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Abstract. Nowadays, deep neural networks are used for solving complex
tasks in several critical applications and protecting both their integrity
and intellectual property rights (IPR) has become of utmost importance.
To this end, we advance WaterMAS, a substitutive, white-box neural
network watermarking method that improves the trade-off among ro-
bustness, imperceptibility, and computational complexity, while making
provisions for increased data payload and security. WasterMAS inser-
tion keeps unchanged the watermarked weights while sharpening their
underlying gradient space. The robustness is thus ensured by limiting
the attack’s strength: even small alterations of the watermarked weights
would impact the model’s performance. The imperceptibility is ensured
by inserting the watermark during the training process. The relationship
among the WaterMAS data payload, imperceptibility, and robustness
properties is discussed. The secret key is represented by the positions of
the weights conveying the watermark, randomly chosen through multiple
layers of the model. The security is evaluated by investigating the case
in which an attacker would intercept the key. The experimental valida-
tions consider 5 models and 2 tasks (VGG16, ResNet18, MobileNetV3,
SwinT for CIFAR10 image classification, and DeepLabV3 for Cityscapes
image segmentation) as well as 4 types of attacks (Gaussian noise addi-
tion, pruning, fine-tuning, and quantization). The code will be released
open-source upon acceptance of the article.

Keywords: Watermarking · Neural Networks · Sharpness-aware opti-
misation · IPR.

1 Introduction

The deployment of deep neural networks became massive for both industrial
and end-user-oriented applications. Such tasks are instantiated in a wide variety
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of application domains including but not restricted to image/video classifica-
tion [24,25], object detection [41], speech recognition and synthesis [36], and
audio-visual content compression [32]. Furthermore, deep neural networks can
also serve the purposes of critical tasks, such as autonomous driving for un-
manned vehicles [7]. Coming across with the effort to make such models more
and more efficient in their tasks, the interest in protecting their intellectual prop-
erty rights (IPR) and in verifying their integrity emerged some 7 years ago. On
the one hand, these models are costly in terms of human skills and computing
resources, and protecting their intellectual rights is not only an ethical issue
but also an economic one. On the other hand, such deep models can voluntar-
ily or involuntarily be corrupted, resulting in the malfunctioning of the system.
Watermarking can be a solution in both cases.

Inherited from the multimedia realm [9], watermarking regroups a family of
methodological and applicative tools allowing for imperceptible and persistent
insertion of some metadata (watermark) into original content, according to a
secret key and under some prescribed security performances. The subsequent
watermark detection can serve various purposes among which the most relevant
for our study is IPR management, understood as the possibility of unambigu-
ously identifying semantically similar yet digitally different contents, like those
obtained after compressing or cropping a video sequence, for instance. The main
properties of watermarking are the data payload, the imperceptibility, and the
robustness. The data payload represents the quantity of information (in bits) that
can be inserted and detected for serving the targeted applicative scope (copyright
and/or integrity certification). The imperceptibility refers to the preservation of
the quality of the original content. The robustness refers to the property of re-
covering the mark even when the protected content was subjected to malicious
or mundane operations (commonly referred to as attacks). The security prop-
erty relates to the watermarking system behavior when some partial or total
information about the key is available to the attacker.

Watermarking solutions can also be designed and deployed for deep neural
networks [40,1,28]. To this end, the generic watermarking properties are recon-
sidered and extended. First, the data payload concept is kept unchanged, yet the
practice results in one-bit solutions (a binary, detected/undetected decision is
generally made). Secondly, the imperceptibility property is evaluated by compar-
ing the applicative performances of the watermarked model to the ones provided
by a watermarked model trained in similar conditions. Thirdly, the robustness
is assessed against transformations involved in the neural network life-cycle, like
pruning or quantization, for instance. Finally, the watermark could be either
retrieved from the parameters of the model (white-box methods [40,5,21,39]) or
from its inference (black-box methods [1,43]). The neural network watermark-
ing method security is not specifically studied and by default considered to be
linked to the key size (as an attempt to avoid the brute force attack) and to its
impossibility to be known by the attacker.

In this study, we introduce a new neural network watermarking method that
belongs to the white-box category. On the one hand, from the conceptual point
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of view, we establish synergies between the very concept of neural network opti-
mization and neural network watermarking. From the neural network optimiza-
tion point of view, we use the high dimensionality of models to lock a subset of
weights without impacting the final performance of the model. To this end, the
findings in [13] are leveraged for watermarking purposes, where the sharpness of
the loss landscape for the watermarked weights should be maximized. This way,
the watermark can be inserted through the entire model, without exploiting any
of its peculiarities (architecture, activation function, regularization term, etc.).
By considering now that deep neural networks are typically over-parameterized,
the watermark size can be thus significantly extended, virtually till the limit set
by the model redundancy [29,14,31]. On the other hand, from the neural network
watermarking point of view, we insert a watermark (represented as an image) in
a subset of weights. The robustness property is obtained by the inference sensi-
tivity on the watermarked weights: the force of the attacks that can be applied
on the watermarked weights is implicitly reduced by the imperceptibility prop-
erty. The same sensitivity also makes the method reach extreme security: even
assuming the attacked identifies the key, they cannot modify/erase the water-
mark without destroying the model inference quality (this a priori consideration
being experimentally proved in Table 4).

The main contributions of this study can be summarized as follows.

1. Starting from the SAM (Sharpness-Aware Minimization [13]) setup, where
the loss landscape is enforced being maximally flat, we state and solve the in-
verse problem (Sharpness-Aware Maximization - further referred to as MAS)
(Sec. 3) where the loss landscape can be made steep.

2. We define a new neural network watermarking method, referred to as Water-
MAS, that leverages the MAS principle for turning the produced inference
intrinsically sensitive to the watermarked weights (Sec. 4).

3. We carry out a comprehensive set of experiments on conventional neural
network watermarking properties (imperceptibility, robustness, and compu-
tational complexity) as well as a discussion on data payload and method
security (Sec. 5).

The paper is structured as follows. Sec. 2 starts with an analysis of the basic
concepts for neural network watermarking and exemplifies the key white-box
neural network watermarking methods: insertion methods, types of inserted in-
formation, secret key, functional properties, and different attacks. It follows by
introducing the sharpness-aware minimization grounds. The next Sec. 3 presents
the first contribution of the paper, namely the definition of the sharpness max-
imization problem and the deriving of the underlying algorithm solving this
problem. Sec. 4 presents a new neural network watermarking method based on
the findings in Sec. 3, as illustrated in Fig. 1. The experimental Sec. 5 starts by
imperceptibility evaluation against different methods of the literature, on differ-
ent tasks and architectures, then assesses the robustness, and lastly, explores the
size of information that can be inserted in a specific model and its relationship
with security aspects. Finally, Sec. 6 concludes this work and opens perspectives
for future works.
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Fig. 1: Usage of WaterMAS for sharing a watermarked neural network model,
while tracking its usage.

2 Related Works

Watermarking tools allow imperceptible and persistent insertion of some meta-
data into original content. The neural network watermarking field emerged in
2017 with the work of Uchida et al. [40], followed by Adi et al. [1] and Zhang et al. [43]
in 2018, thus establishing the earliest taxonomy: white-box vs black-box water-
marking. In the white-box case, the watermark is retrieved from the parameters
of the model while the black-box scenario corresponds to the situation where the
watermark is retrieved from the inferences of the model.

2.1 Neural network watermarking

Uchida et al. [40] is a white-box watermarking method inserting the watermark
into an arbitrarily selected layer, by using a regularization term that projects the
parameter on a space (the secret key) a binary watermark. The regularization
term is obtained by computing the binary cross-entropy between the projected
weights on the secret space and the targeted watermark. At the detection phase,
the watermarked layer is projected on the secret space to obtain the watermark.
To meet the imperceptibility criterion, the regularization term is weightily added
to the loss of the original task. The robustness is expected to be met by the
design of the term which spreads the information of the watermark within all the
weights of the layer. In other words, this method implicitly considers that thanks
to the regularization term, no matter how a modification would be applied on the
watermarked layer, the watermark will be detected as far as the inference would
not be severely downgraded. The imperceptibility is evaluated by comparing
the final accuracy of un-watermarked and watermarked models. The robustness
is assessed against fine-tuning (performed as additional training for half the
number of embedding/training epochs) and magnitude pruning (setting to zero
up to 95% of the layer). Methods with similar principles to [40] can be found
in [5,27]. For instance, in [5] the projection is done on the output of the layer
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instead of its weights. In [27], spread-transform dither modulation is considered
as the insertion side.

Tartaglione et al. [39] follows a different approach. It no longer considers a
specific layer but randomly selects a set of parameters to be watermarked. For
the insertion procedure, the pixel values of an image (watermark) are inserted
and frozen in randomly selected weights: the correspondences among the pix-
els in the watermark and the locations of the parameters are kept secret (and
represent the key). The design of this method is meant to ensure sensitive water-
marked weights: their small variation will impact the performance of the model.
During training, at each step, R replicas are created by adding noise to the wa-
termarked weights, and the loss of the R replicas is maximized, thus acting as a
regularization term. Hence, such regularization terms can be weightily added to
the loss of the original task to meet the imperceptibility criteria. The robustness
criterion is ensured by the replicas which randomly explore the loss landscape
around the watermarked weights and maximize it. During training, the water-
marked parameters are frozen and the original cost function is computed. At
the detection phase, the watermarked parameters are retrieved by looking at
their location. Note that the robustness of [39] differs from the one in [40] in
its very nature: this time, the potential force of the modifications of the wa-
termarked weights is restricted, as it would implicitly downgrade the inference
performance. The imperceptibility is evaluated by comparing the final accuracy
of un-watermarked and watermarked models, while the robustness is assessed
against fine-tuning (performed as additional training for half the number of em-
bedding/training epochs) and quantization (reducing the bits representation of
the weights).

Li et al.[26] embeds a binary watermark in the sign of the most significant
weights of a model. For the insertion procedure, the binary watermark of length
m is mapped to {−1, 1}m and modulated by a pseudo-random generator. The
selected neurons are chosen according to three pruning methods namely: network
slimming, efficient filter, and entropy. In detail, the network slimming method
selects the neurons according to the sum of their absolute parameters value,
the efficient filter method selects the neurons according to the magnitude of
the scale in the batch norm layer, and the entropy method selects the neurons
according to the entropy value of their output for a subset of inputs. Hence, each
method selects r neurons, then the final list of selected neurons is obtained by
intersecting the three obtained lists, finally, m weights are randomly selected to
carry the watermark, their position is kept secret (and represents the key). The
mark is inserted in the sign of the parameters with the highest L1-norm of the
selected neurons. After inserting the watermark the model is fine-tuned for an
additional 10 epochs without constraint on the training. At the detection phase,
the selected parameters are retrieved and their sign is recovered, modulation is
reversed to obtain the watermark. To evaluate imperceptibility the final accuracy
of watermarked and unwatermarked models is compared while the robustness is
evaluated against fine-tuning, pruning, and watermark overwriting.
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Lv et al.[33] embeds the weight of the encoder of an autoencoder model
(HufuNet) in the watermarked model. First, the HufuNet model is trained to
reconstruct images of a given dataset. For the insertion procedure, the position
of the watermarked weights is obtained by computing the hash function over
the Decoder (secret key) while the parameter values of the encoder are inserted.
During training, the model is trained according to a specific loss that constrains
the evolution of the parameter. Since the watermarked weights might evolve, in
each n epoch the watermark parameters are retrieved and the retrieved HufuNet
model is fine-tuned with a frozen decoder until reaching back performance, the
watermarked weights are inserted again, and the training of the watermarked
model resumed. At the detection phase, the watermark parameters are extracted
using the Decoder, and the reconstructed HufuNet is evaluated on its tasks. The
imperceptibility criteria is evaluated by comparing unwatermarked and water-
marked models while the robustness is evaluated against fine-tuning, transfer
learning, and pruning.

2.2 Sharpness-aware minimization

Model generalization in deep learning is a critical area of research, recurrently
addressed by the Deep Learning community [3,35]. Various advanced techniques
have been created, focusing either on adjusting the model itself [19] or on en-
hancing the dataset through augmentation [20,42]. The connection between flat
regions in the loss landscape and the underlying model generalization capability
was brought forth back already in 1995 [17] and it has been empirically studied
afterward [23,35]. Subsequently, multiple approaches leading to maximally flat
regions have been identified, in the seek for better generalization [4,34,13].

In the last few years, Sharpness-Aware Minimization (SAM) was advanced
with the goal of being both efficient and effective in enforcing flatness for the
achieved solutions, employing a local linear approximation for the loss [13]. Start-
ing from this, other variants of SAM have been proposed, achieving outstanding
results in several demanding tasks which include continual learning [11] and
federated learning [2,10].

Table 1: Table of notations.

X ∈ RN the watermark
xi a single element of the watermark
W The parameters of the model

WX ⊂ W a subset of the parameters
WX the complementary subset
L the loss of the model
∇ the gradient
η the learning rate

In our work, we are building on
top of [13] for considering the shape of
the loss landscape in an efficient way.
Specifically, we like to ensure sharp-
ness for a subset of parameters where
we embed our watermark. Unlike ap-
proaches like [39] that rely on memory
and computation-wise expensive sam-
pling process, we leverage the locally
linear approximation of the loss to al-
ready find the “worst-case” direction of the gradient in the watermarked param-
eters space.
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3 Sharpness-aware optimization

This section starts by reconsidering the SAM algorithm presented in [13] and de-
signed to flatten the loss landscape of all the weights of the model for increasing
the model generalization. Then, our algorithm for Sharpness-aware Maximiza-
tion MAS is introduced: it aims at sharpening the loss landscape of a subset of
weights which will serve in the next section 4 to carry the watermark. Notations
are introduced in Table 1.

3.1 Sharpness-aware minimization (SAM)

Fig. 2: Schematic of the param-
eter update in SAM method.

In [13], a sharpness-aware minimization opti-
mization algorithm (SAM) was advanced to
achieve model generalization by using only
two gradient computations per iteration, as
synoptically presented in Figure 2. The first
gradient is computed from all the parameters
of the model (∇WL). Then, W adv

t is obtained
by maximizing L, i.e. by following the gradi-
ent ∇WL properly scaled using ρ:

W adv
t = Wt +

ρ

∥∇WL∥2
∇WL. (1)

This way, Wt is projected to the point, on the
hypersphere of radius ρ centered to Wt, where the loss is maximal (under the
assumption the loss is locally linear, meaning that this assumption is valid for
low values of ρ). The objective of SAM is to ensure the local flatness of the loss:
by minimizing the loss at W adv, this can be successfully achieved. This gradient
is the projected to Wt:

WSAM
t+1 = Wt − η∇WLadv. (2)

Empirical results on multiple common architectures, including ResNets and
state-of-the-art image classification datasets, validate the approach and quantita-
tive analyses demonstrate an improved achieved flatness. In the next subsection,
we will build on top of this idea to enforce sharpness on a subset of parameters.

3.2 Sharpness-aware maximization (MAS)

Let us split the set of parameters W belonging to our model in two distinct sub-
sets of weights: WX , consisting of some frozen parameters to which we want to en-
force sharpness for a target loss L (while still minimizing it), and WX = W \WX .
The choice of the loss function depends on the specific problem the model is de-
signed to address, eg. cross-entropy for classification models. The objective is
thus to drive the subset of weights WX (by properly modifying WX only) to a



8 C. De Sousa Trias et al.

(a) Schematic of the parameter update in MAS.

(b) Projection in the space WX . (c) Projection in the space WX .

Fig. 3: Schematic of the parameter update in MAS method for the different loss
landscape (a) W (b) WX and (c) WX .

sharp region. We follow a three-step computation strategy, which is summarized
in Fig. 3a.

First, we solely minimize the loss L wrt. WX , by projecting Wt to an hyper-
sphere of radius ρ limitedly to the subspace WX , thus obtaining W adv

t :

W adv
t = Wt −

ρ

||∇WX
L||2

∇WX
L. (3)

This projection is represented in Fig. 3b. Note that in the space WX , the pro-
jections of Wt and of W adv

t are at the same point.
Then, we aim at maximizing the loss on W adv

t . This way, we are enforcing
that, at a given distance ρ, the loss increases when moving in the WX space.

Finally, we join the adversarial loss maximization term computed in the pre-
vious step with the traditional loss minimization on WX (as shown in Fig. 3c):

Wt+1 = Wt − η∇WX
L+ λ∇WX

Ladv. (4)

In conclusion, the model will minimize the loss of the given task while aiming
for a sharpened region of the WX ’ loss landscape. In the next section, (4) will be
leveraged for watermark insertion: the non-watermarked weights can be updated
while minimizing the loss function.
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4 WaterMAS

This section advances a new neural network watermarking method WaterMAS.
It consists of three steps: (i) selecting the parameters of the model that will
carry the watermark (note that unlike most of the white-box neural network
watermarking methods, in WaterMAS, the watermarked weights can be located
in the whole model rather than in a specific layer); (ii) inserting the watermark
in those parameters, and (iii) ensuring the trade-off between robustness and
imperceptibility through training. This section is organized as follows. First,
information related to data payload, secret information, and weight selection is
presented in Sec. 4.1. Secondly, the very training method is advanced by using
principles introduced in Sec. 3.2. Finally, the detection issues are discussed in
Sec. 4.3.

4.1 Data payload, secret information, and weight selection

WaterMAS inserts an image of size Height×Width×3 (X) obtained by shifting
the integer pixels values towards floating point xi ∈ [0, 1]. The underlying data
payload is 1-bit (image inserted or not) but the impact and the possibility of the
different image size will be discussed in Sec. 5.4. This image is to be inserted in
some model parameters that should be selected in a manner that makes them in-
distinguishable from the other parameters. To achieve this, two mechanisms will
be considered. The first mechanism consists of randomly sampling WX param-
eters to carry the watermark throughout the whole model; this way, a random
association between the i-th element of the watermark xi and the j-th parameter
of the neural network wj is established. This association serves as a secret key.
The second mechanism refers to the way in which these parameters are modi-
fied so as to carry the watermark. Assuming, as presented in [15], that all the
parameters in the model are distributed according to a Gaussian distribution
with mean µ and standard deviation σ, each inserted element of the watermark
follows the equation:

wj = 2σ(xi − 0.5) + µ ∀ wj ∈ WX (5)

4.2 Training procedure

The training procedure is designed so as to (1) keep the watermarked parameters
unchanged (so as to preserve the watermark) and (2) to maximize their sharp-
ness (so as to turn the inference very sensitive on those values). This is achieved
by using MAS introduced in Sec. 3.2 and according to the while loop of Algo-
rithm 1. The two subsets of weights are obtained after the selection and insertion
occurred (lines 1&2) and each iteration of training consists of four steps. (i) A
first gradient is computed on the model Wt. (ii) W adv

t is obtained by updating
the watermarked weights WX in the direction that minimize the loss. (iii) A
second gradient is computed on this obtained model W adv

t and maximized. (iv)
The second obtained gradient is added using a hyperparameter λ (strength of the
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Algorithm 1 WaterMAS algorithm
Require: L(the loss function) xi, yi(a pair of inputs, labels) X(the watermark)
1: Select a subset of weight to carry the watermark WX

2: Substitute the value of WX by X using a mapping function M (kept secret)
3: while Not converged do
4: for ∀xi, yi do
5: Compute gradient on the model ∇WL
6: Obtain W adv

t by only updating the watermarked weights using (3)
7: Compute gradient on the adversarial model∇WX

Ladv

8: Add the obtained gradient in 7 to the original cost function
9: Update only the non-watermarked weights according to as in (4)

10: end for
11: end while

additional terms) and applied only to the non-watermarked weights to obtain
Wt+1. Hence, the watermarked parameters do not change during the training
process while aiming to shrink the loss landscapes, making them sensitive in
inference.

4.3 Detection procedure

The extraction of the watermark is obtained by retrieving the value of the wa-
termarked weights and by inverting the association between those weights and
the inserted image. This extracted image can be compared to the inserted image
while using qualitative (human decision) or quantitative (Pearson’s correlation).
In the end, a binary decision is made (that is, whether the recovered and inserted
images are identical or not), and the data payload is 1 bit.

In this section, we have introduced a new watermarking method that inserts
a watermark by substituting the value of the weights according to secret infor-
mation only dependent on the number of elements in the watermark (Sec. 4.1).
During training, the watermark weights are frozen and the MAS term is used to
enhance the robustness of those watermarked parameters (Sec. 4.2). In the next
section, an experimental study asses the WaterMAS performances.

5 Experimental results

In this section, WaterMAS performances are experimentally assessed. The num-
ber of watermarked weights WX remains fixed for the imperceptibility and ro-
bustness sections, namely 32×32×3. We empirically set ρ = 10−2 and λ = 10−5

through a grid-search evaluated on a ResNet-18 trained on CIFAR-10. Water-
MAS is benchmarked against four state-of-the-art methods, namely [40,39,26,33],
with their reference hyperparameters; [40,39,33] codes were available while [26]
code has been implemented for the present study purposes.
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5.1 Testbed

The results are performed on 4 architectures for classification, namely ResNet18 [16],
VGG16 [22], MobileNetV3s [18], and SwinT [30] on CIFAR-10 [24], and on one
architecture for image segmentation, namely DeepLabV3 [6] on Cityscapes [8].
Note that throughout the experiments, we tried to impose reproducible condi-
tions by setting the seed; yet, the speculative execution of CUDNN often in-
troduces undesirable sources of randomness negligible to the final performance
evaluation [37]. For performance evaluation of the task, the complementary ac-
curacy (acc) (†) defined as (1− acc) is used for the classification tasks, and the
complementary mean Intersection over Union (mIoU) (‡) defined as (1−mIoU)
is used for the image segmentation task. For the robustness evaluation, 4 removal
attacks are considered:

1. Gaussian noise addition: a random noise is added to the model to impact
the watermark. Our hyperparameter S ∈ [1, 5] corresponds to the ratio be-
tween the standard deviation of the added noise to the standard deviation
of the aimed layer while both means are equal.

2. Fine-tuning: the training of the model is resumed for some additional
epochs E ∈ [1, 25].

3. Magnitude pruning: a portion P ∈ [0.1, 0.9] of neurons as set to zero
according to their L1-norm. This attack aims to compress the model.

4. Quantization: compress the model by reducing the number of bits B ∈ [2, 16]
of the floating representation of the parameters.

Finally, a discussion about the security, data payload, and computational com-
plexity is devoted in the last section presenting a cryptography attack.

5.2 Imperceptibility evaluation

Table 2: Imperceptibility evaluation. Each model has been initialized and trained
with the same hyperparameters. All experimental values are multiplied by 100.

Method CIFAR10 Cityscapes
VGG16 ResNet18 MobileNet SwinT DeepLab-v3

Unwatermarked 9.56† 15.69† 27.11† 16.28† 29.52‡

Uchida et al. [40] 9.68† 13.50† 27.16† 21.76† 36.23‡

Tartaglione et al. [39] 9.91† 12.77† 25.27† 18.47† 30.14‡

Li et al. [26] 9.63† 15.43† 25.38† 21.07† 29.84‡

Lv et al. [33] 14.80† 19.60† 33.90† ⋆ ⋆

WaterMAS 10.64† 13.58† 26.34† 21.15† 29.90‡

Imperceptibility evaluates the impact of the watermark insertion in the in-
ference. In neural network watermarking, some insertion methods act through
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the training, thus making the creation of the model intrinsically linked to the
watermark. Hence, the imperceptibility evaluation is done by comparing the re-
sults of watermarked and unwatermarked models. For all the setups, each model
has been initialized with the same seed, trained for the same number of epochs,
200, using an SGD optimizer with lr = 0.1 (except for VGG16 lr = 0.01 and
SwinT lr = 0.001), momentum= 0.9, weight decay=10 − 4, and a scheduler
which divide the learning rate by 10 after epoch 100 and 150. The objective
was not to obtain state-of-the-art accuracy but rather to show the impact of
the different methods with an identical training setup (in an end-user setup, the
hyperparameter can be fine-tuned for each setup to increase the performance of
the models). The results are displayed in Table 2 and show similar impercepti-
bility for all the methods. For Uchida’s method on two setups, namely SwinT
and DeepLab, we can observe that the regularization term has a stronger im-
pact on the performance, either positively or negatively. For Lv’s method two
configurations were not implemented (SwinT and DeepLab), as indicated by ⋆.
For VGG16, ResNet18, and MobileNet, the watermarking procedure impacts the
performance of the model, indicating that this method needs specific tuning of
hyperparameters depending on the configuration.

Table 3: Robustness evaluation of WaterMAS against four removal attacks. The
performance metric is multiplied by 100.

CIFAR10 Cityscapes
VGG16 ResNet18 MobileNet SwinT DeepLab

G
au

ss
ia

n

S=0 10.64† 13.58† 26.34† 21.15† 29.9‡

S=1 10.68† 13.66† 26.823† 21.30† 30.02‡

S=2 10.61† 13.56† 27.00† 21.13† 30.30‡

S=5 10.92† 23.29† 27.14† 21.49† 36.07‡

P
ru

ni
ng

P =1 10.66† 13.65† 26.75† 20.98† 30.02‡

P =2 10.76† 14.05† 26.97† 21.73† 65.24‡

P =5 12.08† 14.91† 44.47† 29.98† 97.35‡

P =9 87.80† 78.39† 89.89† 86.20† 99.98‡

F
in

e-
tu

ni
ng

E=0 10.64† 13.58† 26.34† 21.15† 29.9‡

E=5 9.76† 12.98† 24.88† 20.88† 28.5‡

E=10 9.73† 12.25† 25.38† 20.06† 27.77‡

E=25 9.58† 11.12† 25.43† 20.60† 27.21‡

Q
ua

nt
iz

at
io

n Q=16 10.64† 13.58† 26.34† 21.15† 29.9‡

Q=8 11.78† 14.22† 26.56† 21.63† 30.10‡

Q=4 83.89† 36.64† 35.89† 89.26† 73.22‡

Q=2 90.00† 89.52† 86.49† 89.33† 97.33‡
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5.3 Robustness evaluation

Robustness evaluates the detector’s capacity to retrieve the watermark of a wa-
termarked content that has been altered. In Table 3, the watermarked neural
network has been altered by the four attacks described in Sec. 5.1. The columns
correspond to the different setups (dataset and architecture) while the lines are
labeled by the attack parameter and provide the performance metric of the task
when the watermark has been retrieved. The Table is entirely filled since the
watermark can be retrieved even if the performance of the watermarked model
is very low (for instance, quantization for the values 2 and 4 bits).

5.4 Security, data payload and computational cost

Table 4: Impact on the performance of removing the watermark using the secret
key, depending on the number of watermarked weights. Values corresponds to
the absolute variation of the complementary accuracy multiplied by 100.

Method |Wx|(↑)
768 3072 12288 49152 196608 786432

V
G

G

Uchida et al. [40] +0 +0 -0.01 ⋆ ⋆ ⋆
Tartaglione et al. [39] +6.39 +5.15 +8.33 +7.04 ⋆ ⋆

Li et al. [26] +0 +0 +0 +0 +0 +0
Lv et al. [33] +0 +0 +0 +0 +0 +0
WaterMAS +0.34 +1.38 +4.19 +47.46 ⋆ ⋆

R
es

N
et

Uchida et al. [40] + 0 ⋆ ⋆ ⋆ ⋆ ⋆
Tartaglione et al. [39] +29.75 +24.93 +26.58 +22.15 +25.94 +25.96

Li et al. [26] +0 +0 +0 +0 +0 +0
Lv et al. [33] +0 +0 +0 +0 +0 +0
WaterMAS +0.04 +3.86 +28.49 +68.63 +68.87 +66.28

M
ob

ile
N

et

Uchida et al. [40] +0.04 ⋆ ⋆ ⋆ ⋆ ⋆
Tartaglione et al. [39] +44.57 +34.47 +38.58 +37.51 +34.47 ⋆

Li et al. [26] +0 +0 +0 +0 +0 +0
Lv et al. [33] +0 +0 +0 +0 +0 +0
WaterMAS +3.24 +10.16 +50.01 +62.57 +55.98 ⋆

Sw
in

T

Uchida et al. [40] -0.03 -0.17 -0.56 +0.04 ⋆ ⋆
Tartaglione et al. [39] +7.42 +11.16 +17.39 +25.46 +34.09 ⋆

Li et al. [26] +0 +0 +0 +0 +0 +0
Lv et al. [33] ⋆ ⋆ ⋆ ⋆ ⋆ ⋆
WaterMAS +4.21 +36.64 +51.48 +64.2 +63.45 ⋆

Let’s explore the number of watermarked weights that can convey the water-
mark. The results presented in Table 4, show the absolute variation of the per-
formance when altering the watermarking weights. The watermark is destroyed
in all scenarios while ⋆ indicates that the watermark could not even be inserted.
[40] was designed to fit the size of the inserted watermarked to the size of the
layer. Even if this adaptation is possible, the watermark can be removed with a
low impact on the performance. For [26], the identified neuron can be multiplied
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by −1 while its corresponding input channel of the next layer will also be multi-
plied by −1 resulting in an identic output value while the recovered watermark
is destroyed. For [33], the access to the HufuNet decoder allows the attacker to
fine-tune the HufuNet model to avoid watermark detection without any modifi-
cation on the watermarked model. For [39], the performances of the model are
lost when the watermark is removed. WaterMAS has a similar behavior as [39],
but it also features an inverse linear dependency between the performance and
the size of the removed watermark. This behavior opens the door for a larger
data payload to be inserted by WaterMAS: while our experimental study does
not explore this direction, the large span between the minimal and the maximal
sizes can be exploited for increasing the data payload.

Table 5: Watermark insertion computational cost: values extracted during the
training, for the same batch size and architecture. MiB - mebibyte (220 Bytes).

Method CIFAR10 Cityscapes
VGG16 ResNet18 MobileNet SwinT DeepLab-v3

Unwatermarked GPU Memory 858 MiB 502 MiB 622 MiB 1786 MiB 6861 MiB
time/epoch 12” 12” 13” 40” 4’20”

Uchida et al. [40] GPU Memory 858 MiB 502 MiB 622 MiB 1786 MiB 6877 MiB
time/epoch 27” 49” 32” 1’14” 4’25”

Tartaglione et al. [39] GPU Memory 4556 MiB 592 MiB 655 MiB 2122 MiB 7103 MiB
time/epoch 1’33” 1’36” 8’32” 10’18” 16’10”

Lv et al. [33] GPU Memory 1855 MiB 1354 MiB 736 MiB ⋆ ⋆
time/epoch 3’33” 4’06” 6’13” ⋆ ⋆

WaterMAS GPU Memory 1078 MiB 656 MiB 634 MiB 2074 MiB 7043 MiB
time/epoch 27” 19” 57” 1’54” 8’44”

In Table 5, the memory footprint and the mean time of execution per epoch
are presented for the four methods [40,39,33], the standard deviation does not
appear since it was less than 1 second. [26] does not appear in the table since
there is no constraint on the training.

6 Conclusion

With this paper, a new white-box watermarking method, referred to as Wa-
terMAS, is advanced to reach the trade-off among robustness, imperceptibility,
computational complexity, and data payload. First, by reconsidering and extend-
ing the SAM principles [13], a new regularisation term is designed for sharpen-
ing the watermarked weights landscape. This way, the strength of the attacks
that can be applied to WaterMAS is intrinsically reduced, and the robustness
is ensured. Second, the imperceptibility property is reached by tightly coupling
this regularization term with the training process. Third, the extra computa-
tional complexity required is one back-propagation step. Finally, the insertion
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occurs before training by randomly selecting a set of weights throughout the en-
tire model, irrespective of the structures of layers. Compared to state-of-the-art
methods [40,26,33], the main advantage is represented by the security, expressed
as the possibility of keeping the watermark even when the secret key is inter-
cepted, as presented in Table 4. Compared to [39,33], the main advantage is the
computational cost reduction. Beyond watermarking, MAS opens the road to
further explorations and applications of finding solutions in sharp loss minima,
which can lead to sparse neural network representations [38] or even further
exploration of properties of these minima [12].
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