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Abstract
The mathematical modelling of a real-life phenomenon is an elaborated activity, and it often
requires complex forms of covariational reasoning, such as second-order covariation. This
study aims to characterize how students use several forms of covariational reasoning when
modelling a real-life phenomenon. To achieve this research goal, it is proposed the analysis of
a teaching experiment conducted in an 11th-grade classroom and focused on the mathemat-
ical modelling of the relationship between three quantities, temperature, absolute humidity,
and relative humidity, which is mathematically represented in the psychrometric chart. The
qualitative analysis was focused on covariational reasoning and the students’ processes of
mathematical modelling of the real-life phenomenon under investigation. Findings from five
representative episodes showed an interlacing of several forms of covariational reasoning,
the emergence of qualitative, quantitative, and global characterizations of covariational rea-
soning, and three different roles of covariation throughout the various steps of the modelling
activities. From an educational point of view, the modelling activities described here offer
practical insights for the design of activities aimed at promoting the modelling of real-life
phenomena through a covariational approach.

Keywords Covariation · Second-order covariation ·Multivariation ·Modelling · Digital
tools · Representations

1 Introduction

In Mathematics Education the mathematical modelling competence is intended as a lens
onto the real world (Niss and Højgaard 2019). The PISA framework clearly remarks that
“[b]eing more literate about change and relationships involves understanding fundamental
types of change and recognizing when they occur in order to use suitable mathematical
models to describe and predict change” (OECD-PISA 2022, p. 24). Recent studies have
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touched on how reasoning covariationally, namely envisioning how variables can change in
tandem with each other (Thompson and Carlson 2017), can support the development of a
conceptual understanding of scientific phenomena (Gonzalez 2019; Panorkou and Germia
2021; Rodriguez et al. 2019). Even if in the PISA framework there are no explicit references
to covariational reasoning, it seems the suitable form ofmathematical reasoning tomodel “the
change and the relationships with appropriate functions and equations, as well as creating,
interpreting and translating among symbolic and graphical representations of relationships”
(OECD-PISA 2022, p. 24).

Numerous studies have investigated the potentialities of several digital tools to support
covariational reasoning such as dynamic geometry environments (Ellis et al. 2016; Hegedus
and Otálora 2023; Johnson et al. 2017) and augmented reality technology (Levy et al. 2020;
Swidan et al. 2019). Such kind of environments may support the conceptualization of the
dynamic aspects involved in tasks of mathematical modelling by enabling one to explore the
continuous dynamic features of a real phenomenon and in some learning environments also
by bringing such features together with themathematical representations of the phenomenon.

However, the mathematical modelling of a real-life phenomenon is a complex activity:
“The natural and designed worlds display a multitude of temporary and permanent relation-
ships among objects and circumstances, where changes occur within systems of interrelated
objects or in circumstances where the elements influence one another” (OECD-PISA 2022,
p. 24). Therefore, reasoning about such real-life situationsmay require a cognitive effortmore
demanding than the one described in the covariational reasoning framework. On the one hand,
such real-life contexts often include more than two quantities at stake: for instance, Panorkou
and Germia (2021) analysed the case of Earth’s gravitational force F = G m1×m2

d , and in
this case, several researchers adopt the term multivariation, an extended framework whose
conceptual and empirical validation is in progress (Jones 2022). On the other hand, other
researchers have observed that in a process of mathematical modelling of classes of real-life
phenomena, it may also be important to consider how the characteristic quantities affect the
behaviour of the phenomenon itself. Arzarello (2019) started referring to this construct as
second-order covariation, and it has been lately defined as the ability to envision a family of
invariant relations and its characteristic parameters varying simultaneously (Bagossi 2022).
The chosen term is in line with the terminology used by Bloedy-Vinner (2001) who calls
“second order functions” those functions whose inputs are parameters and the outputs are
corresponding parametric equations or functions. Referring to the gravitational force pre-
viously recalled, if we consider m2 as fixed, an example of covariational reasoning at the
second-order would be considering how the distance d between the two masses affects the
gravitational force-mass relationship F = fd (m1). Investigating students’ covariational rea-
soning, especially the second-order one, in the modelling of real-life phenomena is a line of
research that has already been initiated in the literature and some preliminary results have
been discussed (Bagossi 2021, 2022).

The design principles underlying digital learning environment supporting second-order
covariation have been explored only recently and in a few studies. For instance, Hoffkamp
(2011) analysed the design features of some applets created with an interactive geometry
software prompting what she calls metavariation, a form of variation leading to a qualitative
and global view of functional dependency. Such task design allowed the visualization of
the dynamic aspect of functional dependencies simultaneously in different representations.
Bagossi and Swidan (accepted) instead have investigated the learning of second-order covari-
ation in the conceptualization of the motion of a ball rolling along an inclined plane both
using GeoGebra and augmented reality. In both the learning environments, students covaried
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the angle of inclination of the plane and the distance-time graph elaborating on a qualitative
description and making explicit the direction of change of both the quantity and the graph.

The aim of this study is to characterize how students use several forms of mathematical
reasoning, first-and second-order covariational reasoning, and multivariational reasoning,
when they engage in modelling activities of a real-life phenomenon, and how these forms of
mathematical reasoning interlace with and support the conceptualization process. To pursue
this goal, we qualitatively analysed data from a teaching experiment on the conceptualiza-
tion of the relationship between three quantities, temperature, absolute humidity, and relative
humidity, which may allow learners to understand, for instance, the phenomena of conden-
sation and evaporation. This study contributes to the literature investigating the relevance of
covariational reasoning in activities of mathematical modelling with a deeper focus on the
forms of covariation involved and the nature of the modelling processes. Indeed, findings
highlight various characterizations and three different roles of covariational reasoning in the
modelling processes; the role of real and mathematical representations, especially the ones
supported by digital tools, in the various steps of the teaching experiment was also an ele-
ment of discussion. Moreover, the activities described here can provide useful insights for
the design of educational activities aimed at promoting modelling of real-life phenomena
through a covariational approach.

2 Theoretical framework

2.1 Mathematical modelling

In Mathematics Education, modelling is intended as “the process of translating between the
real world and mathematics in both directions” (Blum and Ferri 2009, p. 45). Mathematical
models represent an ideal conceptualization of a real-life or scientific phenomenon; they are
formulated in a mathematical language and make use of a wide variety of mathematical tools
and results (Niss andHøjgaard 2019). Hence, given the diversity of factors at play, mathemat-
ical modelling is a complex activity. As contained in the definition itself, the modelling cycle
mainly consists of interactions (Fig. 1). The connections from the real world to the math-
ematical world can be described through two main processes: mathematising and applying
(Yoon et al. 2010). Mathematising consists of interpreting a real context mathematically; it
describes a process from the real world to the mathematical one. Applying instead consists
of using mathematical knowledge for the creation of a mathematical model, having so the
chance to experience mathematics can be practical. Naturally, there is also a process from
the maths world to the real one which enables one to interpret the mathematical results in the
real world: in this study, we will refer to this process as interpreting.

The process of modelling is necessarily characterized by removing noise, meaning clear-
ing all those disturbing elements that couldmake it challenging tomove from the real situation
to a mathematical model. Therefore, a mathematical model may be considered a conceptual-
ization that is an approximation or an intentional simplification of the analysed phenomenon.
Research suggests that digital tools can act as a bridge between the real world and the math-
ematics (Galbraith and Stillman 2006). Digital tools should not be intended only as means to
complete computational tasks, but they can fulfil several purposes such as finding informa-
tion, formulating equations, or visualizing solutions (Kaiser and Schukajlow 2022). Indeed,
digital resources can provide different representations of the phenomenon itself which can
introduce new learning opportunities (Doerr and Pratt 2008).
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Fig. 1 A simplified version of the modelling cycle

Moreover, several studies discuss the potentialities of technological tools such as dynamic
geometry software or graphic calculator to visualize the simultaneous change in quantities
(Arzarello 2019; Ellis et al. 2016; Hoffkamp 2011; Johnson 2013; Swidan et al. 2022).
They can “offer students opportunity for direct and dynamic manipulation of quantities and a
prompt to explore their coordinated and smooth change” (Panorkou andGermia 2021, p. 323).
Indeed, conceptualizing a mathematical situation requires elaborating on which quantities
are varying, how they are varying simultaneously with the other quantities, i.e., how they are
co-varying, and also how the involved quantities influence the situation itself. Hence, various
forms of covariational reasoning can emerge in these modelling activities, and they should
be suitably framed.

2.2 An extended framework for covariational reasoning

In this study, we will adopt the enlarged perspective on covariational reasoning preliminary
introduced by Arzarello (2019) and then further elaborated by Bagossi (2022). Covariational
reasoning should be intended as a form of mathematical reasoning with a larger epistemo-
logical and cognitive value, meaning as the ability to suitably envision relationships between
two mathematical objects. This framework provides for the existence of various orders of
covariation connoted by specific mathematical objects and their mutual relations and levels
descriptive of a person’s capacity to reason covariationally (Thompson and Carlson 2017).
In the following, we will introduce in detail first-and second-order covariation and multivari-
ation.

Covariational reasoning is defined as the ability to envision how two quantities’ values
vary simultaneously (Carlson et al. 2002). Elaborating on previous and well-consolidated
research findings, Thompson and Carlson (2017) have proposed a taxonomy of five cog-
nitive levels that should be intended as descriptive levels of a person’s capacity to reason
covariationally. These levels can be briefly summarized as follows: precoordination of val-
ues means envisioning a simultaneous change in the two quantities, gross coordination is
envisioning the direction of change of the two quantities expressed as an increase/decrease
relationship, coordination of values means establishing a relation between the two quanti-
ties’ values, chunky continuous covariation means envisioning values changing in discrete
chunks, and eventually, smooth continuous covariation refers to continuous and simultane-
ous changes in the two quantities. As the labels of the levels communicate, it is only at the
last two levels of this framework that students really show forms of covariational reasoning.
First-order covariational reasoning has its roots in quantitative reasoning (Thompson 2011),
and empirical findings support its relevance for a solid understanding of many mathematical
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concepts such as functions, proportion, rate of change, and limits (Thompson et al. 2017).
Moreover, covariation is crucial in activities of mathematical modelling because “the oper-
ations that compose covariational reasoning are the very operations that enable one to see
invariant relationships among quantities in dynamic situations” (Thompson 2011, p. 46), and
so it reveals essential for entering into the steps of the mathematical modelling process. In
order to distinguish this form of covariational reasoning between two quantities from other
covariational constructs, in this enlarged framework it is referred to as first-order covariation
(COV 1).

A more recent theoretical construct is that of second-order covariational reasoning (COV
2), defined as the ability to envision a family of invariant relations and its characteristic param-
eters varying simultaneously (Arzarello 2019; Bagossi 2022). Only some findings about a
characterization of COV 2 have been presented in the literature. Data from learning experi-
ments with high school students revealed the emergence of both qualitative and quantitative
forms of COV 2 (Bagossi 2021, 2022). Moreover, Swidan and colleagues (2022) identi-
fied the existence of a transitional phase from COV 1 and COV 2 in students’ reasoning in
which the idea of parameter appears, also in intuitive ways, introducing an idea of motion.
Moreover, the conceptualization of COV 2, starting from that of COV 1, has also been char-
acterized within the framework of category theory, interpreting the various epistemic steps
through categorical tools (Asenova et al. accepted). Given its features and these initial results,
second-order covariational reasoning seems to be relevant for the conceptualization of classes
of real-life phenomena, parametric functions, and parametric equations.

Eventually, Jones (2022) elaborated on the construct of multivariation to better frame
those forms of mathematical reasoning where more than two quantities are involved. Jones
engaged in a conceptual analysis describing distinct theoretical multivariation structures and
then investigated students’mental actions in reasoning aboutmultivariation showing that they
are connected to covariational reasoning but also newmental actions are used by the students.
We will not go into the details of the rich findings presented by Jones (2022) because they go
beyond the purpose of this paper. But concluding, we remark that the importance of studying
multivariation was motivated by the several mathematical and scientific contexts that include
more than two variables related to each other: just to mention some, physics laws, fractions,
trigonometric relations, function composition, integral functions, multivariable functions,
parametric equations, and differential equations.

Taking into account the importance of covariational reasoning formathematicalmodelling,
this study aims to explore the connection between the emerging forms of covariational rea-
soning, not only COV 1, and the various processes involved in an activity of mathematical
modelling. Hence, the research question guiding this study can be formulated as: How do
students reason covariationally when engaging in real-life phenomena modelling activities?

2.3 The psychrometric diagram

The real phenomenon investigated in this study is the relationship between temperature,
absolute humidity, the quantity of water vapour contained in a unit volume of air, and relative
humidity. We briefly recall that air cannot contain an unlimited amount of water vapour; once
it has reached its maximum amount possible, it becomes saturated. However, the saturation
limit varies with temperature: the higher the temperature, the more vapour can be contained
in a given volume of air.

The relative humidity is exactly the ratio between absolute humidity and its saturation limit,
at a given temperature, expressed as a percentage. For example, 1 kg of air at a temperature
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of 20 °C can contain at most 14.7 g of water vapour; therefore, the mixture consisting of 1
kg of dry air and 14.7 g of water vapour at a temperature of 20 °C has a relative humidity
of 100 % . At the same temperature, if in 1 kg of dry air, there was 7.35 g of water vapour
(i.e., half of the maximum possible quantity at that temperature), the mixture would have a
relative humidity of 50 % . The thermodynamic conditions of condensation are called dew
point.

The relationship between the three quantities previously introduced is mathematically
represented in a chart called psychrometric orCarrier diagram, a graph of the thermodynamic
parameters ofmoist air at constant pressure, typically registered at sea level (Fig. 2). The chart
may containmany thermodynamic parameters, but in the following,wewill just focus on three
main quantities: temperature (abscissa), absolute humidity (ordinate), and relative humidity
(parameter). The mathematical relation between temperature and absolute humidity is given
by an exponential-like function, and each of the green curves shown in Fig. 2 corresponds to
a different value of the percentage of relative humidity.

3 Method

The teaching experiment (Steffe and Thompson 2000) described here is part of a wider
research project investigating high school students’ covariational reasoning. This teaching
experiment was conducted in a hybrid modality at the beginning of the 2020–2021 school
year in an 11th-grade class of a scientific-oriented high school in Italy. As alreadymentioned,
the activities were focused on the conceptualization of the relationship between absolute
humidity, relative humidity, and temperature described in the psychrometric diagram.

Reading and interpreting the psychrometric chart require several forms of covariational
reasoning to appreciate the mutual relationships between the three quantities involved: rea-
soning at the first-order means being able to envision how absolute humidity and temperature
are covarying, reasoning at the second-order means being able to elaborate on how rela-
tive humidity, i.e., the characteristic parameter, affects the family of exponential curves,

Fig. 2 An example of psychrometric diagram1

1Retrievable from: https:// www.edilportale.com/speciali/Climatizzazione/ARIA_UMIDA_01.asp?v= cl.
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while multi-varying the three quantities enables to envision their simultaneous changes.
The teaching experiment in its entirety had three main aims: investigating the relationship
between humidity and temperature, reading and interpreting the psychrometric chart in order
to explain a real-life phenomenon like condensation, and distinguishing the role of variables
and parameters in reading charts.

3.1 Participants

The 11th-grade classroom involved was made up of 22 students. Due to their previous studies
in mathematics, students had mastery in identifying functions based on finite differences;
students were used to working with digital tools and in particular with GeoGebra applets. By
the time of this teaching experiment, students had not yet studied the exponential function;
it was introduced formally after the teaching experiment. The notions of science required to
investigate the relationship between temperature and humidity had already been studied by
students during the previous school year, but a general review of these concepts was planned
as an integral part of the activities during the design phase of the teaching experiment.
Moreover, it is relevant to mention that in the previous school year, students were engaged
in a teaching experiment on the conceptualization of the law of the motion of a ball rolling
along an inclined plane (Bagossi 2021) increasing their mastery of working with functions
and reasoning covariationally. Even during this activity, students used several representations,
and in the end, they performed the real experiment in the physics laboratory.

3.2 Design of the teaching experiment

This teaching experiment was conducted during the period of the Coronavirus pandemic,
hence it was held in a hybrid modality: partially in-presence and partially online through the
Google Meet platform. The teaching experiment consisted of six main phases during which
working group sessions were followed by classroom discussions. The activities proposed in
each of the phases are described in detail in the following.

Phase 1 As homework, students were assigned the reading of a newspaper article dealing
with the topic of hot temperatures in summer. After the reading, students were asked if
they had ever heard of relative humidity and perceived temperature and wrote their answers
on the Google Classroom platform of the Math course. After the such activity, the teacher
initiated an in-presence classroom discussion on the answers provided: they reflected on
the definitions of those terms, and some concrete examples referring to those notions were
mentioned (e.g., condensation on the can, the steam on the mirror after the shower, sweating
system of the human body). After that, the teacher displayed on the interactive whiteboard
a GeoGebra file (Fig. 3) in which a table contained the values of temperature and relative
humidity collected during a sunny day at regular intervals of time. Two graphs in a Cartesian
plane represented those same sets of data with respect to time. The teacher explained how the
data were collected and represented; in particular, since the magnitudes represented on the
x- and y-axis have different units of measure, some suitable translations and dilatations were
introduced to make them more readable and comparable. At the end of this phase, students
were assigned as homework to elaborate on a possible relationship between temperature and
relative humidity. Students uploaded their answers on the Classroom platform.
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Fig. 3 GeoGebra applet interface showing the collected values of temperature versus time (red curve) and
values of relative humidity versus time (blue curve) (color figure online)

Phase 2 The teacher led a classroom discussion commenting on students’ answers to the
homework assigned at the end of phase 1. After the discussion, the teacher made an exper-
iment with her students (Fig. 4a): given a metal pot full of water at room temperature, they
gradually added some cubes of ice; they regularly registered on the blackboard elapsed time
and the getting lower temperature in the pot (Fig. 4b).When the outer surface of the pot started
fogging, they registered that temperature corresponding to the dew point, i.e., the thermody-
namic conditions of condensation. Then students replicated the experiment on their own as
a homework activity.

Phase 3 Students faced a working group session of one-hour on Google Meet divided into
five groups. They worked on a worksheet that, starting from the data collected during the
pot experiment, asked for a possible relation between the initial room temperature and the
dew point temperature. Then students were guided through the reading of a real psychro-
metric chart (Fig. 2) reported in their worksheets. Subsequently, using a GeoGebra applet
reproducing the chart (Fig. 5), students were asked to find the coordinates of the point of
intersections between the several green curves (corresponding to a different percentage of

Fig. 4 a Reproduction of the pot experiment; b Data registered during the pot experiment and written on the
blackboard
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Fig. 5 GeoGebra applet simulating a psychrometric chart

relative humidity) and the horizontal line y = yDEW POINT. The GeoGebra applet contained
two sliders (top left in Fig. 5), one associated with relative humidity enabling one to move
between the green curves, and the other associated with the value of temperature. Finally,
students were asked again about a possible relationship between temperature and humidity.
This task was followed by one-hour in-presence discussion led by the teacher during which
students retraced the steps of the pot experiment on the psychrometric diagram.

Phase 4 Students were assigned the following task as homework: “What do you think will
be the trend of the graph that represents the values of relative humidity as a function of
temperature? Try to trace (freehand or with GeoGebra, you choose) a likely chart justifying
your choices adequately.” Students uploaded theirworks on theClassroomplatform. Then the
teacher devoted half an hour to an in-presence classroom discussion in which she commented
on students’ answers: she showed on the interactive whiteboard the various answers provided
by the students underlining, in particular, the different approaches in drawing the graph and
asking them to motivate their choices.

Phase 5 Students, divided into small groups, worked on a new GeoGebra applet (Fig. 6),
showing the relationship between relative humidity, on the y-axis, and temperature, on the
x-axis. A few questions guided students in observing which magnitudes were represented in
the new reference system (Fig. 6) with respect to the old one (Fig. 5). Then students were
provided with a worksheet with a table recalling each step of the pot experiment, which
magnitudes varied and how, and how each step of the experiment could be represented on
the Carrier diagram. The result was a cycle on the chart. Finally, work groups were asked to
reproduce the same cycle in the new reference system. At the end of the phase, the groups
gave their worksheets to the teacher.

Phase 6 This phase consisted of a one-hour classroom discussion during which the teacher
first discussed students’ answers to the previous task and then directed students’ attention
toward the idea that the two graphical representations, contained in the twoGeoGebra applets
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Fig. 6 The interface of theGeoGebra applet showing the relationship between relative humidity and temperature

Fig. 7 The interface of the GeoGebra applet showing both diagrams simultaneously, side by side

(Figs. 5, 6), describe the same physical situation from two different mathematical points of
view. Eventually, the teacher showed on the interactive whiteboard a new GeoGebra applet
(Fig. 7) in which the two representations were displayed side by side.

3.3 Data collection and data analysis

All the activities were recorded through the recording function offered by the Meet platform
and, the teacher also positioned by herself some devices within the classroom to record the
classroom activities. All the written documents produced by the students were collected and
shared on the Google Classroom platform.
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The videos of all the activities were watched, and students’ written protocols were read
in order to identify episodes revealing forms of covariation. Then those episodes were
transcribed, translated into English, and analysed with a three-level analysis: on the first
level, emerging orders and levels of covariational reasoning were classified according to
the enlarged theoretical framework of covariation by describing the mathematical objects
involved and the specific features of the representations that prompted covariational rea-
soning. On the second level, the same episodes were analysed by identifying processes
of mathematising, applying, and interpreting. For example, when students elaborated on a
mathematical representation of the phenomenon that could be expressed in different registers,
graphical, symbolic, or verbal, it was coded as mathematising. When students appealed to
their mathematical knowledge for the elaboration of the model (well-known types of func-
tions, their properties, reading and interpretation of graphs, or the use of digital tools), it
was coded as applying. Students’ ability to explain the mathematical model in light of the
phenomenon itself was instead coded as interpreting the mathematical results. Eventually, in
the third level of analysis, an overall interpretation of the episodes was elaborated by focus-
ing on the various forms of covariational reasoning and their relevance within the modelling
activities, which is the main theoretical contribution of this study.

4 Results

In this section, we will present the analysis of five representative episodes: Episode 1 refers
to a selection of students’ written protocols of the task administered during phase 1, episode
2 is an excerpt of the collective discussion during phase 3, episode 3 is from the discussion in
phase 4, and the other two episodes are from the discussion during phase 6. The lines of the
various episodes are progressively numbered. The teacher is denoted with T and the students
as Si (e.g., S1 = Student 1).

4.1 Episode 1: COV 1 (gross coordination of values)

Eighteen students (over 22) uploaded on the Classroom platform their answers to the task
administered at the end of phase 1: they were asked to describe the relationship between
temperature and relative humidity presented in Fig. 3. All the students replied that there is
a link or a relationship between temperature and relative humidity even if some of them
specified that the relation “varies according to different factors” [1 - S11] or again that they
“are not totally connected to each other because evenwith different temperatures the humidity
is equal” [2 - S4]. In Table 1 some representative students’ answers are collected. We can
observe that despite the numerical values provided by the GeoGebra file, only in [5] we can
see an explicit reference to them, while the students mainly elaborated on the temperature-
relative humidity relationship in qualitative terms using increase/grows/decrease expressions
to describe the direction of change of the two quantities [3-4-6-9]: hence, these forms of
covariational reasoning were classified as COV 1 - gross coordination of values. Only a few
students tried to describe this relationship globally speaking of inverse proportionality [6]
or using a colloquial language, i.e., the two graphs “seem almost mirrored” [7]. Eventually,
a few students motivated that relationship with a physical interpretation. Indeed, they refer
to the process of evaporation of the water vapour, “when it is warmer the water tends to
evaporate more and the air, consequently, to get drier” [8] or “[a]s the temperature increases,
the water vapour particles will decrease” [9].
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Table 1 Selection of students’ answers to Task 1

Number line and Student Answer to Task 1

[3 – S21] When the temperature decreases, the relative humidity increases and vice versa

[4 – S4] If the temperature increases, the humidity decreases, while if the temperature
decreases, the humidity increases

[5 – S1] The piecewise line representing the temperature [red] initially has rather low
values, while the blue one [relative humidity] has higher values. Then the
piecewise red line begins to grow while the other begins to decrease

[6 – S19] The data, in the two open piecewise lines, are approximately inversely
proportional, when one grows, the other decreases and vice versa

[7 – S15] The two graphs, after they have been modified to facilitate the reading, seem
almost mirrored, that is with the increase of the temperature the relative
humidity decreases, and at 17. 2°, the minimum temperature recorded, the
highest is relative humidity

[8 – S12] When the temperature drops, the relative humidity tends to rise and vice versa.
This fact has, in my opinion, a simple physical explanation: when it is
warmer the water tends to evaporate more and the air, consequently, to get
drier; when the temperature is lower, the water vapour present in the air
tends not to rise, and the air is consequently wetter

[9 – S16] As the temperature increases, the water vapour particles will decrease and,
conversely, as the temperature decreases, they will be present in the air in
greater quantity

Answers from 3 to 7 mainly reveal a mathematising approach, meaning that students
made an effort to describe mathematically the trend of the blue and red graph provided in
GeoGebra. Answers 8 and 9 show instead an interpreting approach: students tried to explain
the trend of the two graphs in light of the physical phenomenon of evaporation.

4.2 Episode 2: Multivariation (qualitative)

This episode is an excerpt from the classroom discussion led by the teacher after the working
group session during phase 3. Students, guided by the teacher, retraced the steps of the
pot experiment on the psychrometric diagram reproduced in GeoGebra and shown on the
interactive whiteboard (Fig. 5). This GeoGebra applet offers the possibility to visualize the
whole family of exponential-like functions by moving the appropriate slider (Fig. 8). In the
piece of transcript here reported, students were elaborating on the step during which they had
already reached the dew point, that is a humidity of 100 %, but they kept on decreasing the
temperature adding more ice in the pot and maintaining the percentage of relative humidity
constant. The steps of the pot experiment are reproduced in Fig. 8, and the trait students are
elaborating on is the oblique one.

10. T: And then? What did we do after we reached the saturation of 100 %? Did we stop
immediately? […]

11. S2: No, we waited until it condensed well, and, in the meanwhile, we continued to add
ice.

12. T: So, what did you do?
13. S2: I continued to decrease the temperature.
14. T: Hence on the graph, where do you move?
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Fig. 8 The steps of the pot experiment on the psychrometric chart. Arrows are drawn for the convenience of
the reader

15. S2: To the left.
16. T: To the left. Horizontally?
17. S2: No… [not really convinced]. If you have reached the dew point yes… only the

temperature changes.
[...]

18. S15: If we already have the dew point, [absolute] humidity is decreasing.
19. T: If we already have the dew point, humidity is decreasing. And so?
20. S9: It tends toward the x-axis.
21. T: Not only the temperature decreases, and it tends toward the y-axis but also toward

the x-axis. In which way do we move on this graph?
22. S9: Following the curve.

During this discussion, students already had in front of them a graphical representation
showing globally how relative humidity affects the trend of the family of functions. Thewhole
episode “is centred around a game of displacement between the graphical representation and
the experiment facilitated by themediation of the teacher that constantly asks the students how
they would move on the graph, inviting them to relate to the experiment with the GeoGebra
applet” (Bagossi 2022, p. 4232). Specifically, students elaborated on the behaviour of the
three quantities at stake, temperature, absolute, and relative humidity, when moving on the
psychrometric chart which can be classified as a process of mathematising: first, students
elaborated on which and how quantities were changing during the various steps of the pot
experiment and then they succeeded in relating a multivariation between three quantities to
a movement on the chart. In particular, in this episode, a decrease in temperature [13] and a
decrease in absolute humidity [18] at a constant relative humidity, since the dew point has
already been reached [18], corresponds to a movement “to the left” [15] and “following the
curve” [22]. This episodewas coded as revealing amultivariation between the three quantities
at stake which is expressed in a qualitative form by making explicit the direction of change
of each of the three quantities.
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4.3 Episode 3: COV 2 (quantitative)

During phase 4, students were asked to sketch the trend of the graph of relative humidity
with respect to temperature as homework. During the classroom discussion, the teacher
commented on students’ productions. In particular, in this episode, the teacher was showing
on the interactive whiteboard the solution elaborated by S21 (Fig. 9a) and asked him to
explain how he found it. This episode was selected because S21 was the only student who
not only sketched the graph but also looked for a possible algebraic expression.

23. T: What did you do?
24. S21: First I tried to look for a function… I located all the points and then through a

system I tried to look for a function passing through all the points, but it came a little
higher or a little lower. Then I tried to play with the sliders and… [unclear].

25. T: What kind of function did you think of?
26. S21: I thought that relative humidity was a number a over b times the temperature plus

c… […] but it came nothing good… [The teacher writes the formula on the interactive
whiteboard, Fig. 9b].

27. T: In which sense nothing good?
28. S21: The function didn’t touch all the points….
29. T: The function didn’t touch all the points….

[...]
30. T: And so, what can we conclude?
31. S21: [unclear]
32. T: The function is not that one or the data do not perfectly fit the function… but it can

be that the function probably is not a hyperbole….

Phase 4 was designed to promote applying processes: students were asked to construct a
graphical representation of the steps of the temperature versus relative humidity relationship
as independent and dependent variable respectively starting from the data collected during
the pot experiment. S21 explained that to identify the function shown on the interactive
whiteboard (Fig. 9a), S21 located all the points [corresponding to the numerical values
obtained during the pot experiment] on the Cartesian plane (by using GeoGebra), and then
he tried to look for a function passing for all the points, but the function “came a little
higher or a little lower” [24]. S21 also added that then he tried to play with the sliders,
associated with the parameters S21 introduced in its analytical representation, but the final
part of his sentence is not understandable [24]. Answering the teacher’s question [25], S21
explained that he thought of a formula relating relative humidity as the dependent variable
and temperature as the independent variable, and such formula contained three parameters
named by the letters a, b, and c [26] (Fig. 9b).

In S21’s claims, we can detect a form of second-order covariation that is condensed in the
elaboration of a mathematical formula containing some non-well-identified parameters. The
elaboration of such a parametric formula reveals a mental image in S21’s understanding of
the quantities’ values continuously changing in a way that as the temperature increases, the
relative humidity decreases and vice versa and by varying the parameters, the trend of such
relationship changes: for this reason, we coded this episode as a form of quantitative COV 2.

To conclude, we remark that, as S21 himself realized, the function he elaborated on was
not correct [28]. The teacher clarified the issue by presenting two possibilities for such a
result: data are imprecise and do not perfectly fit the function, or the sought function is not a
hyperbole [32]. Indeed, students had not yet studied the exponential function by the time of
the teaching experiment.
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Fig. 9 a Tentative relative humidity-temperature graph proposed by S21; b Formula written by the teacher on
the interactive whiteboard

4.4 Episode 4: Multivariation (qualitative)+ COV 2 (qualitative)

The discussion during phase 6 was initially focused on reconstructing the cycle of the pot
experiment on the new chart, the one describing the relationship between absolute humidity
on the y-axis and temperature on the x- axis. The teacher showed on the interactivewhiteboard
one of the graphs made by the students as homework (Fig. 10). In this episode, they were
collectively commenting on the second step of the experiment (represented by the yellow
trait from P1 to the left), the one during which students continued to add ice cubes so as to
decrease the temperature in the pot and then some drops of water formed on the outer wall
of the pot.

Fig. 10 Relative humidity –
temperature graph made by one
of the students

123



S. Bagossi

33. T: What is happening instead on the horizontal trait [of the graph]?
34. S8: The relative humidity maintains constant.
35. T: The relative humidity maintains constant.
36. S8: And the temperature decreases.
37. T: The temperature decreases. The absolute humidity? Does it decrease or remain con-

stant?
38. S19: Decreases.
39. T: Decreases. Why?
40. S15: You have the condensation.
41. T: Ok, you have the condensation, and this is what happens practically. But on the graph

why? […]
42. S19: The curve changes.

In this episode, students interpreted the representation in the new reference system in light
of the pot experiment. In this new representation, what is not represented on the two axes is the
absolute humidity which becomes the new parameter. Initially, students conceptualized the
variation and the direction of change of each of the three quantities: “relative humidity remains
constant” [34], “the temperature decreases” [36] while the absolute humidity “decreases”
[38]. This reasoning was coded as a multivariation between three quantities expressed in
a qualitative form, analogous to the one identified in episode 2. Then, S19 elaborated on a
different form of reasoning: stimulated by the teacher, S19 claimed that a decrease in absolute
humidity [38] relates to a change in the curve [42], analogous to the exponential-like curves
in the previous psychrometric chart (Fig. 8). This form of reasoning can be classified as
a covariation between a quantity (absolute humidity) and a family of functions (relative
humidity-temperature curves). The direction of change of the objects involved is outlined:
indeed, the relative humidity (parameter) is decreasing while the curve is changing (it can be
seen in the graphical representation in Fig. 10) from the one passing through P1 to the other
one. Summing up, this form of reasoning was coded as a qualitative form of COV 2 in which
the direction of change of two objects was made explicit.

4.5 Episode 5: COV 2 (global)

This last episode is again from the classroom discussion during phase 6, but towards the end
of it: after having introduced the new GeoGebra applet shown in Fig. 7, the teacher guided
students to reflect on the similarities and differences between the two psychrometric charts.

43. T: Are they two different situations/scenarios?
44. S21: No.
45. T: No. Why do the two graphs are different if they are not two different situations?
46. S21: The value represented on the y-axis is different.
47. T: The value represented on the y-axis is different. If you should make a comparison

with something that is not mathematical but concerns real life… We have the same
situation/scenario, but the value represented on the y-axis is different… If you should
make an analogy…?

48. S2: From the physical point of view, they represent the same thing but from the graphical
point of view no… because they are two different values.

49. T: Oh! From the physical point of view, they represent the same thing but from the
graphical point of view no because they are two different values. […] Two different
situations depending on what?

50. S21: A different point of view.
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Table 2 Collection of the findings from the five episodes concerning the representations involved, the steps of
the modelling process and emerging covariational reasoning

Representations Modelling process Covariational reasoning

Ep
iso

de
 1

 (P
ha

se
 1

)

Mathematising: when 
describing the trend of 
the blue/red curve.

Interpreting: when 
explaining the trend of 
the two curves by 
referring to the physical 
phenomenon of 
evaporation. 

Qualitative coordination 
of the two quantities’ 
values (COV 1) using 
increase/grow/decrease 
expressions to describe 
their direction of change 
(gross coordination of 
values).

Ep
iso

de
 2

 (P
ha

se
 3

)

Mathematising the real 
experiment: first, 
students elaborated on 
which and how quantities 
were changing during the 
various steps of the pot 
experiment. Then they 
succeeded in relating a 
multivariation between 
three quantities to a 
movement on the chart.

Multivariation between 
the three quantities at 
stake: it is expressed in a 
qualitative form by 
making explicit the 
direction of change of 
each of the three 
quantities.

Ep
iso

de
 3

 (P
ha

se
 4

)

Applying when 
elaborating on a 
mathematical (graphical 
or algebraic) 
representation starting 
from the data collected 
during the pot 
experiment.

Second-order 
covariation (COV 2) 
condensed in the 
elaboration of a 
mathematical formula 
containing some non-
well-identified 
parameters 
(quantitative): such 
formula, jointly with the 
graphical 
representation, reveals 
an understanding of the 
quantities as changing 
continuously.

At this point of the discussion, the teacher projected on the interactive whiteboard the new
applet simultaneously showing the relationships absolute humidity versus temperature and
relative humidity versus temperature (Fig. 7). At the teacher’s question asking if the graphs
were two different situations or scenarios [43], first S21 observed that “the value represented
on the y-axis is different” [46], and then S2 claimed that from the physical standpoint the
situation is the same: what differs is the graphical representation [48]. S21 concluded by
saying that the difference between the two situations depends on “a different point of view”
[50]. This interpreting process of the two mathematical representations suggests that the
different role assumed by variables and parameters does not determine a different physical
situation but a change of standpoint resulting in a different graphical representation. The
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Table 2 (continued)
Ep

iso
de

 4
 (P

ha
se

 6
)

Interpreting the graphical 
representation in the new 
reference system in light 
of the pot experiment so 
as to reconstruct the 
steps of the cycle of the 
experiment. 

Students conceptualized 
the simultaneous 
variation and the 
direction of change of 
each of the three 
quantities: 
multivariation in a 
qualitative form.  

COV 2 between a 
quantity (absolute 
humidity) and a family of 
functions (relative 
humidity-temperature 
curves). The direction of 
change of the objects 
involved is qualitatively
outlined: indeed, the 
relative humidity 
(parameter) is 
decreasing while the 
curve is changing.

Ep
iso

de
 5

 (P
ha

se
 6

)

Interpreting process of 
the two mathematical 
representations 
suggesting that the 
different role assumed by 
variables and parameters 
does not determine a 
different physical 
situation but a change of 
standpoint when 
describing it resulting in a 
different graphical 
representation.

The mathematical 
objects involved are two 
families of functions, 
both representing the 
same phenomenon: COV 
2. Students succeeded in 
interpreting and relating 
the two families of 
functions globally.

approach that emerged in this episode can also be intended as a form of conceptualization of
the different roles of variables and parameters within mathematical representations. The two
psychrometric charts display a form of COV 2: indeed, the mathematical objects involved are
two families of functions, produced by the same three quantities, both representing the same
phenomenon. Students succeeded in interpreting and relating the two families of functions
globally: hence, this form of reasoning was coded as COV 2 global.

The qualitative analysis of the five episodes presented previously is now summed up in
Table 2 in order to make more evident students’ emerging forms of covariational reasoning
in relation to the modelling processes, with particular attention to the real and mathematical
representations involved in each episode.
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5 Discussion

The research question guiding this study is: How do students reason covariationally when
engaging in real-life phenomena modelling activities? In order to elaborate on an answer, we
qualitatively analysed five episodes of classroom activities from a teaching experiment whose
goal was to conceptualize the relationship between three quantities: temperature, absolute
humidity, and relative humidity.

First of all, the results summarized in Table 2 make evident that the modelling of such a
real-life phenomenon required a continuous moving back and forward from the real to the
math world (Blum and Ferri 2009): if the movement from the real to the math world was
predominant in the first episodes, then movements in the other direction were predominant
in the last phases. These processes were prompted by the design of the tasks themselves, but
the students made them concrete and shaped them according to their background knowledge,
concerning both mathematics and science. One interesting achievement in students’ learning
process was the awareness that the connection between the real and the math world is not
unique: indeed, as episode 5 showed, several mathematical representations can be adopted
to describe the same phenomenon.

All themodelling processes were constantly interlacedwith various forms of covariational
reasoning, not only of first-order, and the role played by such kind of reasoning differed
throughout the teaching experiment. In episode 1, covariational reasoning turned out to be the
arrival point in students’ mathematising process which enabled them to read and describe the
graphs in Fig. 2 conceived as the simultaneous variation of two quantities’ values; in episodes
2 and 4, covariational reasoning was used to mediate between the steps of the pot experiment
and their representation as a movement on the psychrometric diagram; eventually in episodes
3 and 6, covariational reasoning between quantities worked as a springboard making possible
the creation and interpretation of function or family of functions graphically representing the
phenomenon. Moreover, covariational reasoning was detected in all three types of modelling
processes, mathematising, applying and interpreting, so it seems to be relevant in the overall
process and not just in some specific phases.

The variety of the forms of covariational reasoning detected is much more complex than
the first-order one which confirms the research assumption that modelling real-life phenom-
ena requires several forms of mathematical reasoning. When mathematising or interpreting
the cycle of the pot experiment on the psychrometric chart, students usedmultivariational rea-
soning to conceptualize how the three quantities are varying simultaneously (episodes 2 and
4). Then, moving to the conceptualization of the relative humidity-temperature relationship,
second-order covariation became more relevant. In episode 3, students applied their math-
ematical knowledge concerning functional relationship to elaborate on a formula to sketch
in GeoGebra the graph touching all points: S21 translated a suitable symbolic relationship
into a graphical one and used the sliders to control the parameters introduced in its symbolic
representation and to adjust the trend of the function to the data. In episode 4 COV 2 was
used to read the cycle of the experiment in the new graphical representation, and in the last
episode, it enabled to interpret globally the two graphical representations.

Another aspect of the analysed teaching experiment that deserves to be discussed is the
role of the various representations involved in the different phases. First, all the modelling
activities were supported by a strong connection with the real world through both the collec-
tion of real data presented in phase 1 and the performing of the pot experiment during phase
2. The latter enabled students not only to experience one important step of the experimental
scientific method but also to create a connection with the experimentation conducted in the
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previous school year as mentioned in the Method section. Specifically, the classroom exper-
iment constituted the starting point of all the activities, and it became a solid reference point
throughout the whole teaching experiment, both in reading the real psychrometric chart and
the graphical representations shown in GeoGebra; it also enabled students to interpret the
mathematical representations from a physical standpoint. The representations provided by
the digital tools instead, i.e., the GeoGebra applets reproducing the psychrometric diagrams
(Figs. 5, 6, 7), facilitated the students’ visualization of the whole family of functions at once
supporting forms of second-order covariational and multivariational reasoning. Generally,
what we observed is that all the chosen representations, both real and digital ones, truly acted
as a bridge in the students’ conceptualization process between the real and the math world
(Galbraith and Stillman 2006).

6 Conclusion

This paper contributes to the literature in Mathematics Education showing the relevance of
covariational reasoning to various grade levels and to several topics in all STEM disciplines
(Gantt et al. 2023). In particular, this study involved 11th-grade students and focused on the
mathematical modelling of the real-life phenomenon of condensation. The findings of the
study remark the relevance of forms of covariational reasoning more complex than the one
involving two varying quantities. The limitations of the study concern the generalizability
of the findings given the small number of participants in the teaching experiment and their
previous background about covariation. The results discussed here should be intended as
some seeds for further research involving other samples of students coming from different
backgrounds.

Even if the findings are discussed from amathematical point of view, asMoutsios-Rentzos
and Kalavasis (2016) observed, “[l]earning mathematics is an inherent interdisciplinary phe-
nomenon that emerges through the collective mind’s ability to continuously reflect upon
experience, with the purpose for the experience to disappear with a trace that is the initial
sketch of the ‘mathematical idea’” (p. 114). In the episodes discussed here and offering
some highlights into students’ learning process, it is possible to grasp how students contin-
uously reflected on the concrete experience provided by the pot experiment to keep in mind
which quantities were covarying. But while progressing in the modelling activities, covaria-
tion became increasingly detached from the experience and turned into a mathematical idea
shaped into related mathematical representations. Research highlights that there are only a
few recent studies examining “students’ covariational reasoning within the context of sci-
ence in ways that illustrate the reciprocal relationship between the two disciplines [math and
science]” (Panorkou and Germia 2021, p. 320). Hence, considering such kind of modelling
activities from an interdisciplinary perspective could be an added educational value.
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