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Abstract—Federated Learning has been proposed to develop
better AI systems without compromising the privacy of final
users and the legitimate interests of private companies. Initially
deployed by Google to predict text input on mobile devices,
FL has been deployed in many other industries. Since its
introduction, Federated Learning mainly exploited the inner
working of neural networks and other gradient descent-based
algorithms by either exchanging the weights of the model or the
gradients computed during learning. While this approach has
been very successful, it rules out applying FL in contexts where
other models are preferred, e.g., easier to interpret or known to
work better.

This paper proposes FL algorithms that build federated models
without relying on gradient descent-based methods. Specifically,
we leverage distributed versions of the AdaBoost algorithm
to acquire strong federated models. In contrast with previous
approaches, our proposal does not put any constraint on the
client-side learning models. We perform a large set of experiments
on ten UCI datasets, comparing the algorithms in six non-iidness
settings.

Index Terms—federated learning, cross-silo, boosting, ad-
aboost, ensemble learning

I. INTRODUCTION

Recent years have been characterized by crucial advances
in artificial intelligence and machine learning systems, by the
widespread availability of massive computational resources,
and by the availability of huge datasets. This unique conjunc-
tion of events allowed solving long-standing problems; for the
first time in history, humanity witnessed the development of
systems able to solve intellectual problems with human-level
performances and beyond [1]. The consequent deployment of
AI and ML methods throughout many industries has been
a welcome innovation that generated, nonetheless, newfound
concerns about the fairness of the results and the privacy of the
involved data. Indeed, recent legislation in, e.g., Europe [2],
United States [3] and China [4] have been enacted to
strengthen the protection of user data used by AI and ML
systems. On the other hand, companies tend to consider
collected data as competing advantages and therefore are
unwilling to share the data outside (sometimes even within
different parts of) the organization. As a result, it is often
the case that data is dispersed into many isolated islands, and
ML practitioners are forbidden by laws and by the legitimate
owners from collecting, fusing, and ultimately using the data
to improve their systems. While protecting the privacy of users
and the competing advantages of companies is arguably a fair
objective, it nonetheless hampers the development of learning
models that, by leveraging all the available data, could make

a difference in the quality of life of many people who are
subjected to the decisions made using AI systems.

Federated Learning (FL) has been proposed by McMahan et
al. [5] as a way out of this conundrum, i.e., as a way to develop
better AI systems without compromising the privacy of final
users and the legitimate interests of private companies. Initially
deployed by Google for predicting the text input on mobile
devices, FL has been now adopted by many other industries
such as mechanical engineering and health-care [6].

FL is a learning paradigm where multiple parties (clients)
collaborate in solving a machine learning task using their pri-
vate data under the coordination of an aggregator (a.k.a. server
or coordinator). Each client’s local data is not exchanged or
transferred to any participant. The learning happens in rounds
where model updates are computed by clients in insulation
using local and private data, then aggregated on the server,
then broadcast to the clients for the next round.

There are two main federated settings: cross-device and
cross-silo. In cross-device FL, the parties can be edge devices
(e.g., smart devices and laptops); they can be numerous (order
of thousands or even millions). Parties are considered not
reliable and with limited computational power. In the Cross-
silo FL setting, the involved parties are instead organizations;
the number of parties is limited, usually in the range [2, 100].
Given the nature of the parties, it can also be assumed that
communication and computation are no real bottlenecks.

Since its introduction by McMahan et al., [5] Federated
Learning mainly exploited the inner working of neural
networks and other gradient descent-based algorithms by
either exchanging the weights of the model or the gradients
computed during learning. While this approach has been
very successful, it rules out applying FL in contexts where
other models would be preferred, either because they are
more interpretable or known to work better. For instance
in the case of medical studies, it is often the case that
data comes in tabular form and examples are not numerous
and distributed among several medical centers that need
to respect hard privacy constraints. Also, medical doctors
often require to be able to interpret the inferred models. In
these situations decision trees or rule based system are often
justifiably preferred to neural networks, but they cannot be
readily applied without collecting the data in one single place
(e.g., [7]), which makes the whole process hard or impossible
to implement due to the aforementioned privacy constraints.

This paper proposes a series of cross-silo FL algorithms for
classification. These methods, which are based on ideas from
AdaBoost [8]–[10] and distributed boosting literature [11],
[12] allow gradient-free federated learning. The algorithms
pose minimal constraints on the learning settings of the clients,
thus allowing a federation of models not specifically designed
for FL, such as decision trees and SVMs. While there is
no technical barrier to using our approach in cross-device
federated learning settings, we have not conducted experiments
to clarify the issue. Our intuition is that the approach will
best work with reliable clients have many examples, and
when communication cost is not high. We, therefore, believe
that they are best suited for cross-silos settings and leave to
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future work investigating alternatives more kin to cross-device
environments.

The main contributions of this paper are:
i) we propose two new FL algorithms inspired by dis-

tributed AdaBoost literature, namely DistBoost.F
and PreWeak.F;

ii) we introduce a third algorithm (AdaBoost.F) pur-
posely developed for FL;

iii) we present a comprehensive evaluation of our solutions
on ten UCI datasets and 6 data distribution settings.

For reproducibility purposes, all the code used to perform
the experiments in this paper is available at https://github.com/
ml-unito/federation boosting.

II. RELATED WORKS

Ensemble Learning copes with the problem of strengthening
the performances of a learning algorithm by iterating it and
combining the results. Ensemble Learning is often employed
by practitioners because it requires almost no parameters and
can be used along with off-the-shelf algorithms to obtain
strong models that are usually very robust to overfitting [10].
It is not surprising then that, at the beginning of this century a
large swat of research has been devoted to the topic and that
many flavors of ensemble learning have been proposed during
those years (e.g., Bagging [13], Boosting and its variants [9],
Stacking [14], ECOC [15], etc.). In this context, the original
boosting algorithm from Schapire [16] is fundamental because
by constructively solving the weak learnability problem [16]
spawned massive interest in the field and posed the basis
for the development of AdaBoost [9], arguably the best-
known algorithm in the field. The main idea in Schapire’s
boosting algorithm [16], and hence in AdaBoost, is that by
leveraging a distribution over the examples one is able force
the weak learning algorithm to focus on specific portions
of the examples space. This can be then used to drive
down the error of the ensemble exponentially fast. AdaBoost
appears particularly interesting as a candidate tool for FL,
as it effectively combines classifiers which may be learned
independently by the FL clients. Furthermore, it could be
argued that, as long as at least one of the clients can find a
model which is slightly better than the random guess over the
complete dataset, AdaBoost should be able to drive the error
of the ensemble on the training set to its theoretical minimum
no matter other factors (such as the possible non-iidness of
the data distribution).

Most of the FL literature focuses on gradient-based methods
with very few exceptions. [17] proposes Federated Forest,
a lossless federated version of the classical Random Forest
(RF) algorithm for vertically partitioned data. In this method,
trees are built on node splits selected by the aggregator that
repeatedly asks clients for the impurity index and picks the
minimum. Federated Forest guarantees privacy preservation
mainly using features/labels’ encoding. However, label en-
coding may fail in the case of binary classification tasks. A
very different approach to learning RFs is presented in [18]
where the federation is managed using Blockchain technology
that guarantees security even against adversarial participants.

Vertical FL (VFL) is the learning setting in [19] that presents
federated algorithm for classification/regression trees based
on Multi-Party Computation [20]. The authors also describe
possible extensions of the methodology to gradient-boosting
trees and linear regression. In [21], the VFL setting is con-
sidered in the context of kernel-based methods. The authors
propose a privacy-preserving protocol to build dot-product
kernel matrices, showing the technique’s effectiveness on top-
N recommendation tasks. To the best of our knowledge, our
paper is the first to propose a federated version(s) of AdaBoost
where the (weak) classifiers can be induced by any learning
algorithm.

As briefly mentioned in the introduction, two of the al-
gorithms presented in this paper are based on a distributed
version of AdaBoost, namely DistBoost [11] and PreWeak [12]
that we will describe in Section III. In [22], a distributed
agnostic boosting algorithm is described. Differently from
AdaBoost, the method uses a non-exponential multiplicative
weight update rule that is further adjusted using the Bregman
projection. Here, we propose a federated adaptation of Ad-
aBoost, and we would argue that a similar methodology may
also apply to the approach in [22].

Boosting-based FL has been little studied in the literature.
All published works on the topic focus on gradient-boosting
trees [23], [24] and most of them are designed for vertically
partitioned data [25]–[28]. Homomorphic encryption and se-
cret sharing schemes are used to guarantee privacy, with the
only exception of [23], [25] that use a differential private
approach. The cross-silo setting is considered in both [25] and
[28] (decentralized FL).

We differentiate from these previous works because our
federated boosting algorithms can be used with any weak
learner, and our setting is horizontal FL.

III. ENSEMBLE LEARNING BASED FEDERATED LEARNING

A. Notation

This section summarizes the notation used throughout Sec-
tion III. Vectors are indicated with lowercased bold letters, e.g.,
x and, when not specified differently, they are meant to be real
column vectors. An element of a vector x (that is, a number) is
indicated with xi. We also use the notation [xi]

n
i=1 to indicate a

n-dimensional vector in which the elements are xi with i in the
range [1, n]. Given two vectors x and y, x ∥ y indicates their
concatenation and, accordingly, the notation ∥ni=1 xi denotes
the concatenation of vectors x1 . . .xn. We refer to matrices
with bold uppercased letters, like X. We use the notation JxK to
represent the indicator function, i.e., JP K = 1 if the predicate
P is true, 0 otherwise. We denote with C the number of clients,
with Xc the portion of data owned by the c-th client and with
X =

⋃
c∈{1...C} Xc the dataset that would be obtained by

joining all parties’ datasets.
In the algorithms, we will use the function

sendx(aggregator, x) (client-side) to indicate a message
that carries x sent from a client to the aggregator. On the
aggregator side, we use the function broadcastx(x) that
sends x to all clients. To each sendx(aggregator, x) or
broadcastx(x) from a sender corresponds a receivex(s) in

https://github.com/ml-unito/federation_boosting
https://github.com/ml-unito/federation_boosting
https://github.com/ml-unito/federation_boosting
https://github.com/ml-unito/federation_boosting
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the receiver, where s identifies the sender. In all expressions
involving receiving from all clients, we assume that the
underlying communication run-time asynchronusly and
non-deterministically receives one message from any client
until all messages has been received.

B. Algorithms

This section introduces DistBoost.F (Sec.III-B1),
PreWeak.F (Sec.III-B2), and AdaBoost.F (Sec.III-B3).
DistBoost.F and PreWeak.F are based on the work on
boosting algorithms DistBoost [11] and PreWeak [12]. In these
cases our main contribution is threefold: the intuition about
exploiting them to federate models, the actual adaptation of
the two algorithms to the Federated Learning settings, and
their extension to work with multiple classes. AdaBoost.F
is a novel algorithm that we developed specifically for the
federated learning settings.

Since we work in a cross-silo FL setting, we assume that
the clients are reliable and have enough computational power
as well as a stable and secure connection [29], [30]. With
these assumptions, our proposals expect a certain degree of
synchronicity between the clients and the aggregator. However,
all the proposed techniques can easily handle clients’ failure,
for instance, by using a timeout on the clients that exclude
their participation from that federated round.

In [9] Freund and Schapire formally proved that, provided
that the weak learner can induce a decision rule which is
consistently better than random guessing, AdaBoost reduces
the ensemble error over the training set exponentially fast
in the number T of the combined weak models. It is worth
emphasizing that this is the only constraint posed by the
algorithm. As shown by Freund and Schapire [8], this holds
true even when the weak learner behaves adversarially
towards the ensemble learner. While this is not relevant in
most scenarios, in the federated learning case, the weak
learners only work with a subset of the available data. In a
sense, it can be thought that malevolent learners try to make
the ensemble learner fail on the part of the data (the data they
do not own). This argument shows that, as long as at least
one client can produce a model better than random guess
over the entire dataset, a distributed version of AdaBoost,
modified to guarantee that no information about the local
dataset is exchanged, should be able to drive the ensemble
error to its minimum exponentially fast. This is the main idea
on the basis of our work.

1) DistBoost.F: DistBoost [11] was designed to run on
distributed clients who can communicate with each other. The
data is partitioned across the clients, and each of them stores a
local weight distribution. The core idea of DistBoost is that the
union of the local distributions represents a good approxima-
tion of the centralized AdaBoost’s example distribution. The
training phase of DistBoost is similar to the one of AdaBoost,
but it happens in a distributed manner. At each iteration, a new
weak hypothesis is learned from each client. Unlike AdaBoost,
the “global” weak hypothesis is the committee of all the weak
classifiers locally trained by the clients. Then, weights are

updated according to the AdaBoost update rule, and a new
iteration begins. To make this last step possible, each client
must communicate to the other clients the errors the weak
global hypothesis commits to its own local data. To simplify
and mimic the centralized FL setting, we can assume a server
acts as an intermediary. The final classifier is the weighted
sum of the (global) weak classifiers, i.e., the committee of the
weak local classifiers.

Before describing the federated adaptation of DistBoost, we
have to modify the algorithm to make it able to solve multi-
class problems. According to the SAMME algorithm [31], the
only change AdaBoost (and hence DistBoost) needs to manage
more than two classes is in the way the α terms are computed.
Specifically, the computation should be updated as it follows:

αt = log

(
1− ϵt

ϵt

)
+ log(K − 1), (1)

where t is the current iteration, αt is the weight of the weak
hypothesis ht, K is the number of classes, and ϵt is the
weighted error committed by ht.

Algorithms 1 and 2 describe the pseudo-code of the ag-
gregator and the client-side of DistBoost.F. To initiate
the federated training, the clients send to the aggregator the
size of the local training set that will be needed to compute
the weighted error (ϵt) and hence the weight of the weak
hypothesis (αt). Then, for each federated round, clients train
a weak classifier according to the current local examples’
distribution d (initially uniform) and send their current weak
classifier to the aggregator. The aggregator receives all the
weak classifiers and creates the “global” weak classifier ht⋆

(as in DistBoost) and broadcasts it to the clients. Afterward,
each client computes the local error of ht⋆ and sends it back to
the aggregator. The aggregator thus computes αt (see Eq. (1))
using the mean over all the received local errors. Finally, the
aggregator broadcasts αt to the clients that can update their
local distribution, and a new federated round can start.

Algorithm 1: DistBoost.F (aggregator)
Input: C: number of clients

T : dimension of the ensamble
K: number of classes

Output: ens(x) ≜ vote([ht⋆]
T
t=1 , [α

t]Tt=1,x)

1 for t ∈ {1 . . . T} do
2 Z ← ∥ [receiveZ(c)]

C
c=1 ∥1

3 ht ← [receiveh(c)]
C
c=1

4 ht⋆(x) ≜
∑

c h
t
c(x)

5 broadcasth(ht)

6 ϵt ← 1
Z

∑C
c=1 receiveϵ(c)

7 αt ← log
(

1−ϵt

ϵt

)
+ log(K − 1)

8 broadcastα(αt)

9 broadcaststop(stop)

2) PreWeak.F: As shown in [12], PreWeak represents,
in empirical terms, an improvement over DistBoost. However,
while the downside of PreWeak is the communication cost,
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Algorithm 2: DistBoost.F (client)
Input: A: weak learner

X ∈ Rn×m: training data
y ∈ {1, . . . ,K}n: training labels

1 d← 1
2 while not stop do
3 sendZ(aggregator, ∥d∥1)
4 h← A

(
X,y, d

∥d∥1

)
5 sendh(aggregator, h)
6 h← receiveh(aggregator)
7 ϵ←∑|h|

c=1 d
⊤Jy ̸= hc(X)K

8 sendϵ(aggregator, ϵ)
9 α⋆ ← receiveα(aggregator)

10 d← [di exp (−α⋆Jvote(h,1,xi) ̸= yiK)]
n
i=1

it could be easily shown that its federated adaptation (Pre-
Weak.F) has a communication cost that is asymptotically
not higher than DistBoost.F’s. As of DistBoost.F,
PreWeak.F is a federated adaptation of PreWeak for multi-
class problems. The adjustments to make PreWeak.F able to
handle multi-class tasks are the same as for DistBoost.F.
The main idea behind PreWeak [12] is to reduce the overfitting
of DistBoost by pre-building a large set of weak learners
that can be tested on the global distribution. So, the core
difference between DistBoost and PreWeak lies in how the
weak classifiers are learned. Specifically, PreWeak separately
learns on each client an AdaBoost classifier (i.e., the T weak
models). Then, in turn, the aggregator trains a new ensemble
using a slightly modified AdaBoost which uses as hypothesis
space the union of the sets of the weak classifiers learned by
the clients.

The adaptation of PreWeak to the federated setting is
easier than DistBoost’s. Up to the aggregator’s training phase,
PreWeak.F is the same as PreWeak (line 1 in Alg. 3 and
lines 1-2 in Alg. 4) with the addition of the broadcast of all
the weak classifiers (h+) to the clients. However, the training
on the aggregator is very different from PreWeak because the
distribution over the examples is unknown to the aggregator.
To deal with it, the aggregator must coordinate with the clients
(for loop in Algorithm 3) to recompute at each round the
error and the distribution. This coordination is carried out in
two main steps: (i) clients compute the error of all the weak
classifiers according to the current local distribution and send
them back to the aggregator; (ii) the aggregator receives the
errors, averages them and identifies the best weak classifier
(h+

j⋆). Then, the aggregator computes and broadcasts αt along
with the id of the best hypothesis (j⋆). Finally, the clients
update their local distribution, and a new federated round can
start.

3) AdaBoost.F: Algorithms 5 and 6 describe the Ada-
Boost.F algorithm which, in contrast to DistBoost.F and
PreWeak.F, is not based on a previously known distributed
AdaBoost algorithm.

The differences between these two algorithms and Ada-
Boost.F can be cast in terms of the hypothesis space they

Algorithm 3: PreWeak.F (aggregator)
Input: C: number of clients

T : dimension of the ensamble
K: number of classes

Output: ens(x) ≜ vote([hjt⋆ ]
T
t=1, [α

t]Tt=1,x)

1 h+ ← ∥Cc=1 receiveh(c) ▷ C × T classifiers list

2 broadcasth+(h+)
3 for t ∈ {1 . . . T} do
4 Z ← ∥ [receiveZ(c)]

C
c=1 ∥1

5 ϵt ← 1
Z

∑C
c=1 receiveϵ(c) ▷ C × T errors list

6 jt⋆ ← argminj ϵ
t
j

7 αt ← log

(
1−ϵt

jt⋆

ϵt
jt⋆

)
+ log(K − 1)

8 broadcastα(αt)
9 broadcastj(jt⋆)

10 broadcaststop(stop)

Algorithm 4: PreWeak.F (client)
Input: A: weak learner

X ∈ Rn×m: training data
y ∈ {1, . . . ,K}n: training labels
T : number of local models to be learned

1 h← AdaBoost(X,y,A, T ) ▷ T AdaBoost’s models

2 sendh(aggregator,h)
3 h+ ← receiveh+(aggregator)
4 d← 1
5 while not stop do
6 sendZ(aggregator, ∥d∥1)
7 ϵ←

[∑n
i=1 diJh

+
j (xi) ̸= yiK

]|h+|

j=1

8 sendϵ(aggregator, ϵ)
9 α⋆ ← receiveα(aggregator)

10 j⋆ ← receivej(aggregator)
11 d←

[
di exp

(
−α⋆Jh+

j⋆(xi) ̸= yiK
)]n

i=1

search. In the case of DistBoost.F models are the average
of weak classifiers learned on the clients. The important point
to notice is that such models will not be able to aggressively
fit the nuances of a particular dataset. It will then be likely
that they work best when the examples are uniformly dis-
tributed between clients. PreWeak.F, on the contrary, select
models from a pool of weak classifiers that AdaBoost have
aggressively fitted on the specific nuances of the local dataset.
The possible problem here is that those classifiers might be
too specific and PreWeak.F cannot find hypotheses that
do not deteriorate the overall performances. AdaBoost.F
mediates between these two extremes by allowing the clients
to learn a single model per round and keeping only the best
one. In this way, all the local weak learners always have the
information needed to optimize for the current distribution of
the weights (which is not true for PreWeak.F) and there is
no averaging of models hindering specialization on the local
data. The hypothesis space searched by AdaBoost.F should
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then contain models that are not as specific as those used
by PreWeak.F and they are also not averaged between all
clients as in the case of DistBoost.F. Which strategy is
better is likely to be situational. We investigate the behavior
of the algorithms and their trade-off in Section IV and spend
the rest of this section introducing AdaBoost.F in more
details.
AdaBoost.F requires each client c to train a classifier

based on its own Xc dataset and the current weight distribution
that each client maintains locally. The C models induced in
this way are collected into a vector h by the aggregator (line 3)
and immediately broadcast to all the clients (line 4) so to
provide them with the complete set of models learned during
the round. Then, each client computes the vector

ϵ =
[
d⊤Jy ̸= hc(X)K

]|h|
c=1

containing the weighted error committed by models in h. ϵ
vectors are then collected by the aggregator into a matrix E
and the index ct⋆ of the best model can be then computed as:

ct⋆ ← argmin
c

C∑
c′=1

Et
cc′ ,

where the summation over c′ computes each model’s weighted
error over X. Then α is calculated, and the information
needed by the clients to update their local copy of the weight
distribution is broadcast.

Algorithm 5: AdaBoost.F (aggregator)
Input: C: number of clients

T : dimension of the ensamble
K: number of classes

Output: ens(x) ≜ vote([ht⋆]Tt=1, [α
t]Tt=1,x)

1 for t ∈ {1 . . . T} do
2 Z ← ∥ [receiveZ(c)]

C
c=1 ∥1

3 ht ← [receiveh(c)]
C
c=1

4 broadcasth(ht)

5 Et ← 1
Z [receiveϵ(c)]

C
c=1 ▷ C × C errors matrix

6 ct⋆ ← argminc
∑C

c′=1 E
t
cc′

7 ϵt⋆ ←∑C
c=1 E

t
cct⋆

8 αt ← log
(

1−ϵt⋆

ϵt⋆

)
+ log(K − 1)

9 broadcastα(αt)
10 broadcastc(ct⋆)
11 broadcaststop(stop)

IV. EXPERIMENTS

A. Experimental setting

We compared our federated algorithms, namely Dist-
Boost.F, PreWeak.F, and AdaBoost.F, with the cen-
tralized algorithm SAMME [31] (multiclass AdaBoost). For
all methods, we fixed the number of weak learners (federated
rounds) T = 300. As weak learners, we employed Decision
Trees with up to 10 leaves (as in [31]). However, the proposed
algorithms are agnostic to the choice of the weak learner. The

Algorithm 6: AdaBoost.F (client)
Input: A: weak learner

X ∈ Rn×m: training data
y ∈ {1, . . . ,K}n: training labels

1 d← 1
2 while not stop do
3 sendZ(aggregator, ∥d∥1)
4 h← A

(
X,y, d

∥d∥1

)
5 sendh(aggregator, h)
6 h← receiveh(aggregator)
7 ϵ←

[
d⊤Jy ̸= hc(X)K

]|h|
c=1

8 sendϵ(aggregator, ϵ)
9 α⋆ ← receiveα(aggregator)

10 c⋆ ← receivec(aggregator)
11 d← [di exp(−α⋆Jhc⋆(xi) ̸= yiK)]

n
i=1

TABLE I: Statistics of the datasets used in the experimentation

Dataset Train Test # labels # feat.
adult 30,162 15,060 2 14
kr-vs-kp 2,557 639 2 36
forestcover 250,000 245,141 2 54
splice 2,552 638 3 61
vehicle 677 169 4 18
segmentation 209 2,099 7 19
sat 4,435 2,000 8 36
pendigits 7,494 3,498 10 16
vowel 792 198 11 27
letter 16,000 4,000 26 16

simulated federation contains 10 clients, which is a standard
choice [30] in the cross-silo setting. We assumed that all clients
correctly participated in all rounds during the simulation.

We evaluated the methods on 10 benchmark datasets from
the UCI [32] repository. The details of the datasets are
summarized in Table I.

As a way to simplify a comparison with nearby literature,
we considered datasets that are most often used in the literature
about distributed Adaboost selecting those that maximized
diversity, especially w.r.t. the number of labels and the number
of instances. To replicate the same test as in [11], we converted
forestcover into a binary classification task by keeping
only the examples of classes 1 and 2. When available, we
used UCI’s training and test division; otherwise, we randomly
split the dataset using an 80/20 training and test proportion. As
already stated, for forestcover we used the same setting as
in [11] (i.e., a 50/50 split). All datasets have been preprocessed
using the same procedure:

i) instances with missing values are removed;
ii) categorical features are one-hot encoded.

The datasets have been distributed across the clients using the
procedures described in Section IV-B.

The methods have been compared using standard classifica-
tion metrics like accuracy, precision, recall, and F1. For space
reasons, we only report the F1 score, which is the harmonic
mean of the precision and recall, and it considers how the data
is distributed.
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Each experiment has been repeated five times. The reported
results are the averages (with their standard deviation) over
these runs. The python implementation of the methods and
their evaluation is available at https://github.com/ml-unito/
federation boosting.

B. Non-iidness

All federated methods have been tested on different data
distributions across clients to test their behavior in case of
non-iidness. Besides the iid case (uniform data distribution),
we also consider the following types of non-iidness: quantity
skew, prior shift (three versions), and covariate shift [30]. In
the following, we briefly describe how we implemented them.
It is worth noticing that we guarantee that each client has at
least two examples of two different classes in every type of
skewness.
Quantity skew. In quantity skew, the size of the local

dataset varies across parties. To achieve this imbalance,
given N parties, we allocate to each party a proportion
of the examples according to the Power distribution.
Specifically, we sample p ∼ PowN (α) with shape
parameter α > 0, and we assign to client j a pj
proportion of the examples. In this way, the dimension
of each local dataset across the users follows a power-law
distribution. In the experiments, we fixed α = 4.

Label quantity skew. In this version of the prior shift,
each party owns data samples of a fixed number of
label [33]. For all datasets but letter we set to
2 the number of labels per client. For letter, we
fixed it to 3 because the dataset has more than 20 classes.

Dirichlet labels skew. This is another example of prior shift.
The label imbalance is simulated allocating to each party
a proportion of the examples according to the Dirichlet
distribution as suggested in [33]. Specifically, we sample
pk ∼ DirN (β) and allocate a pk,j proportion of the
instances of class k to party j. β is the concentration
parameter (β > 0) of the Dirichlet distribution. Values of
β → 0 led to unbalanced partitioning. In the experiments
we fixed β = 0.5 as in [33].

Pathological labels skew. This is the third example of prior
shift. According to [5], the following procedure creates
a pathological labels imbalance. First, we sort the data
by label (encoded as an integer in [1,K]). Then, we
divide the dataset into m > N shards of the same
dimension and randomly assign to each client m′ shards
s.t. m = N ×m′, where N is the number of clients As
long as m′ ≤ K, where K is the number of classes,
most clients will only have examples of m′ classes.
In the experiments we fixed m′ = 3. Note that using
m′ = 3 prevents having a skewness that is too close to
the label quantity skew.

Covariate shift. This type of non-iidness can also be called a
feature distribution skew. Here, the feature distributions

0 1 2 3 4 5 6 7 8 9
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Uniform Covariate shift Labels qty
Dirichlet Quantity Pathological

Fig. 1: Difference in F1 score (∆F1) between the local run
of SAMME and the best results with the federation on the
pendigits dataset. Results are reported for each clients and
non-iidness. The scores are the average (± standard deviation)
over 5 runs.

P (xi) vary across parties although the P (yi|xi) is the
same. To achieve this, we design the following procedure.
In turn, we take the example of a single class and
extract the first principal component (through PCA). We
divide the examples according to this component in m
percentiles that we call modes. Then, only examples from
one mode are selected uniformly at random for each user.
In this way, we try to ensure that P (yi|xi) is the same
across the clients. In [33] the same skewness has been
created, adding a different level of noise in the data of
each client. This particular procedure was not suitable for
our purposes.

C. Results

We start by investigating how beneficial are the federations
built by the proposed algorithm. To do that, we need to
evaluate the performance of a possible competitor built only
on local data. Then, for each non-iidness type, we ran the
SAMME algorithm on each client, using only the local data for
training and recording the F1 score over a fixed independent
test set.

Figure 1 and Figure 2 show, for all the clients and all the
data distributions, the difference in F1 score (∆F1) between
the local run of SAMME (local SAMME in the following)
and the best achieved by one of the federated algorithms we
described. The lower (more negative) ∆F1 is for a given point;
the more beneficial is the federation for the corresponding
client and data distribution setting.

Barring small differences in the actual numbers, the two
experiments narrate the same story. The first thing to notice
is that participating in the federation is generally beneficial to
all clients, especially in non-iid data distributions.

https://github.com/ml-unito/federation_boosting
https://github.com/ml-unito/federation_boosting
https://github.com/ml-unito/federation_boosting
https://github.com/ml-unito/federation_boosting
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Dataset Model Uniform Quantity Cov. Shift

bi
na

ry
da

ta
se

ts
adult

Samme 86.45 ± 0.13 86.45 ± 0.13 86.45 ± 0.13

DistBoost.F 84.71 ± 0.15 84.66 ± 0.39 84.64 ± 0.24

PreWeak.F 84.97 ± 0.16 85.24 ± 0.07 85.28 ± 0.04

AdaBoost.F 85.58 ± 0.06 86.01 ± 0.14 85.12 ± 0.10

forestcover

Samme 81.64 ± 0.34 81.26 ± 0.40 81.70 ± 0.28

DistBoost.F 83.27 ± 0.20 82.10 ± 0.20 76.90 ± 1.48

PreWeak.F 84.46 ± 0.18 84.09 ± 0.26 83.70 ± 0.13

AdaBoost.F 83.67 ± 0.21 83.47 ± 0.14 79.42 ± 0.60

kr-vs-kp

Samme 99.75 ± 0.21 99.75 ± 0.21 99.75 ± 0.21

DistBoost.F 98.84 ± 0.36 99.09 ± 0.49 92.94 ± 2.58

PreWeak.F 97.78 ± 0.86 96.50 ± 0.79 95.16 ± 1.31

AdaBoost.F 99.38 ± 0.29 99.41 ± 0.17 95.94 ± 0.56 Dirichlet Pathological Labels Quantity

m
ul

ti-
cl

as
s

da
ta

se
ts

splice

Samme 95.74 ± 0.63 95.74 ± 0.63 95.74 ± 0.63 95.74 ± 0.63 95.74 ± 0.63 95.74 ± 0.63

DistBoost.F 94.67 ± 0.79 93.48 ± 1.43 94.26 ± 0.45 92.92 ± 0.99 91.41 ± 5.93 93.64 ± 0.76

PreWeak.F 94.89 ± 1.03 94.64 ± 0.72 94.67 ± 0.73 94.86 ± 0.67 94.15 ± 1.02 96.08 ± 1.01

AdaBoost.F 95.61 ± 0.62 95.67 ± 0.81 94.83 ± 1.01 94.51 ± 0.95 94.17 ± 0.98 94.70 ± 0.55

vehicle

Samme 74.47 ± 1.48 74.47 ± 1.48 74.47 ± 1.48 74.47 ± 1.48 74.47 ± 1.48 74.47 ± 1.48

DistBoost.F 68.82 ± 2.53 68.94 ± 4.17 66.35 ± 5.12 66.82 ± 2.22 67.65 ± 3.72 55.76 ± 8.03

PreWeak.F 72.24 ± 3.66 72.24 ± 3.98 70.00 ± 4.83 71.88 ± 5.37 70.47 ± 4.29 68.12 ± 3.26

AdaBoost.F 72.94 ± 3.40 69.88 ± 3.82 70.82 ± 4.02 69.76 ± 3.54 68.47 ± 1.29 65.29 ± 5.38

segmentation

Samme 95.09 ± 0.20 95.09 ± 0.20 95.09 ± 0.20 95.09 ± 0.20 95.09 ± 0.20 95.09 ± 0.20

DistBoost.F 85.91 ± 1.62 85.58 ± 2.31 82.46 ± 3.20 81.20 ± 3.84 81.80 ± 2.25 54.84 ± 7.60

PreWeak.F 87.55 ± 1.28 87.60 ± 1.74 87.42 ± 1.55 86.70 ± 3.69 81.34 ± 5.54 38.70 ± 13.44

AdaBoost.F 86.07 ± 2.86 87.34 ± 2.87 85.38 ± 1.48 83.01 ± 3.69 70.36 ± 8.81 49.95 ± 10.88

sat

Samme 85.14 ± 0.34 85.14 ± 0.34 85.14 ± 0.34 85.14 ± 0.34 85.14 ± 0.34 85.14 ± 0.34

DistBoost.F 81.78 ± 1.61 81.18 ± 0.71 82.08 ± 1.76 81.39 ± 1.53 78.54 ± 5.79 48.82 ± 6.14

PreWeak.F 86.41 ± 0.69 85.26 ± 1.57 85.87 ± 0.31 85.20 ± 0.15 82.65 ± 4.97 66.61 ± 8.97

AdaBoost.F 83.52 ± 0.58 83.79 ± 1.32 82.58 ± 0.50 81.56 ± 0.90 77.01 ± 5.17 55.18 ± 7.62

pendigits

Samme 94.56 ± 0.41 94.56 ± 0.41 94.56 ± 0.41 94.56 ± 0.41 94.56 ± 0.41 94.56 ± 0.41

DistBoost.F 88.63 ± 0.78 87.80 ± 1.53 91.53 ± 1.08 89.81 ± 1.83 87.01 ± 1.21 36.70 ± 6.89

PreWeak.F 93.83 ± 0.80 93.48 ± 0.87 91.49 ± 1.17 92.62 ± 1.50 94.42 ± 0.97 46.16 ± 15.30

AdaBoost.F 93.21 ± 0.80 93.94 ± 0.54 93.88 ± 0.26 92.93 ± 0.99 89.32 ± 2.00 46.21 ± 3.87

vowel

Samme 86.16 ± 2.19 86.16 ± 2.19 86.16 ± 2.19 86.16 ± 2.19 86.16 ± 2.19 86.16 ± 2.19

DistBoost.F 74.14 ± 4.25 70.51 ± 1.70 70.71 ± 2.79 68.89 ± 4.75 56.46 ± 8.12 27.27 ± 9.77

PreWeak.F 77.88 ± 1.49 80.71 ± 1.49 78.18 ± 2.12 77.78 ± 2.05 71.62 ± 5.81 26.06 ± 10.75

AdaBoost.F 79.80 ± 1.47 80.30 ± 2.72 77.27 ± 2.88 75.15 ± 4.78 66.67 ± 6.37 31.21 ± 6.41

letter

Samme 75.33 ± 0.52 75.33 ± 0.52 75.33 ± 0.52 75.33 ± 0.52 75.33 ± 0.52 75.33 ± 0.52

DistBoost.F 62.37 ± 2.61 61.26 ± 1.79 55.75 ± 0.98 61.11 ± 1.59 46.57 ± 8.63 21.12 ± 1.78

PreWeak.F 71.46 ± 1.85 71.93 ± 1.61 70.21 ± 1.50 69.90 ± 0.45 64.34 ± 3.77 45.71 ± 3.92

AdaBoost.F 68.32 ± 1.63 69.88 ± 0.78 66.58 ± 1.37 68.20 ± 0.93 64.98 ± 4.04 54.96 ± 3.12

Avg. rank

Samme - - - - - -
PreWeak.F 1.6 1.5 1.5 1.143 1.333 1.5
DistBoost.F 2.9 2.9 2.9 3.0 2.429 2.9
AdaBoost.F 1.5 1.6 1.6 1.875 2.000 1.6

TABLE II: Summary of F1 scores at T = 300. For each dataset/non-iidness type combination the federated method with the
best F1 score is highlighted in bold. All F1 figures are multiplied by 100 for the sake of readability.

An interesting observation is that, in the quantity skew
scenario, clients with many examples (the head of the power-
law) can reach F1 scores that are even higher than the
federation. This is reasonable because those clients are close
to having all the available data; i.e., they run in a setting
similar to running SAMME over the fused dataset, that is
generally better than having to deal with the split dataset
scenario. We can also observe that the scenarios with a prior
shift (i.e., Labels Quantity, Dirichlet, and Pathological) are the
most challenging ones. This is particularly apparent for the
label quantity skew and the pathological label skew where, by
design, we assign only a small subset of labels per client. We
note that, contrary to what the figure might suggest, in absolute
terms the performances of local SAMME on the label quantity
skew case are worse than those in the pathological skew: the
corresponding points (⊗ symbols) appear upper (w.r.t. )
because the federation does not perform well in this particular
case. This is particularly apparent for the pendigits dataset
where the label quantity skew is not as detrimental to the

performances as in the letters dataset.
In the uniform data distribution case, the federation is

only slightly useful (pendigits) and slightly detrimental
(letters). These are two relatively large datasets and the
local data apparently suffices to acquire good classifiers with-
out the federation. This hypothesis is sustained by the results
on the smaller datasets. For instance, on the segmentation
dataset, the average F1 score achieved by local learning on
the clients in the uniform distribution scenario is 0.7763,
which is significantly worse than 0.8755 F1 score achieved
by PreWeak.F in the same settings.

Table II provides all the average F1 scores (± standard
deviation) for all methods, datasets, and skewness. Overall,
the performance of PreWeak.F and AdaBoost.F are sig-
nificantly better than DistBoost.F. We can observe that, in
general, the federation tends to achieve F1 scores very close
to the centralized SAMME on datasets with few labels (e.g.,
2 and 3), even in non-iid settings. Clearly, as the number
of classes increases, the prior shift scenario becomes more
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Fig. 2: Difference in F1 score (∆F1) between the local run
of SAMME and the best results with the federation on the
letters dataset. Results are reported for each clients and
non-iidness. The scores are the average (± standard deviation)
over 5 runs.

and more challenging. The Labels Quantity skew is the most
demanding setting because each client only has two labels.
Thus, their weak classifiers are not good enough to be boosted
effectively.

As it is evident from the average rank (bottom of Table II),
PreWeak.F is the best performing algorithm; still, Ada-
Boost.F seems to achieve comparable results in most cases,
especially in the iid (i.e., uniform) setting. However, in some
experiments, PreWeak.F showed an inconsistent behaviour,
as shown in the second row and second column of Figure 3.
We conjecture that this is a form of overfitting due to the strong
drive of PreWeak.F in reducing the training error, which is
itself a consequence of the over-specialization of the locally-
learned classifiers. In fact, sometimes (e.g., in the adult
case), we observed that the F1 score of PreWeak.F is much
higher on the training set (plot not shown due to space reasons)
than on the test set, showing apparent symptoms of overfitting.
In this case, however (i.e., on kr-vs-kp), this was not the
case as the bad curve observed in the plot is also observable on
the training set. Nonetheless, we argue that it is still overfitting
but of a more subtle kind: the weak classifiers overfit the local
data but they continue to do reasonably well until they are
combined in a sufficient number. Then the adaptation forced
by AdaBoost actually hurts the ensemble. This behavior can
happen with all the algorithms we presented. For instance,
something similar is happening with DistBoost.F as shown
in Figure 4 row 1, column 2, and can also be observed for
AdaBoost.F (not reported here). However, we noticed this
phenomenon more frequently with PreWeak.F.

In Figure 4 we report the results on two multi-class datasets,
namely the dataset with the highest number of labels in our
pool, i.e., letter, and (sat). Some of the same considera-
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Fig. 3: Average F1-score curves on two binary classification
datasets for all data distributions with t ∈ [1, 300]. The shady
area is the standard deviation. Each colored curve represents a
method: Samme (blue), AdaBoost.F (green), PreWeak.F
(orange) and DistBoost.F (red).

tions made for the case of binary datasets holds here as well.
We still see DistBoost.F not performing as well as the
other approaches. The other two approaches have similar re-
sults with a slight edge in favor of PreWeak.F. On letter
(left column) PreWeak.F and AdaBoost.F have very
similar performances in the first 5 skewness configurations
and a slight edge of AdaBoost.F in the last one. On sat,
on the other hand, PreWeak.F is often the leading algorithm
even outperforming the centralized SAMME implementation
as shown in the top right panel. In the rest of the right panels
AdaBoost.F does not perform as well as PreWeak.F, but
usually still better than DistBoost.F.

Overall, we believe that the evidence presented here is
enough to conclude that the approach is beneficial and that
DistBoost.F is not performing as well as the other two
algorithms. There is evidence, albeit not conclusive, that Pre-
Weak.F outperforms AdaBoost.F in terms of performances
and that PreWeak.F might suffer more than AdaBoost.F
from overfitting problems.

V. CONCLUSIONS

The possibility of applying federated learning beyond
gradient-based methods may broaden the adaptation of this
methodology. In this paper, we exploit ideas from dis-
tributed boosting literature to propose three algorithms Dist-
Boost.F, PreWeak.F, and AdaBoost.F, which allow, for
the first time ever, the federation of parties without putting
constraints on the type of models learned in the clients. Indeed,
to the best of our knowledge, our proposal is also the first to
allow each client to choose a different local model.
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Fig. 4: Average F1-score curves on two multi-class datasets for
all data distributions with t ∈ [1, 300]. The shady area is the
standard deviation. Each colored curve represents a method:
Samme (blue), AdaBoost.F (green), PreWeak.F (orange)
and DistBoost.F (red).

Our experiments show that the federation works. The gen-
eralization error of the federation is driven down by the three
algorithms and, except in trivial cases, the federated model
largely outperforms the models that could have been learned
locally. Experiments also show that non-iid data distributions
can harm the quality of the federated model. Specifically, when
an extreme skew on the labels is present, the federation might
suffer, especially when the problem is multi-class and the
number of possible labels is large. We leave as future work
a comparison between our approach and traditional (gradient-
based) federated algorithms. The comparison would also allow

us to assess how much the problems we observed in some
non-iid settings are specific to our methodology.

Among the algorithms we proposed, PreWeak.F has the
best performance in terms of F1 and should then be preferred
in many cases. It is worth mentioning, however, that Ada-
Boost.F has some characteristics that might prove beneficial
in some scenarios. In fact, in our experience, PreWeak.F
seems less “stable” than AdaBoost.F. Also, AdaBoost.F
is more flexible for what it concerns the number of learned
weak classifiers, and it would then be easier and quicker to
validate. For instance, one can early stop a validation round
when using AdaBoost.F, thus saving computational time.
In contrast, early stopping PreWeak.F is less beneficial
since each client must run the complete AdaBoost algorithm
independently.

This work opens the doors to many possible future di-
rections. We aim to perform an in-depth analysis of these
algorithms’ security and privacy aspects in our future work. As
mentioned, we would like to compare their behavior against
gradient-based alternatives. Finally, we plan to deploy them in
an actual federated environment (i.e., not simulated) to assess
their performances from the point of view of memory, network,
and CPU requirements.
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