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Abstract

Fermi Golden Rule and second order cumulant expansion of the time dependent

density matrix have been used to compute from first principles the rate of intersystem

crossing in benzophenone, using minimum energy geometries and normal modes of

vibrations computed at TDDFT/CAM-B3LYP level. Both approaches yield reliable

values of the S1 decay rate, the latter being almost in quantitative agreement with the

results of time dependent spectroscopic measurements (0.154 ps−1 observed vs. 0.25

ps−1 predicted). Fermi Golden Rule slightly overestimates the decay rate of S1 state

(kd=0.45 ps−1), but provides better insights into the chemico-physical parameters which

govern the transition from a thermally equilibrated population of S1, showing that the

indirect mechanism is much faster than the direct one because of the vanishingly small

Franck-Condon weighted density of states at ∆E of transition.
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Introduction

Singlet triplet transitions are of outstanding importance in photochemistry. Most of pho-

tochemical processes occur via triplet states because of their electronic activated character

and comparatively longer lifetimes.1 Triplet states also play a significant role in several

processes of great technological importance: charge dissociation and charge recombination

in photovoltaic solar cells,2–7 electroluminesce in OLED,8–11 and low power frequency up-

conversion.12–15 It is therefore amenable to have efficient and reliable procedures for evaluat-

ing intersystem crossing (ISC) rates from quantities whose determination can be afforded by

standard electronic computations, i.e. equilibrium geometries, normal modes of vibration,

and spin orbit coupling elements. Herein we compare two alternative approaches for comput-

ing the rates of non radiative transitions between two electronic states: Fermi Golden Rule

and second order cumulant average of the time dependent density matrix. Both approaches

allow for considering thermal effects and for including in computations the whole set of

normal coordinates, making use of closure relations for avoiding limitations on the number

of quantum states to be considered in dynamics,16–18 two fundamental points for obtaining

reliable transition rates, which are difficult to meet in quantum dynamic simulations based

on the numerical solution of the time dependent Schrödinger equation.

After a brief review concerning the implementation of both approaches with quantities ob-

tained by first principle electronic calculations,19–22 we will consider the fast ISC occurring

in benzophenone as a test case for judging and comparing their performances, showing that

the integrated use of the two approaches provides both an almost quantitative reproduc-

tion of the time dependent spectroscopic results of ISC in benzophenone and important

chemico-physical insights for understanding mechanistic aspects of the process.
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Methodology

Let us consider a system characterized by two electronic states |i〉 and |f〉 weakly coupled

by a perturbation, whose Hamiltonian is given by:

H = Hi |i〉 〈i|+Hf |f〉 〈f |+ Vif |i〉 〈f |+ cc = H0 + V, (1)

where Hi and Hf are the vibrational Hamiltonians of the electronic states |i〉 and |f〉, and

V = Vif |i〉 〈f |+ cc. Both Hi and Hf are modeled in harmonic approximation:

Hi =
∑

i

1

2
~ωi

(

d2

dq2i
+ q2i

)2

, Hf =
∑

f

1

2
~ωf

(

d2

dq2f
+ q2f

)2

(2)

where ωi/f and qi/f are the vibrational frequencies and the dimensionless normal coordinates

of the state (i/f). The two sets of normal coordinates of |i〉 and |f〉 are related by Duschinki’s

transformation:

qf = Jqi +K, (3)

where J is the Duschinky’s matrix, accounting for normal mode mixing, and K is the vector

of equilibrium position displacements of |f〉 with respect to |i〉.

First order time dependent perturbation theory states that the transition rate from a

distribution of initial states ketim to a manifold of final states |fn〉 induced by a perturbation

V̂ is given by:

ki→f =
2π

~
F (0, T ) (4)

with

F (E, T ) =
∑

m

∑

n

| 〈fn| V̂ |im〉 |2wm(T )δ(Efn −Eim − E) (5)

where wm is the probability of the m-th vibrational state of the electronic state |i〉. For a

thermal equilibrium distribution wm = exp(−βEim)/Zi, with β = 1/kBT and Zi = Trρi, is

the vibrational partition function of the initial state.
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In the case the dependence of V̂ upon the nuclear coordinates can be neglected, eq.n 5

can be rewritten as:

F (E, T ) = |Vif |
2
∑

m

∑

n

|〈fn|im〉|2wm(T )δ(Efn − Eim −E) (6)

where |〈fn|im〉|2 are the usual Franck-Condon factors.

The double summation over the whole set of vibrational states is avoided by evaluating

the Laplace Transform of F (E, T ):

f(λ, T ) =

∫ ∞

−∞

F (E)exp(−λE)dE =
∑

m

∑

n

| 〈fn| V̂ |im〉 |2e−βEime−λ(Efn−Eim)/Trρi(β),

(7)

which can be recast into the form:

f(λ, T ) =
∑

m

∑

n

〈im| V |fn〉 e−λEfn 〈fn| V̂ |im〉 e−(β−λ)Eim/Trρi(β)

= TrVifρf (λ)Vfiρi(β − λ)/Trρi(β) (8)

where intractable summations are no longer present.

In the harmonic approximation the density matrix can be evaluated in closed form in the

position representation:17,23

ρi(qi,q
′
i) = det

[

Ωi
√

2πsinh(β~Ωi)

]

(9)

×exp[−
1

4~
(qi + q′

i)
†Ωitanh(β~Ωi/2)(qi + q′

i)

−
1

4~
(qi − q′

i)
†Ωicoth(β~Ωi/2)(qi − q′

i)]

where Ωi is the diagonal matrix of harmonic vibrational frequencies of |i〉 a similar equa-

tion holding also for ρf(qf ,q
′
f). The trace in eqn. 8, which in the position representation

corresponds to integration over the whole set of vibrational coordinates, can be analytically
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carried out using Duschinsky’s transformation of eqn. 3 and f(λ) can be evaluated by stan-

dard multidimensional gaussian integration, see ref.s 20,21 for more details. Once f(λ) is

known, F (E, T ) can be obtained as the inverse Laplace transform of f(λ), and transition

rates computed by eqn. 4.

The Fermi Golden Rule (FGR) is based on the lowest order of time dependent pertur-

bation theory and consider only direct transition. An alternative approach, which preserves

most of the advantages of the previous treatment, relies on the second-order cumulant ex-

pansion of the time dependent density matrix of the system.18,24–31

For the Hamiltonian of eqn. 1, the time evolution of the density matrix in the interaction

representation ρI(t) is:

ρI(t) = T exp

(

−
i

~

∫ t

0

V ×
I (τ)dτ

)

ρI(0) (10)

where T is a time ordering operator and V × is defined by V ×
I (τ)O = [VI(τ),O].26,32 ρI(0) is

the density matrix at time t = 0, specifying the initial conditions of the system. Formally,

the population of the initial electronic state |i〉 is given by:

Pi(t) = Tr
〈

i
∣

∣T exp

(

−
iλ

~

∫ t

0

V ×
I (τ)dτ

)

ρI(0)
∣

∣i
〉

(11)

where the trace is taken over the unperturbed states and λ is a dummy variable which at

the end of treatment is set to unity. In order to introduce the cumulant expansion we make

the ansatz:24

Pi(t) = eK(t) (12)

and expand K(t) in a Taylor series of the dummy variable λ:

K(t) = λk1(t) + λ2k2(t) + .... (13)

By expanding perturbatively eq.n 11 and comparing with the expansion of K(t) truncated
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at the second order,24,33 the first two cumulants are:

k1(t) = −
i

~

∫ t

0

dτ1V
×
I (τ1)ρI(0)

k2(t) = −
1

2~2

∫ t

0

dτ1

∫ t

0

〈i| [VI(τ1), [VI(τ2), ρ(0)]] |i〉 dτ2.

(14)

It is important to notice that with the Hamiltonian of eq.n 1 all odd-order cumulant

terms are zero, because of orthogonality of the electronic wavefunctions and the first non

null contributions are given by the second-order terms of cumulant expansion. To better

understand the physical meaning of cumulant expansion, we differentiate eqn. 12, obtaining

the rate of change of |i〉 population:

Wi = k(t)Pi(t), (15)

where k(t) is a time dependent rate constant for the i→ f transition.

In the case the initial density coincides with the thermal distribution of the initial state

|i〉 (ρ(0) = 1
Zi
|i〉 e−βHi 〈i|) and the coupling operator is independent of coordinate (a very

reasonable assumption in the case the transition occurs by tunneling because of the small

region spanned by the vibrational coordinates of the initial state), k(t), after integration over

the electronic coordinates, takes the form:

k(t) = −
1

~2Zi

|Vif |
2

∫ t

0

dτf(τ),

f(τ) = TreiHi(τ+iβ)/~e−iHf (τ)/~ =

∫

dqi 〈qi| e
iHi(τ+iβ)/~e−iHf (τ)/~ |qi〉

=

∫

dqidq
′
i
ρi(qi,q

′
i
, β − iτ)ρf (qf ,q

′
f
, iτ)

(16)

Using eqn.s 9 and 3 f(τ) can be evaluated by standard multidimensional gaussian integra-

tion,34 and k(t) by numerical integration.

Noteworthy, cumulant second order expansion allows also the use of non equilibrium

population of the initial state. That is an important point in treating ultrafast transitions
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upon photo-excitation by a short time laser pulse.35 In that case, the resulting initial density

is just the Boltzmann equilibrium distribution of the ground state (GS) projected onto the

photoexcited state |i〉:

ρ(0) =
1

ZGS

|i〉 e−βHGS 〈i| (17)

and k(t) assumes the form:

k(t) = −
1

~2ZGS
|Vif |

2

∫ t

0

dτTre−βHGSeitHi/~e−iτHf/~e−i(t−τ)Hi/~ (18)

Furthermore, the second order cumulant approach can be applied to any coupling op-

erator having the form of a power series expansion either in the vibrational coordinates or

momenta. It is thus of interest for the analysis of the dynamics of electron-transfer reactions

as well as of ultrafast radiationless transitions induced by conical intersections.

Intersystem crossing in benzophenone

Benzophenone is a paradigmatic example of fast singlet triplet transition, exhibiting almost

unit quantum efficiency with a consequent absence of fluorescence emission under the usual

excitation conditions.36 Recent time-resolved absorption spectroscopy has revealed that ISC

in benzophenone occurs on timescales of 10-20 ps, indipendently of the solvent.37 Decompo-

sition of the time-resolved spectra into pure spectra of transient species and their associated

time-dependent concentrations suggested the possible implication in the S1 relaxation process

of electronic states other than T1.

The possibility that ISC in benzophenone could not be an elementary process was already

arised,36,38 both because S1 and T1 are believed to share the same electronic character, so

that, according to El Sayed rule, the spin orbit coupling (SOC) between them is expected

to be vanishingly small, and because sensitized phosphorescence spectra of jet-cooled ben-

zophenone had shown that T1 ←S0 transition is very similar in its vibrational structure to
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the S1 ← S0 one. This observation indicates that the two electronic states possess an almost

identical geometrical structure, resulting into a vanishingly small Franck-Condon factor for

the direct S1 → T1 transition, apart from a restricted energy region around ∆E = 0.38 It

was therefore argued that the S1 → T1 transition could take place along an indirect pathway

S1 →Tn →T1, where Tn is a (π,π∗) excited triplet states, lying slightly higher in energy than

T1. Evidence about the possible existence of such Tn state was provided by time-resolved

infrared absorption spectrum of photoexcited benzophenone, which exhibits a broad elec-

tronic absorption band in the wavenumber region above 2000 cm−1.39 Similar conclusions

about the possibility of an indirect mechanism for the S1 → T1 transition were also reached

by following the decay dynamics of excited benzophenone by time resolved photoelectron

spectroscopy.40

The difficulty concerning the small SOC element is not very stringent: benzophenone is

not planar, neither in the ground state nor in the low lying excited states, and that could mix

to some extent (n,π∗) and (π,π∗) states,41 providing SOC high enough for the direct mech-

anism.41–43 The second difficulty with the direct mechanism, i.e. the small Franck-Condon

factor for the direct transition, has not been addressed in the literature yet, and we start our

analysis of fast ISC in benzophenone by computing the Franck-Condon weighted density of

states (FCWDS) for both the S1 → T1 transition and S1 → T2 transition. Computations

have been performed by using the generating function approach outlined in the previous

section, which provided very reliable spectroscopic band shapes both for benzophenone and

for difficult cases as cyanines.44–46 Optimized geometries and normal modes have been ob-

tained at TDDFT/CAM-B3LYP/TZVP level of computations. The computed FCWDS for

the S1 →T1 and S1 →T2 transitions as a function of the energy difference between initial

and final states are reported in figure 1 and 2. Inspection of figure 1 shows that the FCWDS

for the direct S1 →T1 transition at T=298 K is a very narrow function of ∆E, the energy

difference between the two states, peaked at ∆E ≈ 0. For ∆E as small as 500 cm−1, the

FCWDS is already vanishingly small, as it would be expected from the observed band shapes

9



-300 0 300 1200 1500 2100 2400 3000

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

x10
-2

600 1800 2700900

wavenumber / cm -1

F
(�

E
,T

)

1000 2000 25001500 3000

Figure 1: The Franck-Condon weighted density of states for the S1 →T1 transition at T=298
K and, inset, at T= 4, 77, 180 K.

of T1 ←S0 and S1 ← S0 radiative transitions.38 The FCWDS slightly rises into a short ∆E

region between 1200-1500 cm−1, because of displaced vibrational coordinates falling in that

frequency region, roughly corresponding to the bending and asymmetric stretching involving

the carbonyl group and adjacent ring carbons and the stretching of the C=O bond. ∆E

for the S1 → T1 transition can be obtained from the assignments of the 0-0 transitions

of the S1 ← S0 absorption spectrum and the T1 → S0 phosphorescence spectrum, falling

at 26244 cm−1,47 and 23800 cm−1,48 respectively. Using such ∆E (2444 cm−1) and the

computed SOC (28.58 cm−1, our own computation at S1 minimum energy geometry) the

resulting rate constant for the elementary transition is ≈ 1 × 108s−1, with a decay time of

the order of nanoseconds, much longer than that found from time resolved spectroscopic

measurements.36,37,40 This situation does not modify by changing the temperature, as shown

by the inset of figure 1 where the results obtained at different T are reported.

By contrast, F (∆E, T ) for the S1 → T2 transition is a broad function of ∆E, extending

from -500 to 20000 cm−1, as shown in figure 2. Time-resolved infrared absorption spectra
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of photoexcited benzophenone in carbon tetrachloride and benzene have shown a broad

electronic absorption band ascribable to the T2 ← T1 transition in the wavenumber region

above 2000 cm−1,39 so that T2 is expected to be almost isoenergetic with S1, in good agrement

with CAM-B3LYP/TDDFT computations, which predict an electronic energy difference of

≈400 cm−1. The average value of F (∆E, T ) for the S1 → T2 transition, taken over a range

of ±300 cm−1around ∆E = 400 cm−1, is ≈ 1 × 10−4, the computed SOC element is 31.00

cm−1(our own computation at S1 minimum energy geometry), and the resulting FGR rate

constant for the S1 →T2 transition is 4.54×1011. Thus FGR predicts that the indirect decay

mechanism is significantly faster than direct one, in line with what would be suggested by

the analysis of time resolved spectral signals, yielding a S1 decay rate slightly faster than the

observed one. The second-order cumulant expansion of the time dependent density matrix

should provide an improvement with respect to FGR, inasmuch as it allows to obtain time

dependent populations rather than time independent transition rates.
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Figure 2: Franck-Condon weighted densities of states for S1 → T2 transition as a function
of the energy difference between the electronic states (∆E = ES1

− ET2
) at T = 298K.

The results obtained by second order cumulant expansion are shown in figure 3, both
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Figure 3: Decay rates of S1 state of benzophenone predicted by second order cumulant
expansion of the time dependent density matrix Franck-Condon weighted densities of states
for both S1 → T2 (red full lines) and S1 → T1 (blue dashed lines) transitions.

for the S1 →T2 and S1 →T1 transitions. In line with FGR results, second order cumulant

expansion predicts that the S1 →T1 is much slower than S1 →T2 one. For the latter transi-

tion, the average S1 decay rate is kd = 0.25 ps−1, in very good agreement with experimental

result of Aloïsi et al, (kd=0.25 ps−1), the average rate for the direct mechanism is ca. two

order of magnitude slower (kd=6 ns−1). The above results an equilibrium initial distribution

of ρ0:

ρi(0) = ZS1
|S1〉 e

−βHS1 〈S1| (19)

The second order cumulant expansion allows also a physically meaningful use of a non

equilibrium distribution of the initial state, as necessary for ultrafast processes in which the

initial state is prepared by a short laser pulse. In that case the initial distribution of states

can be modeled by the thermally equilibrated distribution of the ground state, c.f. eqn.

17, and k(t) is given by eqn. 18. S1 decay of benzophenone is not an ultrafast process,
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the population of the initial state has likely time enough to relax to a thermal distribution,

before the transition occurs. Evidence in that direction comes from the fact that S1 decay

time is almost independent of the excitation wavelength, the observed S1 decay rates being

0.154 ps−1 for excitation in S2 at 267 nm and 0.133 ps−1 for excitation at 383 nm, which

is just sufficient to populate the lowest energy vibrational states of S1. Notwithstanding,

just for speculative purposes, we have also considered the dynamics of S1 decay for a non

equilibrium population, originated by a very short laser pulse, projecting the ground state

equilibrium populations of S0 on S1. The results are reported in figure 4. Inspection of figure

4 shows that a non equilibrium population of S1 activates the direct transition, even though

the indirect one remains slightly faster and therefore well competitive with the direct one.

The effect is significant because it increases the rate of the direct one by ca. two order of

magnitude, the time average rate for the S1 → T1 being ca. 0.16 ps−1. The different choice

of the initial state has little importance for the S1 →T2 transition: the predicted average

decay rate changes from 0.25 ps−1 to 0.22 ps−1 for the initial equilibrium and non-equilibrium

distribution, respectively.

In conclusion, our analysis clearly shows that the indirect mechanism is more plausible

than direct one, because of the small Franck-Condon weighted density of states associated

with the direct transition, as it was already argued from the analysis of the absorption and

sensitized phosphorescence spectra of jet-cooled benzophenone. Both FGR and the second

order cumulant expansion of the time dependent density matrix provide a faithful (at least

as concerns comparison with time dependent spectroscopic measurements) description of the

dynamics of intersystem crossing in benzophenone, which, at least for benzophenone, appears

to be more reliable than those obtained by QM/MM approach.42,43 The full quantum me-

chanical approaches proposed here cannot handle cases in which the equilibrium geometries

of the two electronic states are significantly displaced each other – the case for instance of

conformationally gated transitions – and all those cases in which environment fluctuations

provide the driving force for electronic transitions, as for electron transfer reactions in polar
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Figure 4: Decay rates of S1 state of a non equilibrium initial distribution of benzophenone
predicted by second order cumulant expansion of the time dependent density matrix for both
S1 → T2 (red full lines) and S1 → T1 (blue dashed lines) transitions.

solvents.49–51 In those cases, as also argued elsewhere,51 the present approach could however

be integrated into QM/MM simulation, the latter providing either the reactive conforma-

tions as stable minimum points of the electronic energy hypersufaces or the frequencies of

solvent fluctuations.

Computational details

Computations of the equilibrium positions and vibrational frequencies of S1, T1, and T2

states for benzophenone in the gas phase have been carried out at the density functional

level of theory (DFT), with CAM-B3LYP functional and TZVP basis set, using the Gaussian

package;52 for triplet states the unrestricted formalism has been used and time dependent

DFT (TDDFT) was used for excited states. All electronic states have been fully optimized;

the computed vibrational frequencies are all positive, ensuring about the localization of
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genuine minimum equilibrium structures.

SOC matrix elements have been computed by PySOC code,53 at the equilibrium geometry

of S1; the SOC elements are 28.58 and 31.00 cm−1 for S1 →T1 and S1 → T2 transitions,

respectively.

The Duschinsky matrix J and the displacement vector K, necessary to carry out the trace

operation of eq. 8, have been computed using the curvilinear coordinate representation of the

normal modes as implemented in a locally modified version of the MolFC software.54,55 The

use of internal coordinates prevents unphysical large shifts of the involved bond distances

caused by large displacements of angular coordinates.56–60 FGR rate constants have been

computed by using an average value of F (∆E, T ), taken over a range of ±0.05 eV around

the corresponding ∆E values.
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