
1.  Introduction
1.1.  The 2021 Tajogaite Eruption

La Palma is an active volcanic island of the Canary archipelago (Spain). The Holocene to historical activity 
has erupted mostly mafic magmas (basanite to tephrite), from monogenetic effusive to mild explosive centers 
forming the Cumbre Vieja ridge. After 50 years of quiescence, on 19 September 2021 a new violent strom-
bolian and effusive eruption started on the western slope. The eruption lasted ∼3 months until 13 December, 
emplacing about 0.2 km 3 of lava and tephra (Civico et al., 2022), inundating ∼12.5 km 2 of land, covering more 
than 100 km 2 by variable thickness of scoria lapilli and ash, severely affecting the local communities (Oterino 
et  al.,  2021). Magma composition spans the tephrite-basanite fields, and the lavas are texturally porphyritic 
with clinopyroxene ± amphibole ±  titanomagnetite ± olivine showing mean crystal contents of ∼18-4-2-2%, 
respectively (Pankhurst et al., 2022). While the violent strombolian activity fed by several vents aligned along a 
NW-trend built a ∼200 m high scoria cone, the lava issued almost continuously (González, 2022). The average 
mass eruption rate was 27 m 3/s and lava temperature of 1140°C (Carracedo et al., 2022). The resulting lava flows 
initiated as open channels with smooth upper surfaces that transitioned laterally to brecciated ‘a‘ā top along the 
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steep upper slopes (up to 20°). Several tubes formed along the lowest inclined section of the island (∼5°). Break-
out events progressively expanded the lava field to its final extension (Figure S1 in Supporting Information S1).

1.2.  Rheology of Low-Viscosity Lavas

The lavas erupted during the 2021 Cumbre Vieja eruption show a high flowing ability due to the low-viscosity 
typical of mafic and alkaline melts (Campagnola et al., 2016; Chevrel et al., 2015; Di Fiore, Vona, et al., 2021; 
Di Fiore, et al., 2022; Giordano & Dingwell, 2003; Ishibashi, 2009; Ishibashi & Sato, 2007; Jones et al., 2022; 
Kolzenburg, Di Genova, et  al.,  2018; Kolzenburg et  al.,  2016; Kurokawa et  al.,  2022; Sato,  2005; Sehlke 
et al., 2014; Vetere et al., 2019; Vona et al., 2011, 2017). Low viscosity also facilitates efficient degassing (Namiki 
et al., 2022) and promotes fast crystallization kinetics due to rapid chemical diffusion (Mollo & Hammer, 2017). 
Consequently, lava solidification paths and emplacement styles are primarily controlled by the crystallization effi-
ciency, which in turn is strongly influenced by the cooling conditions that a flow experiences (Arzilli et al., 2022; 
Di Fiore, Vona, et al., 2021; Di Fiore, et al., 2022; Giordano et al., 2007; Kolzenburg et al., 2016, 2020). There-
fore, understanding magma rheological behavior across different cooling paths is essential to understand the high 
flowing ability of these lavas.

Here we present results from a suite of concentric cylinder experiments designed to characterize the high-T 
subliquidus rheology of the 2021 Cumbre Vieja lavas under both disequilibrium and near-equilibrium conditions. 
A set of Cooling Deformation Experiments (CDE) was carried out to explore the crystallization kinetics and 
the related rheological behavior at constant cooling conditions pertinent to lava flow emplacement (Di Fiore, 
Vona, et al., 2021; Di Fiore, et al., 2022; Giordano et al., 2007; Kolzenburg, Di Genova, et al., 2018; Kolzenburg 
et al., 2020, 2022). To mimic the high-deformation regime at which the flow was subjected (i.e., high-T emplace-
ment, low-viscosity, steep slopes; see Section 1.1) we adopted a fixed shear rate of 10 s −1. In addition, a set of 
Isothermal Deformation Experiments (IDE) was conducted at constant subliquidus temperatures to characterize 
the effect of near-equilibrium crystal contents and textures on melt viscosity (Campagnola et al., 2016; Chevrel 
et al., 2015; Di Fiore, Mollo, et al., 2021; Di Fiore, Vona, et al., 2021; Ishibashi, 2009; Sehlke et al., 2014; Vona 
et al., 2011). This integrated approach permits to describe the rheological evolution of the Tajogaite lavas and 
analyze the emplacement dynamics of these extraordinarily mobile lava flows.

2.  Materials and Methods
2.1.  Starting Material and Sample Preparation

The lava samples used for our study are basanitic in chemical composition (Pankhurst et al., 2022; Table S1 in 
Supporting Information S1) and were collected during a field campaign in October 2021 (Figure S1 in Support-
ing Information S1 for sampling location). Rock samples were powdered using a jaw crusher and a ring-mill and 
then melted in a Pt crucible in a Nabertherm® MOSi2 box furnace at 1400°C, air oxygen fugacity and atmos-
pheric pressure.

2.2.  Crystal-Free Melt Viscosity

Crystal-free melt viscosity (ηliquid) data were obtained through high-T superliquidus measurements in a Concen-
tric Cylinder apparatus (CC) and from calorimetric measurements at T close to the glass transition temperature 
(Tg) using a Differential Scanning Calorimeter (DSC).

For high-T, CC viscometry was conducted with a Rheotronic II Rotational Viscometer (Theta Instruments) 
installed at the EVPLab of the University of Roma Tre. The apparatus is equipped with an Anton Paar Rheolab 
Qc viscometer head with a full-scale of torque of 75 mNm (see Supplementary Methods Section S1 in Support-
ing Information S1 for calibration procedure details). The glassy materials were loaded into Pt80Rh20 cylindric 
crucibles (62 mm in height, with a 32 mm inner diameter) and stirred at 𝐴𝐴 𝐴𝐴𝐴  of 10 s −1 with a Pt80Rh20 spindle (3.2 
and 42 mm in diameter and length, respectively) at 1400°C and ambient pressure for 3 hr to ensure chemical and 
thermal homogenization. Then the furnace temperature was progressively lowered to the following target temper-
atures: 1350-1301-1276-1250°C. At each temperature, ηliquid values were collected after the attainment of steady 
torque and temperature values (∼45 min).

For low-T, ηliquid was estimated through sets of DSC measurements on quenched crystal-free glasses (absence of 
nanolite was verified through Raman analyses) from CC, and the adoption of a parallel shift factor that we used to 
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convert calorimetric traces across the glass transition interval into melt viscosity values (Gottsmann et al., 2002; 
Di Genova et al., 2020; Scarani, Vona, et al., 2022; Scarani, Zandonà, et al., 2022). We used a Netzsch Pegasus 
404 DSC to measure the glass transition of samples at matching cooling and heating rates of 10 and 20°C/min in 
Ar-atmosphere. The temperature at the onset (Tonset) and peak (Tpeak) of heat flow curves across the glass transi-
tion interval were transposed into melt viscosity using the parallel shift factors of Konset = 11.20 and Kpeak = 9.84 
(Di Genova et al., 2020; Stevenson et al., 1995). Details of the technique are summarized in the Supplementary 
Methods Section S2 in Supporting Information S1.

The liquid viscosity curve (ηliquid) that expresses the T-dependence of the pure liquid viscosity data was obtained 
by fitting the above-mentioned data (Table S2 in Supporting Information S1) via the Vogel-Fulcher-Tammann 
(VFT) expression (Log ηliquid = A + [B/(T − C)]; Figure S2 in Supporting Information S1).

2.3.  Crystal Bearing Melt Measurements

The subliquidus rheological characterization was carried out using the same CC apparatus. The superliquidus 
treatment was performed by stirring the melt at 1400°C, air oxygen fugacity and ambient pressure for ∼2 hr at 𝐴𝐴 𝐴𝐴𝐴  
of 10 s −1.

A set of Cooling Deformation Experiments (CDE) (Figure S3 in Supporting Information S1) was conducted with 
a fixed shear rate (𝐴𝐴 𝐴𝐴𝐴  ) of 10 s −1 and variable cooling rate (q) from 0.1 to 10°C/min. During cooling, a departure of 
apparent viscosity (ηa; i.e., the ratio between the shear stress and shear rate applied) from the VFT trend viscosity 
of Log 0.05 (Pa s) followed by a constant positive increase of ηa was adopted as proxy for the onset of crystalliza-
tion (Figure S3 in Supporting Information S1). The temperatures and times at which these rheological departures 
from the VFT trend were observed during CDE were defined as Tonset and tonset, respectively.

The experiments were interrupted (Figure S3 in Supporting Information S1) when the stress limit of the device 
(∼10 5 Pa) was reached, approaching the “rheological cut-off” (Giordano et al., 2007), or when the measurements 
showed a stress drop indicative of viscous rupture behavior (Di Fiore, Vona, et al., 2021). The viscous rupture 
occurs when crystal-crystal interaction (i.e., onset of clumping; Soule & Cashman,  2005) in the suspension 
leads to a major shear localization event (Di Fiore, Vona, et al., 2021) that reflect in a large final drop during 
the viscosity measurements (Figure S3 in Supporting Information  S1). Due to extremely fast crystallization 
kinetics and high viscosity observed at the end of each cooling segment, no sampling of experiments and post-
run analyses (i.e., crystal contents and distribution) could be conducted. This represents the main limitation 
of the technique (cf. Di Fiore et al., 2022; Giordano, 2019; Kolzenburg, Di Genova, et al., 2018; Kolzenburg, 
Giordano, et al., 2018; Kolzenburg et a., 2022). At the end of each CDE, the sample is re-heated to 1400°C and 
re-homogenized for the subsequent cooling cycle.

Isothermal Deformation Experiments (IDE) (Figure S3 in Supporting Information  S1) were carried out at 
subliquidus temperatures of 1225-1200-1175°C, under constant 𝐴𝐴 𝐴𝐴𝐴  of 10 s −1. For each IDE, the melt was cooled 
from superliquidus T of 1400°C to the target temperature at q of 25°C/min. The experiments were quenched after 
the achievement of a time independent value of ηa (i.e., stable crystal content, Vona & Romano, 2013; Figure S3 
in Supporting Information S1). In this case, the post-run products were drilled, mounted in epoxy, and polished 
for textural analyses.

3.  Results
3.1.  CDE Results

The evolution of apparent viscosity (ηa) under different cooling rates (q) is shown as a function of temperature 
(T) and time (t) in Figures 1a and 1b. At superliquidus conditions, the rheological evolution trend of the melt 
of CDEs follows the VFT model, although the viscosity signals are noisy in the interval 1400–1350°C, due to 
the low viscosity values of the basanitic melt approaching the lower resolution limit of the device (Table S1 in 
Supporting Information S1).

The temperature of the rheological departure (Tonset) decreases from 1236 to 1122°C (Figure 1a, Table S3 in 
Supporting Information S1) as q increases from 0.1 to 10°C/min. The timespan necessary to observe the rheolog-
ical departure (tonset) from the start of each experiment decreases from ∼9.8 × 10 4 to ∼1.7 × 10 3 s with increasing 
q from 0.1 to 10°C/min (Figure 1b, Table S3 in Supporting Information S1).
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After the onset of crystallization, two distinct trends of rheological evolution linked to the different degree of q 
applied are observed (i.e., from 0.1 to 1°C/min and from 3 to 10°C/min). In detail, the increase of viscosity in 
the experiments conducted at q of 0.1-0.3-0.5-1°C/min are characterized by a series of small viscosity drop. The 
experiments were interrupted when the viscous rupture was observed. The viscous rupture takes place at ηa 
ranging from Log 3.87 to 2.76 (Pa s), at temperatures (Tvr) spanning from 1135 to 1113°C, and times (tvr) from 
∼1.62 × 10 5 to ∼1.7 × 10 4 s (Figure 1, Table S3 in Supporting Information S1).

The experiments conducted at q of 3-5-10°C/min were interrupted when the stress limit of the device was reached 
at ηa Log ∼4 (Pa s). These experiments are characterized by a sharp viscosity increase that leads to approach the 
rheological cut-off for this suspension. The cut-off temperatures (Tcut-off) and times (tcut-off) decrease from 1090 to 

Figure 1.  Summary of Cooling Deformation Experiments data. (a, b) Variation of apparent viscosity (ηa) as a function of experimental temperature (a) and time (b). In 
(a) the T-dependence of the pure liquid viscosity (VFT model; dashed line) and the results of the near-equilibrium crystallization experiments (IDE; squares) are also 
reported. (c, d) Variation of normalized viscosity (ηx) as a function of experimental temperature (c) and time (d).
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1070°C and from ∼6.2 × 10 3 to ∼2.0 × 10 3 s with increasing q, respectively 
(Figure 1, Table S3 in Supporting Information S1).

The effect of degree of crystallization on viscosity can be expressed by the 
normalized viscosity factor (ηx = ηa/ηliquid, Di Fiore et al., 2022). It should 
be noted that the normalized viscosity factor ηx is different from the relative 
viscosity parameter (ηr), the latter representing the ratio between the apparent 
viscosity and the viscosity of the suspending (residual) melt (ηr = ηa/ηres).
The adoption of ηx results particularly useful in those cases such as that for 
the CDE technique which does not allow to discern and quantify the physical 
(i.e., presence of a solid phase) and chemical (i.e., suspending melt evolution) 
contributions of crystallization on the rheological evolution of the suspen-
sion. The maximum ηx values range from a minimum of 0.96 Log units for 
the run performed at q of 0.5°C/min to a maximum of 1.96 Log units at q of 
0.1°C/min (Figure 1, Table S3 in Supporting Information S1).

3.2.  IDE Results

The time-evolution of apparent viscosities (ηa) during IDE is shown in 
Figure 2a. The values measured at the steady state conditions increase from 
Log 1.77 to 2.48 (Pa s) (Table S3 in Supporting Information S1) with lower-
ing the dwell T (from 1225 to 1175°C). The steady state conditions were 
achieved after t spanning from ∼8.1 × 10 4 to ∼6.3 × 10 4 s with decreasing 
dwell T.

Textural analysis of post-run products shows the ubiquitous presence of 
skeletal Fe-Ti oxides (Figure 2b). In the experiments conducted at 1200 and 
1175°C clinopyroxene also appears, exhibiting a euhedral habit with hour-
glass texture (Figure 2b) or, often, showing complex intergrowth with the 
oxide crystals. Total crystal content increases from 7.2% to 28.8% (Figure 2b, 
Table S3 in Supporting Information S1) with decreasing temperature (from 
1225 to 1175°C). Fe-Ti oxides show a slight increase in crystal fraction with 
decreasing dwell T (from 7.2% to 8.4%). Clinopyroxene is the most abundant 
phase in both the experiments in which is detected (i.e., 1200 and 1175°C, 
with a crystal fraction of 13.4% and 20.4%, respectively).

4.  Discussion
4.1.  Rheological Evolution of Tajogaite Basanitic Melt

The integration of rheological data obtained by different experimental 
approaches (i.e., IDE, CDE, and crystal-free melt viscosity) allows to delin-
eate the thermo-rheological space in which crystallization takes place. The 
magnitude of crystallization, its timescales and influence on the rheological 
evolution of suspension are strictly linked to the degree of disequilibrium 
conditions that the melt experiences during cooling (Figure 3).

Using Figure 3a it is possible to qualitatively observe the viscosity-temperature 
window of this basanitic lava. The lower-η boundary corresponds to the mini-

mum values of viscosity that a supercooled melt could achieve at both superliquidus and subliquidus temper-
atures and is defined by the crystal-free melt viscosity described by the VFT trend (Figure S2 in Supporting 
Information S1).

The upper-η boundary depicts the maximum viscosity values related to the maximum crystal contents attainable 
by the melt at a given temperature at equilibrium conditions. This boundary is qualitatively interpolated using 
the viscosity values (and related crystal contents) obtained through IDE (Chevrel et al., 2015; Di Fiore, Vona, 
et al., 2021; Vona et al., 2011). In the present case, the IDE display a progressive increment of the final η values 

Figure 2.  (a) Temporal evolution of Isothermal Deformation Experiments 
viscosity. (b) Diagram of crystal fraction variations at different dwell 
temperatures and representative BSE photomicrographs (50× magnification) 
of the post-run samples.
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with decreasing dwell T due to the increased crystal fraction (Figure 2). The liquidus T of 1247°C calculated 
through the MELTS code (at air-oxygen fugacity conditions) results in excellent agreement with the equilibrium 
crystallization trend described by IDE.

Variable degrees of disequilibrium conditions characterize the crystallization of the melt within the 
thermo-rheological space depicted by the high-η and low-η boundaries (Figure  3a). CDE data explore such 
disequilibrium crystallization conditions typical for lava flow emplacement scenarios. In detail, with increasing 

Figure 3.  (a) Viscosity-temperature regime diagram for Tajogaite basanitic melt. (b) Time-temperature-transformation (TTT) 
diagram of the basanitic melt showing the effects of cooling rates on the crystallization process and rheological response 
of the suspension. Note that the critical cooling rate (qc > 10°C/min) curve is only a qualitative guideline, not determined 
experimentally.
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q both onset of crystallization and interruption of the experiment occur at progressively lower temperatures 
and the viscosity curves approach the lower-η boundary (maximum disequilibrium). Conversely, with decreas-
ing q both rheological thresholds take place at higher temperatures and the viscosity paths track closer to the 
upper-η boundary, with CDE conducted at q of 0.1°C/min reaching final viscosities values comparable to those 
obtained  by IDE. This indicates a progressive reduction of the degree of disequilibrium conditions at which the 
melt is subjected.

The different degrees of disequilibrium reflect different timescales of crystallization, spanning 2 orders of magni-
tude varying q (Table S3 in Supporting Information S1). In the TTT-diagram in Figure 3b, we identify three 
distinct zones linked to different timescales of crystallization and related to different q. These zones permit to 
delineate distinct regions of disequilibrium degrees that Tajogaite melt could have experienced as function of q. 
A “high-disequilibrium” region is identified for q from 3 to 10°C/min, in which the time interval of crystalliza-
tion spans from ∼1.7 × 10 3 to ∼0.3 × 10 3 s (Table S3 in Supporting Information S1). A “low-disequilibrium” 
region, represented by q ranging from 0.3 to 1°C/min, is characterized by crystallization time that ranges from 
∼1.8 × 10 4 to ∼5.8 × 10 3 s (Table S3 in Supporting Information S1). A third “near-equilibrium” region is defined 
by the run conducted at q of 0.1°C/min with the longest crystallization time of ∼6.4 × 10 4 s. The near-equilibrium 
conditions are confirmed observing Figure 1, in which the CDE run performed with the lowest q depicts the final 
viscosity values of IDE set.

In the CDE data set an intriguing behavior is represented by the onset of viscous rupture or the attainment of 
the rheological cut-off for the different runs. Primarily, viscous rupture only takes place for the measurements 
conducted with lower q (i.e., low-disequilibrium and near-equilibrium regions). In the experiments performed at 
higher q (i.e., high-disequilibrium region), viscous rupture did not occur within the experimental range investi-
gated. In these experiments only a steep viscosity increase (rheological cut-off) of solidifying melt reaching the 
instrumental limit (i.e., Log ∼ 4 Pa s) was observed.

This behavior can be explained by the different timescales of crystallization across the experiment space. 
Although the CDE runs related to the high-disequilibrium region reach higher values of η, the interval of time in 
which the crystallization occurs is not sufficient to permit efficient development of particle-particle interaction 
(Di Fiore, Vona, et al., 2021; Soule & Cashman, 2005) and allow the solid fraction to create a continuous network. 
The latter, representing the preferential zone in which the shear localization develops, could facilitate the onset 
of viscous rupture. The high-disequilibrium conditions (i.e., CDE performed at q > 1°C/min) and the related 
short timespans hindered the formation of shear localization zone, shifting the onset of viscous rupture to lower 
temperatures and higher viscosity values, presumably outside of the measurable range of stress and viscosity of 
the CC apparatus. Similar behavior is observed in experiments conducted on a phonotephrite melt (Di Fiore, 
Vona, et al., 2021), in which viscous rupture took place at progressively higher viscosity values and lower temper-
atures with increasing the q applied.

4.2.  Implications for Tajogaite Lava Flow Emplacement

The rheological measurements confirms that the low-η characterization of Tajogaite products is primarily 
responsible for the high-flood capacity of the erupted lavas. During the Tajogaite eruption lavas inundated an 
area of ∼12.5 km 2 in relatively short times (i.e. 19 September–13 December 2021; Longpré, 2021; Pankhurst 
et al., 2022).

In addition to the characteristic low-η, field observations showed that many mechanisms such as formation of 
channels and lava tubes (Figure 4a) played a key role on the flowing ability of these lavas. The development of 
lava tubes hinders heat dispersion that, in turn, affects the lava rheological evolution and its timescales, delaying 
nucleation and growth of crystals and promoting longer flows with respect to the open channels (Calvari & 
Pinkerton, 1999; Cashman et al., 1999, 2006).

Lava tube formation is commonly observed in pāhoehoe lavas and it is ascribed to different genetic processes 
(Kempe, 2019; Sauro et al., 2020). Field evidence indicate that most of the tubes at La Palma developed by lateral 
shelf accretion or “overcrusting” of channels (Sauro et al., 2020 and references therein). The latter process is led 
by rapid cooling of the upper lava flow surface in contact with air (Sauro et al., 2020). Fast cooling induces a 
rapid increase in viscosity until the solidification of the upper zone insulates the underlying flow and generate a 
rheological decoupling (Figure 4a). The insulation of the flow permits the maintenance of higher temperatures 
and low-η for longer times and, consequently, distances.
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CDE data allow to map such rheological behavior driving the formation of lava tubes. The rheological data set 
presented in this study was obtained on a simplified system, being the experiments conducted under constant 
cooling and shear rates, at ambient pressure, air-oxygen fugacity, on degassed (i.e., bubble-free) and initially 
crystal-free melts. Even if natural lava flows as those emplaced during Tajogaite eruption are subjected to 
more  complex dynamics (e.g., increased oxidizing conditions that could shift to lower T the crystallization onset 

Figure 4.  (a) Tear-apart structures on the upper crust of a lava flow outcropping near the vent. (b) Distal massive lava flow outcrop characterized by upper and basal 
breccias.
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of Fe-Ti oxides phases; see Supplementary Discussion Section SD1 in Supporting Information S1), our data set 
permits to constrain the influence of a key parameter such as cooling rate on their rheological evolution.

The wide experimental range of q adopted in CDE reflects thermal gradients that a lava flow experiences at 
various heights along a vertical profile (Cashman et al., 1999; Harris & Rowland, 2009). In the most exterior 
part q values are the largest, producing the maximum disequilibrium conditions (Figure 3b). As illustrated by 
CDE experiments at q > 3°C/min, such circumstances promote fast solidification and a rapid increase of viscos-
ity reaching the rheological cut-off at t < 6,000 s (Figures 1a and 1b) without major crystallization (Figures 1c 
and 1d). This mechanism leads to the formation of the upper crust of the lava flow (Figure 4a) that marks the 
evolution in lava tubes.

Subsequently, a detachment zone develops between the crust and the underlying lava (Figure 4a). The latter is 
subjected to progressively decreasing q (and disequilibrium conditions; Figure 3b) toward the core of the flow, 
due to the insulation produced by the external crust. Under these circumstances, analogous to those of CDE 
conducted at q < 1°C/min, the insulation allows the maintenance of high-T and low-η conditions for longer dura-
tions (Figure 1b). The result is a higher flowing ability of lava within the tunnel as observed in Tajogaite flows.

Notably, for longer timespans, experiments at q < 1°C/min also show the onset of viscous rupture. Such rheo-
logical thresholds occur at times (s) two orders of magnitude larger with respect to those necessary to reach the 
cut-off at faster q (Figures 1 and 3b). As discussed above, in this case the lower disequilibrium degree allows the 
development of a crystal-network that is the key factor responsible for the onset of rupture behavior. Importantly, 
the increase in lava viscosity and the attainment of the viscous rupture behavior is delayed, taking place further 
from the vent with the formation of autobreccia (Figure 4b) causing the pāhoehoe-‘a‘ā morphological transition 
(Cashman et al., 2006). These complex and multi-stage emplacement mechanisms characterize and enhance the 
capacity of these lavas to inundate a wider area, increasing the related volcanic hazards.

5.  Conclusions
From this study we draw the following conclusions:

1.	 �The integration of IDE and CDE permits to delineate the thermo-rheological space in which crystallization 
acts under near-equilibrium (IDE) and disequilibrium (CDE) conditions for La Palma basanitic melt;

2.	 �In CDE the degrees of disequilibrium related to the cooling rates applied affect the rheological evolution of 
the melt and its timescales, favoring different rheological response of the suspension in the experimental range 
investigated. In detail, with increasing cooling rateboth onset of crystallization and interruption of experi-
ments (i.e., attainment of the rheological cut-off or viscous rupture) occur at progressively lower temperatures 
and shorter times;

3.	 �Combining rheological data and field observations we propose that the mechanisms characterizing the 
emplacement styles of Tajogaite lavas and their timescales (channels-tubes formation in proximal zone and 
pāhoehoe-‘a‘ā transition in distal zone) are primarily controlled by the degree of cooling rate at which the 
lava is subjected.
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