another related task on a related
domain (the target task ad domain) taking advantage of the knowledge
acquired during the learning on the sources domain and task [82].

Intuition can be obtained from human activities like learning a second
musical instruments that can be made faster by taking advantage from
the experience done on the first one. On the other hand if there is little
in common between domains, knowledge transfer could be unsuccessful.
For example, learning to ride a bicycle cannot help in learning a musical
instrument faster.

It has become an adopted and convenient method in deep learning, en-
abling the utilization of pre-trained models as a foundation for various tasks,
e.g. in computer vision and natural language processing. This approach
offers the advantage of leveraging pre-trained models, which are typically
trained on extensive datasets using substantial computational resources that
may not be accessible to everyone [83].

Based on conditions between the source domain, target domain, and the
tasks, Transfer Learning can be categorized as: inductive TL, transductive
TL and unsupervised TL [84].

Inductive TL. In this case, the target task differs from the source task,
despite the source and target domains are similar.

Transductive TL. Here, both the tasks (source and target) are the
identical in this case. However, the domains are distinct.

Unsupervised TL. In this TL scenario, the target and the source task
are different but somehow related, similar to the inductive TL. Unsupervised
TL, on the other hand, focuses more on completing unsupervised tasks, such
as clustering and dimension reduction [85], [86]. In this situation, both the
domains, i.e., source and target, have no labeled data.

Another use of a pre-trained model is for extracting the output from some
layers, which goes under the name of features extraction. In computer vision
this technique can be used to extract representation of geometric features,
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statistical features and color features [87].
The idea is that a neural network is able to detect the most important

features for solving a problem avoiding the sometimes very expensive ac-
tivity of feature engineering made by humans. If the extracted features are
sufficiently general, they can be reused for other tasks. Sometimes this also
reduces the dimension of the dataset.

In our case given a pre-trained ResNet-50 model, for each image in the
training set we get the embeddings from the last layer before classification
layer and we measure the cosine similarity between the embeddings of the
unmodified image and the embeddings of a modified version of that image
according to four different geometric modifications. The goal is having a
measure of diversity and then using this information to verify which por-
tion of the dataset is better to use for improving the performance through
augmentation.

The transformations applied are:
• 45 degree rotation.

• Flipping left - right.

• Flipping up - down.

• Addition of gaussian noise to the image.
A threshold is introduced so that for each experiment only images above

or below that similarity threshold are added to the training set. As said
above, the threshold acts as a measure of the diversity we are introducing in
the training dataset, and allows to observe the impact the diversity has on
the training of the neural network. Introducing diversity can be beneficial
for the generalization capabilities of a model but too much diversity in a
training set can result in samples too difficult to be learned and damage the
performance [11]. At each cosine similarity threshold, a maximum of 1500
images is added to the training set.

6.6 Experiments
For the experiments, four different strategies are taken are into consideration
regarding the training dataset.

• Not augmented training dataset.

• Training dataset augmented with random images.
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• Training dataset augmented with images having cosine similarity with
the original image above a given threshold (H strategy).

• Training dataset augmented with images having cosine similarity with
the original image below a given threshold (L strategy).

Algorithm 5 formalizes how transformations, similarities and a given
strategy are applied.

Algorithm 5 Steps for cosine similarity based augmentation
1: For each of the above transformations and each image:
2: Obtain the embeddings from the last layer before classification of the unmodified

image and of the transformed image;
3: Compute the cosine similarity between the obtained embeddings;
4: Add the transformed image if the strategy under testing is satisfied.

Two different models have been used. A custom CNN network and a pre-
trained ResNet-50 obtained from torchvision [88] a package in the PyTorch
library [89] specifically designed for computer vision tasks.

The custom CNN model has been fully trained on a single random split
of the dataset and then for the subsequent experiments, in order to speed
up the training, only the last layer has been substitued with a new layer
with trainable weights while all the other weights were frozen.

The ResNet (Residual Network ) is a type of convolutional neural net-
work (CNN) used in computer vision applications introduced in 2015 by He
Kaiming et al [90].

Among the set of ResNet networks, ResNet-50 is a 50-layer convolutional
neural network with 48 convolutional layers, one MaxPool layer, and one
average pool layer. The network is trained on the ImageNet dataset [91]
having 1.28 million images in 1000 classes.
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Figure 6.20: ResNet architectures for ImageNet [90]

For the ResNet-50 experiments on the obtained, we adopt a transfer
learning approach since we modifiy original model substituing thel last layer
with a linear layer of suitable dimension for the 23 class classification task
at hand. The only trainable weights are the weights of the last linear layer.

Figure 6.21 shows the distributions of cosine similarity between the un-
modified images and the modification applied to the custom CNN.

(a) Rotation (b) Flip left rignt (c) Flip up down (d) Noise

Figure 6.21: Distributions of cosine similarity between unmodified and modified images of the
train dataset for each transformation. The embeddings for the unmodified image and the modified
one are obtained from the last layer before the classification of a custom CNN. Quite a number
of images after flipping and noise addition keep a very high similarity with the corresponding
unmodified image, probabiy due to the simmetry.

Figure 6.22 shows the distribution of cosine similarity between the un-
modified images and the modification obtained from the ResNet-50 model.
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(a) Rotation (b) Flip left rignt (c) Flip up down (d) Noise

Figure 6.22: Distributions of cosine similarity between unmodified and modified images of the
train dataset for each transformation. The embeddings for the unmodified image and the modified
one are obtained from the last layer before the classification of a ResNet-50 model. In this case
the distributions are skewed toward 1 but the maximum is not at the maximal similarity, the
noise generates a quite divese set of images having similarity more distant from 1 than the other
transformations.

6.6.1 Results and Comments

Table 6.1 lists the four strategies applied to verify the impact of the selection
of the images based on the cosine similarity.

Strategies Descrition
N Not augmented
R Randomly augmented

H Augmented with images with
cosine similarity above threshold

L Augmented with images with
cosine similarity below threshold

Table 6.1: Augmentation strategies

Using the ResNet-50 network the experiments were conducted using fifty
different splits of the dataset and for 30 epochs. The average results are
reported in Figures 6.23 and 6.24. 1500 images were added.

The results are represented under two different points of view. In Figure
6.23 the average accuracies obtained are represented. In Figure 6.24 the
same results are presented as rankings so lower values are better.

Observation:

• In both cases at lower values of the threshold the L strategies seems the
best one while at the highest threshold tested the H strategy prevails.
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in fact we observe that giving very similar or very different images
improves the performance.

Figure 6.23: ResNet average accuracies for the four strategies

Figure 6.24: ResNet average rankings for the four strategies

For the custom CNN network, which is computationally less expensive,
the experiments were conducted using seventy different splits of the dataset
for seventy epochs. Also, this allowed us to test the approach on a higher
number of thresholds. In all the experiments 1500 images are added.

The average results are reported in Figures 6.25 and 6.26.
In Figure 6.25 the results are represented, also in this case under two

different points of view. The average accuracies obtained are represented,
despite the very high values and the small difference between the results,
the H strategy results to be the best one for the majority of the random
splits.

In Figure 6.26 the same results are presented as rankings, so lower val-
ues are better., also in this view the prevalence of the H strategy can be
observed.
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Figure 6.25: Custom CNN average accuracies for the four strategies.

Figure 6.26: Custom CNN average rankings for the four strategies.

About the results in Figures 6.25 and 6.26 the following observations can
be made.

• The strategy H emerges as the best performing.

• There is no indication about an optimal threshold to be used.

• The computational cost of the result obtained in Figures 6.25 (seventy
different splits of the dataset for seventy epochs 15 days of runs) is high.
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Following these considerations emerges the question if it is possible to
obtain an indication about an optimal threshold using just a subset of the
runs.

We applied two strategies using only the runs related to the thresholds
0.05, 0.5, 0.95; polynomial fitting and linear interpolation.

Polynomial fitting of degree 2: in this case, Algorithm 6 has been
applied.

Algorithm 6 Polynomial fitting
1: Let t be a threshold with t ∈ {0.05, 0.5, 0.95}
2: Let yt be the accuracy at threshold t
3: Let rj be the run associated to a dataset split j with j = 1,2, ..., 70
4: for all rj do :
5: obtain the polynomial fitting (of degree 2) for the three points

(0.05, y0.05), (0.5, y0.5) and (0.95, y0.95), which is the solution with respect to A,
B and C of the system 

y0.05 = A ∗ 0.052 +B ∗ 0.05 + C

y0.5 = A ∗ 0.52 +B ∗ 0.5 + C

y0.95 = A ∗ 0.952 +B ∗ 0.95 + C

6: end for

At the and of Algorithm 6 we have 70 curves, one for each test.

In Figure 6.27, there is a representation including points calculated on
the curves at intermediate points between the chosen thresholds. A coloring
has been applied to highlight (in red) areas with higher values.

The average position of the peaks is located at 0.833, which we can
interpret as the threshold to aim for to achieve good performance with an
H-type strategy.
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Figure 6.27: Gradient map for three samples quadratic fitting of H strategy results

Linear interpolation: in this case Algorithm 7 is adopted

Algorithm 7 Linear interpolation
1: Let t be a threshold with t ∈ {0.05, 0.5, 0.95}
2: Let yt be the accuracy at threshold t
3: Let rj be the run associated to a dataset split j with j = 1,2, ..., 70
4: for all rj do:
5: obtain the linear interpolation for the segments

[(0.05), y0.05), (0.5, y0.5)] and [(0.5, y0.5), (0.95, y0.95)], that is, respectively:

y − y0.05

x− 0.05 = y0.5 − y0.05

0.5 − 0.05

and
y − y0.5

x− 0.5 = y0.95 − y0.5

0.95 − 0.5
6: end for
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After Algorithm 7, we obtain 70 curves.
In Figure 6.28, there is a representation including points computed on the

segments at intermediate points between the chosen thresholds. A coloring
has been applied to highlight (in red) areas with higher values.

The average position of the peaks is located at 0.827, which we can
interpret as the threshold to aim for to achieve good performance with an
H-type strategy.

Figure 6.28: Gradient map for three samples interpolation of H strategy results

In summary, our investigation using cosine similarity between embed-
dings derived from pre-trained models, applied within the Fashion Product
Images (Small) dataset, indicates that the H strategy is the best performing
one. We utilized two methods to determine the optimal threshold for co-
sine similarity, converging at approximately 0.83. This suggests that in this
scenario, the classification model derives greater benefit from incorporating
images that resemble those already present in the training dataset.
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6.7 Third Approach: Data Driven Augmentation for
SVM

The experience with the experiments described in the previous sections,
triggered the interest in experiments conducted in a more controllable en-
vironment.

In the following sections, a set of classification experiments executed using
different generated datasets are described. As classifier, Support Vector
Machines are used, given the possibility of a geometric interpretation of
their behavior that even allows (n two and three dimensions) to visualize
their decision boundaries.

The strategies applied are still based on a concept of distance but in this
case an Euclidean distance is used.

6.7.1 Support Vector Machines

Support Vector Machines (SVM) are supervised learning methods that can
be applied to classification and regression problems. SVM were first pro-
posed by V. N. Vapnik and A. Ya. Chervonenkis (Institute of Control
Sciences of the Russian Academy of Sciences, Moscow, Russia) in the frame-
work of the “Generalised Portrait Method” for computer learning and pat-
tern recognition. The development of these ideas started in 1962 and they
were first published in 1964 [15].

Below is an overview of how SVMs work.
In a binary classification setting, suppose some points are given with

their class label, the aim is to predict which class a new, previously unseen,
point belongs to.

In SVM a point is an N-dimensional vector and the algorithm searches
for a (N-1)-dimensional hyiperplane that a) separates the two classes b)
maximizes the distance with the nearest point of each classes. This is called
a linear classifier.

The training dataset is composed of n points

(x1, y1), . . . , (xn, yn),

where the yi are either 1 or -1, each indicating the class to which the
point xi belongs.

Each xi is a p-dimensional real vector. We want to find the "maximum-
margin hyperplane" that divides the group of points xi for which yi = 1
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from the group of points for which yi = −1, which is defined so that the
distance between the hyperplane and the nearest point xi from either group
is maximized.

A hyperplane can be defined as the set of points x satisfying.

wTx − b = 0, (6.3)

where w is the (not necessarily normalized) normal vector for the hyper-
plane. The parameter b

∥w∥ is the offset of the hyperplane from the origin
along the normal vector w .

In almost all real-world applications, however, usually data are not lin-
early separable, see Figure 6.29, but it is possible to adapt SVMs in order
to deal with this situation with the introduction of soft margins and the
so-called kernel trick.

Figure 6.29: Data not linearly separable

Soft margins are related to the idea of allowing a certain number of
mistakes while keeping the margin as wide as possible so that other points
can still be classified correctly. This can be obtained by modifying the
objective function of SVM.

Notice that this may be desirable even in (rare) cases where the data is
linearly separable. A decision boundary too narrow that perfectly separates
the data can be a form of overfitting.

As an example, looking at Figure 6.30, the green boundary somehow
seems more correct in separating the two classes, with respect to the red
boundary that is influenced by what can be considered as an outlier.
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Figure 6.30: Two possible decision boundaries, the red dotted line is influenced by the “outlier”

Mathematically a fist step is to modifiy the objective function adding a
term related to errors

L = 1
2 ||w||2 + C (number of errors) (6.4)

In equation (6.4) C is a hyperparameter that decides the trade-off be-
tween maximizing the margin and minimizing the mistakes. A small C
implies that classification mistakes are given less importance and the focus
is more on maximizing the margin, whereas a large C implies that the focus
is more on avoiding misclassification at the expense of keeping the margin
small.

However, it is useful to take into account that there are small errors and
large errors in terms of distance from the decision boundary. Data points
that are far away on the wrong side of the decision boundary should incur
more penalty as compared to the ones that are closer.

For every data point xi, a so called “slack variable” ξi is introduced. The
value of ξi is the distance of xi from the corresponding class’s margin if xi is
on the wrong side of the margin, otherwise zero. Thus, the points that are
more distant from the margin on the wrong side would get more penalty.
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Figure 6.31: Soft margin allows for misclassified points with a penalty measured by the slack
variable ξi for being in the wrong side of the decision boundary

Each data point xi needs to satisfy the following constraint:

yi(w · xi + b) ≥ 1 − ξi (6.5)

The left-hand side of the inequality could be considered as the confidence
of classification. Confidence ≥ 1 suggests that the classifier has classified
the point correctly. If confidence < 1, it means that the classifier did not
classify the point correctly and a linear penalty of ξi is assigned.

Given these constraints, the objective function to minimize is:

L = 1
2 ||w||2 + C

∑
i

ξi +
∑

i

λi(yi(w · xi + b) − 1 + ξi) (6.6)

where we have used the concepts of Lagrange Multiplier for optimizing
loss function under constraints.

Comparing it with the objective function that deals with linearly sepa-
rable data, it is possible to notice that the only difference is the presence of
the ξi slack variables.

L = 1
2 ||w||2 +

∑
i

λi(yi(w · xi + b) − 1 + ξi) (6.7)

The Kernel Trick is an approach that addresses the problem of non-
linearly separable data using the so-called kernel functions.

Kernel functions are generalized functions that take in inputs two vectors
(of any dimension) and output a score that denotes how similar the input
vectors are. A first example of Kernel function is the dot product function: a
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small dot product implies that vectors are different while, if the dot product
is large, the vectors are more similar.

Differentiating the equation 6.7 with respect to w and b and equating it
to 0 the optimal value of w and b are obtained, substituting them in 6.7 we
obtain

L =
∑

i

λi − 1
2

∑
i

∑
j

λiλjyiyjxixj (6.8)

So the objective function depends on the dot product xixj.
It is worth noting that, depending on the problem at hand, it is possible

to choose functions different from the dot product the so called “kernel
functions”.

This freedom of choice of the kernel functions is known as the “Kernel
Trick”. A generic kernel function can be written as:

K(x, y) = ψ(x) · ψ(y) (6.9)
The dot product of the vector functions ψ(x) and ψ(y) (so in the case of

the dot product ψ(.) is the identity), or, in other terms, the kernel functions
are the dot product of transfomeed input vectors.

An example of application of this method can be given considering data
that are disposed in a concentric way as in Figure 6.32 with an inner
class surrounded by points of an outer class, which is clearly a non linearly
separable situation because a circular decision boundary is needed.

Figure 6.32: Data disposed in a concentric way
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In the 2-dimensional setting of Figure 6.32 one could consider a trans-
forming function of the point P = (x1, x2) like ψ(P ) = (x2

1, x
2
2,

√
2x1x2) so

that equation (6.9) becomes

K(x, y) = ψ(x1, x2) · ψ(x′
1, x

′
2) (6.10)

K(x, y) = x2
1x

′2
1 + x2

2x
′2
2 + 2x1x2x

′
1x

′
2 (6.11)

So the final form of the kernel function is a circle. Now the “similarity
function” K ′ measures whether points are within a circle.

What has been done is the following:

1. Each point P is represented by coordinates (x,y) in 2D space.
2. The points are projected to 3D space by transforming their coordinates

to (x2, y2,
√

2xy)
3. Points which have high value of x.y would move upwards along the

z-axis (in this case, the yellow diamonds).
4. It is possible to find a hyperplane in 3D space that correctly separates

the classes.

By embedding the data in a higher-dimensional feature space, we can
keep using a linear classifier because the induced transformation moves the
problem in a higher dimensional setting where a linear boundary, a plane
in this case, can still be found (see Figure 6.33).

Figure 6.33: Transformation induced by the kernel function

SVM methods can also be extended to multiclass problems employing
the “one-vs-one” reduction method. That is, for K classes we train

(
K
2

)
binary classifiers. Each classifier will be trained on samples from a pair of
classes and learn to distinguish between them. In an image classification
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setting for example, when making a prediction on an unlabeled image, each
of the K(K − 1)/2 classifiers will be given the image, and then “vote” on
which class they think the image belongs to, i.e. the class that gets the
highest number of positive predictions among all classifiers’ predictions will
be taken as the “winner”.

In the experiments described below, a linear SVM classifier is used in a
multiclass setting.

6.7.2 Data Augmentation Strategies and SVM

Machine learning models are usually trained on specific data but, after
the training, they are exposed to data that can be quite diverse from the
train data. The experiments described in the following aim to test the
behavior of a SVM classifier model in presence of a train dataset that is
made quite diverse, through elimination of a percentage of samples, from the
test dataset. As written earlier, SVM were chosen because of the geometric
nature of the decision boundaries that facilitate intuition and can even be
plotted in 2-dimensional and 3-dimensional settings.

In the following experiments the coordinates of the points of the training
dataset are perturbed with gaussian noise, then a portion of the perturbed
points is added to the training set following the strategies listed below:

• Random Augmentation (RN): a portion of the modified data is ran-
domly added to the training set

• Near Augmentation (NR): of all the modified points, a part of the
points that are closest to the respective unperturbed point is added to
the training set.

• Far Augmentation (FR): of all the modified points, a portion of the
points that are further away from the respective unperturbed point is
added to the training set.

In addition to the listed strategies a No Augmentation strategy (NA) is
always performed.

In Figure 6.34 the strategies listed above are depicted.
It is worth noting that the proposed augmentation strategies only use the

notion of distance from the original unmodified points but do not consider
the direction of the expansion, so not all the added points of a Far strategy
(FR) augment the radius of the training set and not all the points of a
Near strategy (NR) augment the training set "density". Nevertheless the
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FR strategy should augment the diversity of the train dataset while the NR
strategy should add "more of the same" to the train dataset reinforcing the
"identity" of the classes.

So none of the listed strategies make use of the notion of centroids. This
is because in real data it may not be immediately available.

Figure 6.34: Far (FR), Near (NR) and Random (RN) strategies applied to the train dataset
(white circle). The green point are added to the train dataset.

The number of points added is the same for all the strategies. The results
of these strategies are compared with the case in which no new points are
added to the training set.

The generated datasets are characterized using the Fisher ratio defined
for two classes a and b as:

f = (µa − µb)2

σ2
a + σ2

b

(6.12)

where µi and σ2
i are the mean and variance of class i.

In our case where there are n classes the average of the Fisher ratios
between each pair of classes is taken.

favg = 1
n(n− 1)/2

n(n−1)/2∑
i

fi (6.13)

Higher favg implies more separate classes, and we expect augmentation
strategies to be less effective, but there are conditions where one can expect
that a particular strategy is better than the others.

6.7.2.1 Same Noise for All Classes on a 2-dimensional Dataset

The first experiment was conducted in a 2-dimensional environment.
Aim of the experiment:
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• Evaluate the impact on accuracy and decision boundary geometry re-
sulting from the NA, RN, NR, FR strategies outlined in 6.7.2 following
augmentation using Gaussian noise with a constant standard deviation.

The parameters used are:

• 4 classes.
• 1000 points.
• noise applied: gaussion with mean 0 and standard deviation 0.5.

For the setting of this experiment, four points are randomly chosen in a 2-
dimensional square box of edge 10 with the constraint of having a reciprocal
distance greater or equal than 5.

These points are used as the centroids of four classes generated with a
gaussian distribution having standard deviations of 0.5, 1, 1.5 and 2, the
final result is a dataset of 1000 points that is then splitted in train and test
(with proportion 85% and 15%) as shown in Figure 6.35

Figure 6.35: Train dataset: 4 classes, 1000 points

Figure 6.36: Test dataset: 4 classes, 1000 points

This leads to a Fisher ratio of 18.728
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To test the strategies listed above, the train dataset is further restricted,
keeping, in this 2-dimensional setting, only the points at a distance lower
than a standard deviation as in Figure 6.38.

An example of the effects of the augmentations is shown in Figures 6.39
6.40 6.41 along with the boundaries found by the SVM classifier.

The accuracies obtained, with their standard deviation, are reported in
the following Figure 6.37.

Figure 6.37: Accuracies (the higher the better) for augmentation done with fixed noise for all the
classes, the notation 1x, 5x, ... represents how many times the augmentation process has been
cumulatively repeated, green values are the best ones

Observation:

• It seems that there is not preferred strategy. Indeed, not augmenting
in this case seems the best strategy. A possible reason can be found by
looking at the boundaries found by the classifier in Figure 6.38 where
the boundaries found for the augmentation done with ten iterations are
depicted. As one can observe, the boundaries essentially do not move
from the ones found in the not augmented case. This is probably due
to the type of noise applied that is equal for all the classes.

The above observation have led to the experiment described in the next
paragraph
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Figure 6.38: Train dataset: 4 classes, narrowed to points at less than a standard deviation from
the centroid of the class, with the boundaries found by a classification performed with an SVM.

Figure 6.39: Train dataset after the RN strategy has been applied 10 times, the boundaries are
essentially unchanged with respect to Figure 6.38.

Figure 6.40: Train dataset after the NR strategy has been applied 10 times, the boundaries are
essentially unchanged with respect to Figure 6.38.
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Figure 6.41: Train dataset after the FR strategy has been applied 10 times, the boundaries are
essentially unchanged with respect to Figure 6.38.

6.7.2.2 Per Class Noise on a 2-dimensional Dataset

Aim of the experiment:

• Test the effect on accuracy and decision boundaries geometry of the
strategies NA, RN, NR, FR described in 6.7.2 after an augmentation
done using a gaussian noise related to the standard deviation of the
classes. The expectation is to observe an impact on the geometry of
the decision boundaries.

The parameters used are:

• 4 classes.
• 1000 points.
• noise applied: gaussion with mean 0 and standard deviation 75% of the

class standard deviation.

The settings of this experiment are identical to the previous one. In this
case however, the noise is applied based on the class, and has a standard
deviation equal to 75% of the standard deviation of class.

The results are visible in figure 6.42
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Figure 6.42: Results with per class noise

Observation:

• In this case, the FR strategy starts to emerge as an interesting one.
Looking at the boundaries, it is clear that this scenario implies a move-
ment of the boundaries that can imply the ability of the model to
capture more diversity in the data.

Figure 6.43: Filtered train dataset no augmentation: 4 classes, 1000 points
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Figure 6.44: Filtered train dataset after 10 times FR augmentation, it is visible the movement of
the boundaries

6.7.2.3 Per Class Noise on a 2-dimensional Dataset with 5 Classes

Aim of the experiment:

• Explore the scalability of the approach on a slightly more complex
dataset having 5 classes.

• The expectation is to observe if the FR strategy still emerges as inter-
esting.

The parameters used are:

• 45 classes.
• 1200 points.
• noise applied: gaussion with mean 0 and standard deviation 75% of the

class standard deviation.

Five points are randomly chosen in a 2-dimensional square box of edge
10 with the constraint of having a reciprocal distance greater than 4.

This leads to a Fisher ratio of 14.233
Around these centroids, five classes are generated having respectively

standard deviations 0.5, 1, 1.5, 2 , 2.5.
The final result is a dataset of 1200 points that is then split into train

and test (with proportions of 85% and 15%) as shown if figure 6.46.
The results are in Figure 6.45.
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Figure 6.45: Train dataset: 5 classes, 1200 points, , the annotation 1x, 5x, ... represents how
many times the augmentation process has been repeated, green values are the best one

Figure 6.46: Train dataset: 5 classes, 1200 points

Figure 6.47: Test dataset: 5 classes, 1200 points
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Figure 6.48: Filtered train dataset no augmentation: 5 classes, 1200 points

Figure 6.49: Filtered train dataset after 10 times FR augmentation: 5 classes, 1200 points

Observation:

• This scenario favors the FR strategy even more than the previous one
and looking at the plots, the movement of the decision boundaries is
even clearer than before.

However, usually classification tasks are conducted in spaces with high
dimensionality, so there is the need for experiments in higher dimensions,
from 3D and above.

6.7.2.4 Experiment on a 3-dimensional Dataset

Aim of the experiment:

• Evaluate, with a 3-dimensional dataset, the effect on accuracy and deci-
sion boundaries geometry of the NA, RN, NR, FR strategies described
in 6.7.2 after an augmentation done using a gaussian noise related to
the standard deviation of the classes. Test if it is possible to find a
setting where the results of the previous experiments are observed.
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Paramenters used:

• 5 classes.

• 1200 points.

• noise applied: gaussion with mean 0 and standard deviation 75% of the
class standard deviation.

The Fisher ratio value in this case is 22.556 The procedure for creating
the 3-D dataset is essentially the same as in the previous experiments where
a dataset is generated around centroids and the training set is restricted to
reduce the diversity, while the test set is kept unmodified. The following
figures are a visualization of the scenario.

Figure 6.50: 3D Train dataset: 5 classes, 1200 points
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Figure 6.51: 3D Test dataset: 5 classes, 1200 points

Figure 6.52: 3D Filtered train dataset no augmentation: 5 classes, 1200 points
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Figure 6.53: 3D train dataset after FR augmentation strategy has been applied 10 times

Figure 6.54: 3D accuracies at various iteration of augmentation, , the annotation 1x, 5x, ...
represents how many times the augmentation process has been repeated, green values are the
best one

Observation:

• Looking at Figure 6.54 it seems that also in this configuration the best
option is the FR strategy as a way to capture the diversity not present
in the train dataset.

Exploring this approach in higher dimension brings an issue regarding the
criterion for restricting the dataset. Taking the samples inside a standard
deviation from the centroids is no more feasible because the probability of
having a point in that region drops quite sharply as the number of dimen-
sions increases.
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In a 10 dimensional space, the probability of finding a point at less than
one standard deviation is 0.0002.

So, instead of taking the points at less than one standard deviation the
dataset is restricted to the 50% points nearest to the centroid of their class.
Obviously it is no more possible to plot the dataset and the decision bound-
aries.

In the following sections are described the experiments conducted with a
number of dimensions greater than 3.

6.7.2.5 Experiment on a 5-dimensional Space

Aim of the experiment:

• Test in a 5-dimensional space the effect on accuracy of the NA, RN,
NR, FR strategies described in 6.7.2 after an augmentation done using
a gaussian noise related to the standard deviation of the classes.

The parameters used are:

• 5 classes.
• 3000 points.
• noise applied: gaussion with mean 0 and standard deviation 75% of the

class standard deviation.

5 classes with standard deviation (0.5, 1, 1.5, 2, 2.5) are generated around
5 centroids.

The Fisher ratio value is 13.591
A graphic representation is no more possible but also in this case it seem

possible to find a configuration that favors a strategy (FR in this case) as
shown in the accuracies reported below at variuous level of iteration over
the augmentation
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Figure 6.55: 5-dimensional dataset accuracies, the notation 1x, 5x, ... represents how many times
the augmentation process has been repeated, green values are the best one

Observation:

• Also in this case, there is a strategy (FR) that emerges as the best one.

Real datasets often have embeddings having thousands of dimensions so
it is insteresting observe what happens in such a setting.

6.7.2.6 Experiment on a 1000-dimensional Dataset

Aim of the experiment:

• Test the effect on accuracy of the NA, RN, NR, FR strategies described
in 6.7.2 after an augmentation done using a gaussian noise related to
the standard deviation of the classes. in a setting with 1000 dimension.

The parameters used are:

• 15 classes.
• 6000 points.
• noise applied: gaussion with mean 0 and standard deviation 75% of the

class standard deviation.

The classes are created around centroids with respective standard devi-
ations (0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4,5, 5, 5.5, 6, 6.5, 7, 7.5)

Fisher Ratio value is 35.438
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Figure 6.56: 1000-dimensional dataset, the notation 1x, 5x, ... represents how many times the
augmentation process has been cumulatively repeated, green values are the best one

Observation:

• In this case, it seems that no strategy emerges as preferred. Having
15 classes with centroids in a hyperellipse of radius 3 and standard
deviation with a progression with a 0.5 gap (0.5, 1, 1.5, ....) results in
a dataset that is not so superimposed, the Fisher ratio is the highest
computed among the experiments.

6.7.2.7 Experiment on a 1000-dimensional Dataset with a More Superimposed
Dataset

Aim of the experiment:

• Test the effect on accuracy of the NA, RN, NR, FR strategies described
in 6.7.2 after an augmentation done using a gaussian noise related to
the standard deviation of the classes. in a setting with 1000 dimension.

The parameters used are:

• 15 classes.
• 6000 points.
• noise applied: gaussion with mean 0 and standard deviation 75% of the

class standard deviation.

In this case the dataset the standard deviation assigned are bigger (0.5,
2, 3.5, 5, 6,5, 8, 9.5, 11, 12.5, 14, 15.5, 17, 18.5, 20, 21.5 ) so that there is
quite a strong superimposition between the classes.

The Fisher ratio value is 6,081
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Figure 6.57: 1000-dimensional dataset, accuracies, the notation 1x, 5x, ...represents how many
times the augmentation process has been cumulatively repeated, green values are the best one

Observation:

• For low augmentation iterations (1, 5) it seems that there is no benefit
in adding points. Above 15x iteration of augmentation the Near and/or
Far strategy seems to be beneficial.

6.7.2.8 Experiment on Oxford Flowers 102 Dataset

It is interesting to experiment this approach on a dataset with real data,
not a generated one. The Oxford Flowers 102 dataset [92] is a 102 category
dataset, consisting of 102 flower categories. The flowers chosen are flowers
commonly occurring in the United Kingdom. Each class consists of between
40 and 258 images. The images have large scale, pose and light variations.
In addition, there are categories that have very diverse images within the
category and several categories containing similar images so low diversity.

The Fisher ration value for this dataset is 0.580.
A transfer learning approach has been used.
Experiments setting:

• 24 different random split of the dataset
• Dataset composed of embeddding extracted from the last layer of a

VGG19 network
• Narrowing down of the train dataset to the 50% points closer to the

class centroids.

Observation:

• Looking at Figure 6.58 it is possible to see that the NR strategy appears
to be interesting. This can be explained by the fact that the classes of
the dataset are quite superimposed, and the NR strategy reinforces the
“identity” of the classes.
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Figure 6.58: Flowers 102 dataset: average accuracies for the four strategies

Experiments were done to see if it is possible to obtain scenarios where
the FR strategy could be interesting.

So the train dataset was further narrowed down at 40%, 30% and 25%
points closer to the class centroids.

Indeed to avoid the uncertainty on the expansion of the dataset intrinsic
in the FR strategy, in this case, a new strategy is adopted that makes use
of the notion of class centroid.

Outward expansion strategy. For each one of these restricted dataset an
expansion strategy is applied where, for each point in the train dataset a
new point is added at X% further distance from the class centroid with X
equal to 10%, 20%, 30%, 40%, 50%, 60%.

These actions are repeated on 24 different splits and in Figure 6.59 the
average accuracies are reported.

Figure 6.59: Flowers 102 Expansion strategy applied on different narrowing of the train dataset

Observation:
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• It is possible to observe that applying the expansion strategy at the 50%
and 40% narrowings is not beneficial, while at 30% and 25% narrowings
it is possible to see improvement. It is also possible to see the presence
of a threshold, after which the performance starts to decline, so adding
diversity is beneficial but only up to a point. After that point, the
augmentation starts to damage the model’s performance.

6.7.2.9 Experiment on Oxford Flowers 102 Dataset with a Fully Connected
Layer as Classifier

Aim of the experiment:

• Test the behavior of a model made of a single fully connected layer
as classifier instead of an SVM with this same expansion strategy on
the same dataset composed of embeddings extracted using a VGG19
network and the same processing.

Figure 6.60 shows the overall results with both outward and inward aug-
mentations.

Figure 6.60: Flowers 102 Expansion strategy accuracies applied on different narrowing of the
train dataset with a fully connected layer as classifier.

Observation:

• The behaviour is quite different from the SVM classifier behaviour,
augmentation improves the performance but the best results are always
obtained with the smallest expansion tested, that is, adding points 2.5%
further away from the class centroid, so at much smaller scale.
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6.7.2.10 Experiment on Oxford Flowers 102 Dataset with a Fully Connected
Layer as classifier with Inward Augmentations

Aim of the experiment:

• Triggered by the results of the previous experiement this experiments
explores the behavior of an inward augmentation. For each point in the
training dataset a new point is added at percentage distances (2,5%,
5%, 7.5%) toward the centroid of the class of the unmodified point.

Figure 6.61: Flowers 102 Expansion strategy accuracies applied on different narrowing of the
train dataset with a fully connected layer as classifier. The inward augmentations (negative
percentages) are included.

Observation:

• The results in Figure 6.61 seems to support the idea, already suggested
by Figure 6.58, that, with this dataset, “reinforcing” the class identity
helps the performance.

Figure 6.62 displays the overall behavior of the strategies applied using
a fully connected layer as classifier.
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Figure 6.62: Flowers 102 Expansion strategis accuracies applied with augmentation in both the
inward and outward directions.

It is possible to notice that there are two regions that improve on the
NA (Not augmented) setting, the inward region (represented by the nega-
tive percentages) and a segment of the outward region from 2.5% to 10%
expansions. The inward augmentation is the one with the best overall per-
formance.

6.7.2.11 Experiment on Oxford Flowers 102 Dataset an SVM with centroids
computed from samples

Aim of the experiment:

• Test the behavior of an SVM classifier with expansion strategy on the
same dataset composed of embeddings extracted using a VGG19 net-
work in this case the centroids are recomputed aftet the narrowing down
of the dataset.
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Figure 6.63: Flowers 102 Expansion strategy accuracies applied on different narrowing of the
train dataset with an SVM as classifier. The inward augmentations (negative percentages) are
included. In this case the centroids are recomputed after the narrowing.

Observation:

• We observe that recomputing the centroids brings a higher separation
between the classes because all the experiments obtain the best results
at the maximum expansion tested, without regard with the initial nar-
rowing.

6.7.2.12 Experiment on Oxford Flowers 102 Dataset a Fully Connected Layer
with centroids computed from samples

Aim of the experiment:

• Test the behavior o a Fully Connected Layer classifier with expansion
strategy on the same dataset composed of embeddings extracted using
a VGG19 network in this case the centroids are recomputed aftet the
narrowing down of the dataset.
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Figure 6.64: Flowers 102 Expansion strategy accuracies applied on different narrowing of the
train dataset with a Fully Connected Layer as classifier. The inward augmentations (negative
percentages) are included. In this case the centroids are recomputed after the narrowing.

Observation:
• We observe that recomputing the centroids brings an higher separation

between the classes because all the experiments obtain the best results
at the maximum expansion tested, without regard with the initial nar-
rowing.

6.8 Domain Adaptation
The narrowing down of the training data sets applied in the experiments
of the previous section can be viewed as a way to simulate a phenomenon
called concept shift (or drift). The shift can be due to difference inherent
in the training and target domain or can be the consequence of changes
in the statistical properties of the training domain itself over time. This
means that the relationship between the input features X and the output
labels Y changes so that the condition probability P (Y |X) evolves , making
the model’s initial assumptions and learned patterns potentially outdated
or incorrect. In any case the model learned on a domain is confronted with
a different domain. This leads to take into consideration the problem of
domain adaptation.

Domain adaptation is a subfield of machine learning that focuses on
adapting models trained on one domain (the source domain) to perform
well on a different but related domain (the target domain). This is espe-
cially useful when there is a scarcity of labeled data in the target domain
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but an abundance in the source domain [16].
More specifically,
The Domain consists of a feature space and a marginal probability dis-

tribution. For example, for a image classification task, images of objects
represented with different techniques such as drawings, photos, computer
generated images can constitute different domains.

The Source Domain is the domain on which the model is initially trained.
It has a large amount of labeled data.

Target Domain is the domain where the model needs to be deployed. It
typically has limited or no labeled data.

The differences between the source and target domains is termed as Do-
main Shift. These differences can be in terms of data distribution, feature
space, or both.

There are a few types of Domain Adaptation [16]:

Supervised Domain Adaptation . Involves some labeled data in the target
domain, but not as much as in the source domain. The model is fine-
tuned using this limited labeled data from the target domain [93].

Unsupervised Domain Adaptation . No labeled data is available in the tar-
get domain. Techniques involve learning invariant features that per-
form well across both domains [94].

Semi-Supervised Domain Adaptation . Involves a combination of labeled
and unlabeled data in the target domain, utilizing both to adapt the
model [94].

In the following there is a list of some of the techniques developed in the
field

• Feature Alignment: Aligning the feature distributions of the source and
target domains [95].

• Instance Reweighting: Adjusting the importance of training samples
from the source domain to better match the target domain distribution
[96].

• Domain Adaptation Networks: Architectures like Domain-Adversarial
Neural Networks (DANN) specifically designed for domain adaptation
tasks, often incorporating adversarial loss to encourage domain invari-
ance [97].

129



• Self-Training: Using pseudo-labels for the target domain data, itera-
tively refining the model as if these pseudo-labels were actual labels
[98, 99].

Domain Adaptations technique find application in different fields such
as:

• Natural Language Processing : Adapting models trained on one type of
text (e.g., news articles) to work on another (e.g., social media posts)
[100].

• Computer Vision: Adapting models trained on images from one source
(e.g., synthetic images) to work on real-world images [101].

• Speech Recognition: Adapting models trained on one type of speech
(e.g., adult speakers) to perform well on another type (e.g., children’s
speech) [102, 103].

A number of challenges must be addressed such as:

• Data Distribution Differences: Significant differences in data distribu-
tions can make adaptation challenging.

• Feature Misalignment: Incorrect alignment of features can lead to poor
model performance.

• Limited Target Domain Data: Scarcity of labeled data in the target
domain makes it difficult to fine-tune models effectively.

6.8.1 Datasets and Experiments

For a task of image classification we want to observe and analyze the effect
of two strategies on the training domain and on the target domains in search
for patterns that can be beneficial in term of performance. We are operating
in the embedding space so the results should be less strictly connected to
the initial nature of the data.

The experiments reported in this section aim to validate or invalidate the
following hypotheses:

• The type of the domain shift (e.g., from more abstract to more complex)
influences the type of feature-level augmentation required for effective
classification in the target domain.
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• The type of machine learning algorithm (e.g., max-margin vs. neu-
ral net) also affects the kind of feature-level augmentation needed for
effective classification in the target domain.

Like in the data augmentation experiments two classifiers are used, an
SVM classifier and a network formed by a single fully connected layer as
classifier (FC). the SVM is implemented using the SVC class provided by
the scikit-learn Python library for multi-class classification problems. A
softmargin SVM implementation is used, meaning that some misclassifica-
tion is allowed; the degree of tolerance is controlled by the regularization
parameter C, which is set to 1. The kernel used is a linear kernel so the deci-
sion boundaries are hyper-planes. The FC is implemented as a single linear
layer implemented with pytorch that takes in input the VGG19 embeddings
and the generated embeddings and learn a classification accordingly to the
number of classes of the considered dataset. We use cross entropy loss and
the Adam optimizer. The batch size has been set to 32 and the number of
epochs has been set to 30 which allowed to reach stability in the accuracy
of prediction

The strategies used during the experiments are::

• Inward-Outward (In-Out) strategy: for each point in the train dataset
a new point is added at a certain percentage further or nearer distance
from the class centroid. The steps chosen are 2,5%, 5%, 7.5%, 10%,
20% 30% 40% 50%, 60% in both directions. (Figure 6.66). .

• Rotation strategy: for each point in the train dataset a new point
is added after a rotation of α degrees around the class centroid in a
rotation plane including the vector between the point and the class
centroid (Figure 6.67). . A rotation in n dimensions is described as
being in an n− 1 dimensional hyper plane in a direction from one unit
vector towards another. The rotation matrix is computed according to
the following formula [104].

R = I + (n2nT
1 − n1nT

2 ) sinα + (n1nT
1 + n2nT

2 )(cosα− 1)

Where n1 and n2 are two n-dimensional orthogonal unit vectors with
n1 pointing from the centroid to the starting point. The n2 vector
can be obtained swapping the values of two non zero components of n1
changing the sign of one of them, setting all the other components to
0 and normalizing.
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The models are trained on a domain and then applied on a test subset
of the same domain and on the other domains.

The following datasets are used for the experiments.

• Office Home dataset [105]. It is composed of 30475 images arranged in
four different domains: Clip Art, Artistic images, Product images and
Real-World images. For each domain, the dataset contains images of 65
object categories found typically in Office and Home settings. (Figure
6.65(a)).

• Modern Office-31 dataset [106]. It’s a modified version of the Office-31
dataset. Modern Office-31 corrects annotation errors and low quality
images in the Amazon domain of the original Office-31 dataset. Ad-
ditionally, this dataset adds another synthetic domain based on the
Adaptiope dataset. It contains 6712 images from four domains, Ama-
zon, DSLR, Webcam and synthetic, each domains contains 31 cate-
gories (Figure 6.65(b)).

• Adaptiope dataset [106]. It contains 36900 images arranged in 3 do-
mains of 123 classes: (a) product, (b) reallife, and synthetic, with dif-
ferent complexities (Figure 6.65(c)).

SYNTHETICR.LIFEPRODUCT SYNTHETICR.LIFEPRODUCT

(a) Office Home (b) Modern Office-31 (c) Adaptiope

Figure 6.65: Sample images from the three benchmark data sets considered in this study: (a)
Office home [105], (b) Modern Office-31 [106], and (c) Adaptiope [106] – all three data sets include
subsets of images that are of different levels of abstraction.

For theses data sets the VGG19 network is used to extract the embed-
dings of the images.

The models are trained on a domain and the applied on the other do-
mains.
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class

centroid

sample

Figure 6.66: In-out augmentation: for each selected sample data vector, a new vector pointing in
the same direction, but of a different distance from the class centroid, is created

class

centroid

sample

Figure 6.67: Rotation-based augmentation: for each selected sample data vector, a new vector at
the same distance, but at a different angle from the corresponding class centroid, is created.

6.8.2 Experiments with the Office Home Data Set
6.8.2.1 Simple-to-Complex Domain Shift

In Figure 6.68, we present the results for the Office home data set, where a
model is trained on a relatively simple/abstract domain (clipart) and the
learned model (SVM or FC) is applied on a test subset of the same domain
as well as other three domains under in-out and rotation-based augmenta-
tion strategies: More specifically, Figures 6.68(a) through (d) present in-out
augmentation results for SVM and FC, whereas Figures 6.68(e) through (l)
present rotation-based augmentation results – since, under rotation-based
augmentation, SVM results are more stable than the FC results, in Fig-
ures 6.68 (i) through (l), we separately plot the SVM results to better see
the effects of the degree of rotation:

• The first thing one can notice from Figure 6.68 is that, as we mentioned
above, the SVM model is less sensitive to augmentation than the FC
strategy.

• We also see that, as one would expect, the model trained on a sim-
ple/abstract domain becomes less and less effective as we test on more
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Figure 6.68: Office Home dataset. Application of model trained on the simple/abstract clipart
domain – blue lines indicate SVM; red lines indicate FC based model: (a)-(d) in-out augmentation
results; (e)-(l) rotation-based augmentation results (since SVM results are significantly more
stable under rotation-based augmentation than the FC results, in (i)-(l) threre are the plots of
the SVM results alone)

complex domains, with the lowest performance obtained for the most
complex artistic domain.

• While the SVM-based classification appears to be more effective when
the model trained on the relatively simple/abstract domain, clipart,
is tested against itself or the other simple model, product, FC-based
model appears to have a better generalization performance when the
test domains are complex, such as real-world or artistic.

• Studying Figures 6.68(a) through (d), which present the in-out aug-
mentation results for FC and SVM models, we observe the following:

– For the FC model, plotted in red, the best results are obtained
without augmentation (NA). While inwards augmentation strategy
(negative values) does not appear to have significant impact on
the results, the outward strategy (positive values) significantly hurt
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Figure 6.69: Office Home dataset. Application of model trained on the complex artistic domain
– blue lines indicate SVM; red lines indicate FC based model: (a)-(d) in-out augmentation results;
(e)-(l) rotation-based augmentation results (since SVM results are significantly more stable under
rotation-based augmentation than the FC results, in (i)-(l) there are the SVM results alone)

performance, especially for large values (∼ 60%). This appears to
indicate that, in these scenarios, if augmentation is unavoidable,
it is better to augment the data with samples closer to the class
representative, rather than samples that are away from the centroid.

– For the SVM model, plotted in blue, however the results are some-
what different: while outwards augmentation still hurts perfor-
mance when the model trained on the relatively simple/abstract
domain, clipart, is tested against test domains that are more
complex than itself, we see a generally more robust benefit from
inwards augmentation in this case. Moreover, differently from the
case of the the FC model, when the model is tested against itself,
we see a notable benefit to outwards augmentation: this appears to
imply that, while the outwards augmentation is not beneficial for
abstract-to-complex domain shifts, it does help better define the
max-margin boundary between the classes when the domain stays
the same.
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• Studying Figures 6.68(e) through (l), which present the rotation-based
augmentation results for FC and SVM models, we observe the following:

– As we mentioned earlier, we see in Figures 6.68(e) through (h)
that the SVM model is less affected from rotation-based augmen-
tation than FC model. We further see from these figures that, for
FC, when the source domain is simple/abstract, "no augmentation"
appears to be the best strategy also under rotation-based augmen-
tation.

– Looking more closely at the SVM behavior, in Figures 6.68(i) through
(k), we observe that SVM does benefit from rotation based augmen-
tation, with the largest benefits occurring at (for self) or around (for
domain shifts) 180 degrees. This interesting behavior is due to the
fact that, in rotation-based augmentation, each selected sample fol-
lows a rotation path on a different plane, which dilutes the effect
of the augmentation samples on the max-margin border, except for
rotations ∼ 180 degrees where all the augmentation samples re-
converge, irrespective of the selected rotation plane. The fact that
exactly 180 does not provide a sufficient benefit (and may in fact
hurt performance when the target domain is more complex) is due
to the fact that precisely 180 degree rotations fail to add any major
diversity to the data with respect to the original sample selected
for augmentation.

6.8.2.2 Complex-to-Simple Domain Shift

In Figure 6.69, are plotted the results for the Office home data set, where a
model is trained on a complex domain (artistic) and the learned model
(SVM or FC) is applied to itself as well as other three domains under in-out
and rotation-based augmentation:

• We again observe that the SVM model is less sensitive to augmentation
than the FC strategy.

• The model trained on the complex domain becomes less and less effec-
tive as we test on a much simpler domain, the lowest performance is
obtained for the most abstract clipart domain.

• Once again the SVM-based classification is most effective when the
model trained on the artistic domain is tested against itself, whereas
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Figure 6.70: Modern Office 31. Application of model trained on the synthetic domain — blue
lines indicate SVM; red lines indicate FC based model: (a)-(d) in-out augmentation results; (e)-
(l) rotation-based augmentation results (Ssince SVM results are significantly more stable under
rotation-based augmentation than the FC results, in (i)-(l) the SVM results are plotted separately
from the FC results)

the FC-based model has a better generalization performance to simpler
domains.

• Studying Figures 6.69(a) through (d), which present the in-out aug-
mentation results for FC and SVM models, we observe that both mod-
els appear to benefit from some inwards augmentation, indicating that
samples closer to the class representative helps reduce the impact of
the noisy features in the complex source data.

• Studying Figures 6.69(e) through (l), which present the rotation-based
augmentation results for FC and SVM models, we observe that in this
scenario, the impact of the rotation based augmentation is more sub-
dued for both SVM and FC models and the largest benefits comes when
the test domain is complex (artistic), whereas when the test domain
is very simple (clipart) ther are nearly no benefits.
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Figure 6.71: Adaptiope dataset. Application of models trained with in-out augmentation – blue
lines indicate SVM; red lines indicate FC based model

6.8.3 Experiments with the Modern Office 31 Dataset

In Figure 6.70, we present the experiments results for the Modern Office 31
data set, where a model is trained on a relatively simple/abstract domain
(synthetic) and the learned model (SVM or FC) is applied to itself as
well as other three domains (Amazon, DSLR, and webcam ) under in-out
and rotation-based augmentation strategies1: Figures 6.70 (a) through (d)
present in-out augmentation results for SVM and FC, whereas Figures 6.70
(e) through (l) present rotation-based augmentation results. Also as in the
experiments with the Office Home data set, Figures 6.70 (i) through (l)
separately plot the SVM results to help better see the effects of the degree
of rotation in rotation-based augmentation.

Results for the Modern Office 31 data set, reported in Figure 6.70, largely
confirm the observation for the Office Home data set, reported in Fig-
ure 6.68:

• Once again, the SVM model is less sensitive to augmentation than the

1Due to space limitations, for this data set, we omit results where the model is trained in a complex
domain.
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Figure 6.72: Adaptiope dataset. Application of models with rotation-based augmentation (blue
lines indicate SVM; red lines indicate FC based model)

FC strategy.

• As in the Office Home data set, the model trained on the simple domain
becomes less effective as we test one more complex models.

• Unlike the experiments with the Office Home data set (where FC showed
a better generalization performance for complex domains), however, in
this case, we see that SVM performs better than the FC for all domains.
This is likely because, this data set does not include very complex do-
mains, such as artistic images, and images in most of the domains
have relatively clean backgrounds (see Figure 6.65).

• Studying Figures 6.70(a) through (d), which present the in-out aug-
mentation results for FC and SVM models, we see once again different
patterns when the learned model is tested on self and when it is used
on other more complex models:

– When the model is tested on self, adding more diversity to the data
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by outwards augmentation provides significant gains for both SVM
and FC models. Considering Figure 6.66, this appears to indicate
that, in this data set, synthetic images are well separated, but
with insufficiently well-defined max-margin boundaries.

– When the model is tested on more complex data, however, we do
not see much benefit from in-out augmentation (except for FC
where we see slight boost to accuracy when +5% outwards aug-
mentation is applied for model training on synthetic domain when
being applied to the Amazon domain). In fact, in almost all cases,
adding points further and further away from the centroid hurts per-
formance, whereas inwards augmentation leads to similar or worse
performance.

• Studying Figures 6.70(e) through (l), which present the rotation-based
augmentation results for FC and SVM models, we also observe different
patterns when the learned model is tested on self and when it is used
on other more complex models:

– As we mentioned earlier, the SVM model is less affected from
rotation-based augmentation than FC-based model and performs
better than FC based models – the latter is likely because the "com-
plex" models are still relatively simple as they lack complicating fac-
tors like complex backgrounds. We further see from these figures
that, for FC, "no augmentation" appears to be the best strategy
also under rotation-based augmentation – except when the model
is tested against itself, in which case augmentations with small (±5
degrees) or very large (∼ 180 degrees) rotations appear to provide
performance boost.

– Looking more closely at the SVM behavior, in Figures 6.70(i) through
(k), we observe in all cases that SVM does benefit from rotation-
based augmentation with 150 or 210 degree rotations (which as
discussed earlier, all the augmentation samples, even if rotated
through different planes, re-converge albeit on the almost opposite
side, of the original samples).

6.8.4 Experiments with the Adaptiope Data Set

In Figures 6.71 and 6.72, we present the results of the experiments on the
Adaptiope data set, with in-out and rotation-based augmentations respec-
tively. Like for the other data sets, we consider both SVM and FC-based
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models. However, in these figures, we consider all pairs of training/testing
configurations for the three domains, synthetic, product, and reallife.
Therefore, in these figures, we not only observe the effects of simple-to-
complex domain shifts (such as synthetic to reallife), but also complex-
to-simple domain shifts (such as reallife to synthetic).

Below, we summarize the observations from the in-out augmentation
strategy reported in Figure 6.71:

• Simpler source Domain (synthetic): Figures 6.71(a) through (c) show
the in-out augmentation results for SVM and FC-based models, where
the models are trained on synthetic; i.e., the most simple domain in the
data set.

– Observations from these charts are similar to the corresponding
observations for the Office Home and Modern Office data sets, con-
firming that in-out augmentation is largely ineffective when the
source domain is simpler than the target domain – we, once again,
see benefit in outwards-augmentation when the models trained on
synthetic data are tested on data from the synthetic domain.

• Simple source Domain : Figures 6.71(d) through (f) show the in-out
augmentation results for SVM and FC-based models, where the models
are trained on the product domain with medium-level of complexity:

– One interesting observation in this case that the more difficult do-
main shift involves applying the model to a simpler target do-
main, synthetic - while both domain shifts see a drop in accu-
racy, the most significant drop occurs in the case of the shift to the
synthetic domain.

– FC provides a better accuracy when the shift is to the simpler
domain, whereas SVM performs better when the model is applied
to itself. We see a similar performance when the model is applied
to the more complex domain.

– Most importantly, while the SVM is not much affected from in-out
augmentation, we see that FC sees some gains with both inwards
and outwards augmentations, indicating that, when the source is
not overly abstracted, in-out augmentation strategy provides help
in eliminating the effects of the noise in the data

• Complex Source Domain (reallife): Figures 6.71(g) through (i) present
the in-out augmentation results for SVM and FC-based models, where
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the models are trained on the most complex domain, reallife, in the
data set.

– Here, we once again see that the more difficult domain shift involves
applying the model to a simpler target domain, synthetic.

– Moreover, we see that the FC model performs very poorly without
augmentation when the source data is complex and both inwards
and outwards augmentations help eliminate the effects of noisy fea-
tures in the data thereby significantly boosting the accuracies of
the FC-based models.

Next, we summarize the observations from the rotation-based augmen-
tation strategy reported in Figures 6.72:

• Simpler Source Domain (synthetic): Figures 6.72(a) through (c) show
the rotation-based augmentation results for SVM and FC-based mod-
els, where the models are trained on synthetic; i.e., the most sim-
ple/abstract domain in the data set.

– These results mirror the results for the in-out augmentation strat-
egy in that augmentation is largely ineffective when the source do-
main is much simpler than the target domain.

• Simple/Abstract Source Domain (product): Figures 6.72(d) through
(f) show the rotation-based augmentation results for SVM and FC-
based models, where the models are trained on the product domain
with medium-level of complexity and tested on simpler and more com-
plex domains.

– Once again, also in this case, the more difficult domain shift involves
applying the model to a simpler target domain, synthetic - while
both domain shifts see a drop in accuracy, the most significant drop
occurs in the case of the shift to the synthetic domain.

– Also in this case, FC provides a better accuracy when the shift is to
the simpler domain, whereas SVM performs better when the model
is applied to itself. We see more comparable performances when
the models are applied to the more complex. reallife domain.

– We also see that FC observes performance gains with rotation -
based augmentation. When the target is the simplest domain,
synthetic, the biggest gains are observed with 210 degree ro-
tations; in other scenarios, smaller rotations within ±30 degrees,
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but larger than ±5 degees, appear to provide largest performance
boosts.

• Complex Source Domain (reallife): Figures 6.72(g) through (i) present
the rotation-based augmentation results for SVM and FC-based models,
where the models are trained on the most complex domain, reallife,
in the data set.

– Once again, the more difficult domain shift involves applying the
model to a simpler target domain, synthetic.

– As in the case with in-out augmentation results, the FC model
performs very poorly without augmentation when the source data
is complex. In this case, augmentations with ±5 degree rotations as
well as rotations ∼ 210 degrees appear to help eliminate the effects
of noisy features and boost the accuracies of the FC-based models.

6.8.5 Summary

From the results presented in Figures 6.68 through and 6.72, across different
datasets (Office Home, Modern Office 31, and Adaptiope), we observe sev-
eral general patterns regarding the impact of the augmentation techniques
on the performance of max-margin (SVM) and full-conectected layer (FC)
based models under different augmentation strategies:
• Robustness of SVM vs. FC Models: SVM models perform more stably

across various domain shifts and are consistently less sensitive to both
in-out and rotation-based augmentation strategies compared to FC mod-
els. FC on the other hand is more sensitive to augmentation, showing
significant performance variations depending on the augmentation strat-
egy and the complexity of the domain shifts. However, they sometimes
outperform SVM when generalizing to complex domains (as seen, for
example, in the Office Home dataset).

• Impact of Domain Complexity: Models trained on simpler or more ab-
stract domains (e.g., synthetic or clipart) generally perform worse
when applied to more complex target domains (e.g., real-world or artistic).
Interestingly, models trained on complex domains also tend to perform
poorly when tested on much simpler domains, requiring augmentation to
mitigate the drop in performance.

• Effectiveness of In-Out Augmentation: FC models perform best with-
out augmentation or with inward augmentation when trained on simpler
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domains; significant outward augmentation generally degrades perfor-
mance, especially for larger outward shifts. When the model is trained
on a complex model (such as artistic or reallife), however augmen-
tation (especially inwards) helps FC-based models.
In some scenarios, SVM models may benefit from inward augmentation.
Outward augmentation is helpful only when a simple/abstract model is
tested on itself, aiding in defining max-margin boundaries.

• Effectiveness of Rotation-based Augmentation: FC models benefit from
rotation-based augmentation, especially when the source domain is com-
plex. In this case, either very small rotations or very large rotations
(150-210 degrees) provide benefits. SVM models show relative stability
across various rotation angles, with slight benefits seen around rotations
of 150 to 210 degrees – these angles help realign the samples along the
max-margin border.

• Generalization Performance: SVM models tend to generalize well across
domains that are similar or only moderately different in complexity. FC
models appear to show better generalization with major shifts in com-
plexity, but this comes with higher sensitivity to augmentation.

• Augmentation and Domain Shift: For domain shifts from simpler to more
complex domains, both in-out and rotation-based augmentations are gen-
erally ineffective. For domain shifts from complex to simple domains, on
the other hand, both augmentation strategies may help improve perfor-
mance by addressing noisy features.

6.8.6 Conclusions

Domain shift can be a major challenge, as a model learned using a given
data set may not be applicable if the characteristics of the data changes. We
considered augmentation-based solutions to the domain shift problem, es-
pecially focusing on simple-to-complex or complex-to-simple domain shifts.
Based on the argument that depending on the nature of the shift and the
learning models used, one may need to leverage different augmentation
techniques, we have investigated the effectiveness of different feature-based
training data augmentation strategies (in-out, rotation-based) for differ-
ent types of domain shifts (simple-to-complex or complex-to-simple), and
machine learning approaches (max-margin and fully-connected layer based
classifiers). Experiments with several benchmark data sets that include
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data of varying levels of abstraction (e.g. clipart, artistic, product,
and real-world) confirmed that the nature of the domain shift and the
characteristics of the learning strategy strongly impact the choice of the
augmentation technique.
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Chapter 7

Conclusions and Future Work

In this research we have presented different approaches for dealing with
noisy and sparse information in different scenarios and tasks.

We investigated a Named Entity Recognition (NER) task in a multi-
modal setting, a text-image alignment task and different scenarios of data
augmentation.

The Named Entity Recognition task was researched using Twitter mes-
sages with associated images characterized by noisiness and sparsity. This
experience motivated us to explore a novel attention mechanism that we
applied on a task of text and fragments of images alignment. In both cases
there are motivation for further analysis and investigations especially look-
ing at the results obtained with “ideal features” on the NER task.

Reflections on the attention mechanism have led us to consider possible
applications in the field of data augmentation.

We considered a setting where test data are quite diverse from training
data.

We explored the possibility of finding what portion of a training data set
to modify and add to the training set in order to improve the performance
on the test data.

We investigated approaches based on factorization machines, cosine simi-
larity and Euclidean distance, finding that it is possible to obtain indications
of strategies for finding and using portions of a training dataset for data aug-
mentation. Further work in this area should investigate other techniques
and application on more “real datasets”.

The same applies about the research on domain adaptation where differ-
ent techniques can be explored always remaining in the context of features
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level augmentation in order to preserve as much as possible the indepen-
dence from the original nature of the data.
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