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ABSTRACT 

   

Facial expression studies in animal communication are essential. However, manual inspection 

methods are only practical for small datasets. Deep learning techniques can help discriminate facial 

configurations associated with vocalisations over large datasets. We extracted and labelled frames 

of different primate species, trained deep-learning models to identify key points on their faces, and 

computed distances between them to identify facial gestures. We used machine learning algorithms 

to classify vocalised and non-vocalised gestures across different species. The algorithms showed 

higher-than-chance correct classification rates, with some exceeding 90%. Our work employs deep 

learning to map primate facial gestures and offers an innovative application of pose estimation 

systems. Our approach facilitates the investigation of facial repertoire across primate species and 

behavioural contexts, enabling comparative research in primate communication. 

 

Keywords: primate face, Indri indri, Propithecus diadema, Nomascus gabriellae, DeepLabCut, 

acoustic communication  
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1. INTRODUCTION 

 

Advances in recording instruments have pushed the study of animal behaviour towards applying 

technologies that enable the processing of large volumes of data (Steenweg et al. 2017; Sugai et 

al. 2018; Janisch et al. 2021). The application of modern technologies is critical to reducing the 

mismatch between the volume of raw materials collected in the wild and captive settings and the 

capacity to extract meaningful information rapidly (Tuia et al., 2022). Time constraints for data 

analysis have prompted scholars to pay more attention to new computer technologies that can assist 

in analysing large amounts of video or audio recordings (Gamba et al., 2015; Friard and Gamba, 

2016). 

  

Communication studies have always been among the major themes in the study of animal 

behaviour. However, the study of vocal and visual communication has played a critical role in 

advancing our understanding of nonhuman species in the last decades (Waller et al. 2008; Parr et 

al. 2007). The modern approach to studying facial expression is based on the development of the 

Facial Action Coding System (FACS - Ekman & Friesen, 1978; Waller et al., 2020), a robust 

framework which allows quantifying and describing facial movements in a set of species. 

However, we must consider three limitations of FACS. First, identifying the FACS of a particular 

species requires a thorough knowledge of the anatomy underlying facial expressions (Kaminski et 

al., 2019). The number of species for which FACS (Facial Action Coding System) is available is 

limited (Waller et al., 2020). While FACS allows for detailed identification of a species' facial 

expressions, it requires specialised knowledge and training to recognise specific action units (Vick 

& Parr, 2007). Moreover, identifying each facial movement requires a manual frame-by-frame 
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inspection by an operator, leading to a time-consuming process that can be prone to human error 

(Cohn et al., 1999; Waller et al., 2022; Hamm et al., 2011). 

 

Recent publications show that efforts are increasing to foster the development of systems that 

enable automatic or semi-automatic detection of facial expressions (Whitam, 2018; Morozov et 

al., 2021; Feilghelstein et al., 2022). This is a field of investigation in which the use of artificial 

intelligence (hereafter, AI) techniques is promising, along the lines of what has already been done 

using deep learning to extract particular acoustic signals from passive acoustic recordings 

(Dufourq et al. 2021; Ravaglia et al. 2023) or sequences of visual signals (e.g., the tracking of 

courtship flights in fruit flies - Ning et al., 2022). A new wave of studies has employed AI for 

facial recognition in various primate species (Guo et al., 2020), including chimpanzees (Schofield 

et al. 2019; Schofield et al. 2023), macaques (Paulet et al. 2024), and lemurs (Crouse et al. 2017; 

Deb et al. 2018). On the one hand, current approaches to using AI in developing applications that 

can recognise variations in facial expressions aim to automate pain recognition (rodents, Tuttle et 

al., 2018; sheep, Mahmoud et al., 2018; horses, Lencioni et al., 2021; cats, Feilghelstein et al. 

2022). On the other hand, scientists directed efforts at the discrimination of Action Units (hereafter, 

AUs) to open new perspectives for social and affective neuroscience (MaqFACS, Morozov et al. 

2021). Notably, AU discrimination was built on frontal head-fixed captive macaque images, thus 

making the replication of this pipeline challenging when applied to free-moving animals. 

 

On a different level, markerless pose estimation dramatically progressed to capture motions (Bala 

et al., 2020; Hardin and Schlupp, 2022) over an increasingly large number of species thanks to the 

open-source software DeepLabCut (hereafter DLC, Mathis et al., 2018; Nath et al. 2019). Scholars 
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tracked motion and poses in various lab environments and extracted hints into the behaviour 

associated with particular body configurations for a diverse range of animals such as crickets 

(Hayakawa et al., 2024), crayfishes (Suryanto et al., 2024), dolphins (Tseng et al., 2024), rats 

(Popik et al., 2024; Lapp et al., 2024) and also primates (Fuchs et al., 2023). Wiltshire and 

colleagues (2023) also developed a robust DLC model to identify a custom set of key points 

distributed on the bodies of wild chimpanzees and bonobos. Perhaps because it is challenging to 

obtain good-quality video of the faces of free-moving animals or because it is complicated to 

imagine extracting facial configuration information in the presence of sometimes limited contrast 

between facial parts and an ever-changing background, markerless pose estimation has never been 

dedicated to understanding whether facial configurations are trackable. 

 

This work aims to test the possibility of using markerless pose estimation approaches to identify 

given points of primate facial expressions using footage from wild and captive, freely moving 

animals. More precisely, we asked whether it is possible to discriminate between voiced and 

unvoiced facial configurations. We predict that, across primates, distinctive facial gestures were 

associated with phonation. Chimpanzees can emit up to 48 multimodal signals (Wilke et al. 2017), 

and vocal emissions are regularly accompanied by gestures and facial expressions (Tagliatela et 

al. 2015). Macaques associate vocalisations with particular facial postures (Hauser et al. 1993), 

which, in turn, are associated with vocal tract shapes (Fitch 1997). 

 

Recognising vocalised or non-vocalised facial gestures is a pivotal step in several studies dedicated 

to animal communication. For instance, screening large sets of videos and pictures would allow 

researchers to expand our understanding of the multimodal nature of primate communication. 
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Also, targeting voiced gestures may enhance our knowledge of phonation mechanics and empower 

subtle comparative studies devoted to discovering differences within and between species or 

investigating particular traits related to the evolution of communication and language. Our results 

have important implications for using deep learning for comparative studies, starting with videos 

of freely moving animals. 

  

2. MATERIAL & METHODS 

  

2.1 Data collection 

  

We filmed the faces of 48 individuals from three primate species, two lemur species recorded in 

the wild (indris - Indri indri - and diademed sifakas - Propithecus diadema) and a species of lesser 

ape in captivity (yellow-cheeked crested gibbons - Nomascus gabriellae). We collected videos of 

Indri indri and Propithecus diadema in the Maromizaha rainforest, Madagascar (18° 56’ 49’’ S, 

48° 27’ 53’’ E) from April 26th to August 5th, 2022. We sampled ten groups of indris (for a total 

of 25 individuals) and five groups of diademed sifakas (for a total of 30 individuals). We followed 

one group per day, approximately from 6:00 AM to 1:00 PM. We recorded three yellow-cheeked 

crested gibbons hosted at the Zoological and Botanical Park of Mulhouse (France) between April 

11th and June 17th, 2022. We filmed the individuals for 8 hours daily, from 8:30 AM to 4:30 

PM.  We collected all videos from outside the enclosure by placing the camera in contact with the 

separating glass. We recorded all videos ad libitum using a Panasonic Lumix FZ82 camera, 

equipped with a 60x zoom, that allowed us to film the subjects’ faces efficiently. For all species, 
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we conducted recordings using an opportunist approach, filming faces whenever visible and at a 

distance from the operator that ranged between 2 and 20 metres. 

 

2.2 Data preparation and training of the deep learning models 

  

We used BORIS (Friard & Gamba, 2016) to visually inspect each video and extract clips. We 

selected clips using the following criteria: a minimum duration equal to 5 s, the face of a single 

animal was present in the shot, and no objects were standing between the operator and the animal 

we were filming (e.g., branches, trunks, foliage). For each clip we indicated whether the subject 

showed a facial configuration concomitant with a vocal emission (“co-occurrence”, “CO”) or a 

configuration while silent (clips labelled as facial, “FA”). We report the number of clips and mean 

duration in Table 1. We used the FFMPEG framework (Tomar, 2006) to convert and batch-resize 

the videos to a resolution of 960x540 pixels and a frame rate of 25 fps. 

Species Total clips FA clips CO clips Duration (mean ± sd) 

I. indri 214 162 51 14.25 ± 13.03 s 

P. diadema 636 566 70 7.07 ± 4.60 s 

N. gabriellae 543 429 114 44.28 ± 31.43 s 

Table 1. The number of clips (total, FA and CO) extracted using BORIS and the mean (± standard deviation) 

duration. 

 

We loaded the clips on DLC. We created three models, one for each target species. We used the 

DLC function extract_frames to random sample ten frames from each clip to create our training 

sets. Through the DLC graphical interface, we manually labelled 2355 frames for I. indri, 5200 

for P. diadema, and 2370 for N. gabriellae,  to indicate the position of a set of 13 points designed 
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to mark key areas of primate oro-facial configuration (see Fig. 1). We selected these points from 

the primate_face model (Witham, 2018). After a quick training, an operator could quickly and 

unequivocally identify these 13 markers, which can apply to a wide range of primate species. We 

used the coordinates of the labelled frames to train (95% of the dataset) and test (5% of the dataset) 

each DLC model. We used the intra-class correlation coefficient (ICC- Shrout & Fleiss, 1979) to 

test operators’ agreement on 200 randomly selected frames extracted from 20 videos. We used two 

operators for each species. For all the tests, we found a high agreement between our labellers (I. 

indri: 0.986 < ICC < 0.988; P. diadema: 0.992 < ICC <0.993; Nomascus spp.: 0.997 < ICC < 

0.997).  

 

To run our deep learning model, we used a ResNet-50-based convolutional neural network 

(Insafutdinov et al., 2016; He et al., 2016) with default parameters for 1300000 iterations. We 

applied a 0.6 p-cutoff that specifies the threshold of the correct positioning likelihood. Given the 

GPU requirements, we trained DLC models on a computer Intel® Xeon® W-2295, 18 core 36 

thread; RAM: 256 Gb; HD 12 Tb; GPU: 2x Nvidia Quadro RTX 8000 48 Gb (house name 

"Superbrain 2"). We ran two shuffles for each model and selected the models with the lower test 

error for further analysis. Once we trained the models, we used the DLC function analyze_videos 

to extract the coordinates of each key point available for every frame of all the clips.  

To thoroughly test the adaptability of DLC models, we meticulously selected additional video clips 

(20 for N. gabriellae, 23 for I. indri, and 24 for P. diadema) that were not part of the initial frame 

extraction phase. These clips, not included in the training or test sets, could feature new animals 

(for I. indri and P. diadema; although, for N. gabriellae, it was not feasible due to fewer sampled 

animals) and were recorded under varying conditions such as lighting, camera angles, 
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environment, animal visibility, and camera distance. We randomly selected and labelled ten frames 

from each clip using the DLC graphical interface. Subsequently, we applied the developed models 

to analyse the novel videos and extract the labelled frames' coordinates. To evaluate the models’ 

performance on novel videos, we computed the Mean Euclidean Absolute Distance (MEAD) 

between the coordinates of the manually labelled and predicted landmarks only when the predicted 

points showed a likelihood higher than the p-cutoff (0.6).  

 

2.3 Data normalisation and preprocessing steps 

 

Because mapping a particular frame could result in an incomplete set of markers (N < 13), we 

selected only the mappings featuring all the key points. Consequently, we excluded frames where 

at least one landmark was predicted with a likelihood lower than the p-cutoff. This situation could 

arise if key points were incorrectly positioned or if only parts of the face were visible, for example, 

when the camera angle did not allow for a direct frontal view of the subject. In this process, we 

also helped to minimise variability resulting from camera angle by excluding frames where 

excessive head rotation made it difficult to see all the points. As a result, we obtained 4240 frames 

for Indri indri, 4287 for Propithecus diadema, and 104111 for Nomascus gabriellae.  

 

Before conducting further analysis, we performed some preprocessing steps. We could perform a 

facial alignment transformation or not (Feighelstein et al., 2022; Morozov et al., 2021). Facial 

alignment reduces the geometric variation of faces through affine transformations (e.g. point 

rotation) and is widely used in face recognition studies (Wei et al., 2020; Morozov et al., 2021). 

For each species, we generated an aligned and an unaligned dataset. Adapting this approach to our 
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case study, we used a custom-made Python script to compute the angle of rotation between the 

coordinates of the two inner eye parts (RightEye_Inner-LeftEye_Inner) and to rotate the 

landmarks, ensuring that the line connecting these key points was horizontal (180°). 

We first calculated the Euclidean distance between each pair of the 13 points, resulting in a 13x13 

distance matrix for each frame. To account for the variability due to the animal's distance from the 

recording camera, we normalised all the matrices using the distance between the RightEye_Inner 

and LeftEye_Inner points, which remains fixed at the individual level and constant regardless of 

facial gestures (following Zhang et al., 2016). This helped to mitigate the discrepancies derived 

from the subject distance during recordings. After normalising the matrices, we imported them 

into the R software (R Core Team 2020, version 2023.12.1+402). We tabulated them to construct 

a data frame consisting of 78 variables corresponding to the number of non-redundant or constant 

(i.e., 0 and 1) distances. 

Figure 1 summarises the composition of the key points set, model development, and data 

processing/extraction. 



Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

12 

 

 

 Figure 1. The set of key points used for training the model on DLC: labelled by the human operator (a-d), predicted 

by the DLC model (b-e), converted in distance matrix, and normalised (the red line shows the distance selected for 

normalisation) (c-f). 

 

Since our resulting set presents numerous highly correlated variables, we used two approaches to 

prepare the data for subsequent automatic classifications. In the first case, we performed a 

correlation analysis (R Package stats, version 4.1.2) and removed all variables more correlated 

than 0.75 from the datasets. The variables selected for each dataset are listed in the Supplementary 

Materials (S1_List_variables_for_each_ML.docx).  A second approach was to apply a principal 

component analysis (PCA) (R package FactoMineR; Husson et al., 2016) for each target species 
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to reduce data to new uncorrelated variables (PCs). Then, we selected only the components with 

eigenvalue >1 (ten for I. indri, seven for P. diadema and nine for N. gabriellae). Results of 

Principal Component Analysis on aligned and unaligned data are reported in the supplementary 

materials (S2_PCA_supplementary_results.doc). 

We then approached the classification process for each species using four datasets with different 

preprocessing treatments: i) PCA on unaligned data, ii) uncorrelated variables from the unaligned 

data, iii) PCA on aligned data, iv) uncorrelated variables from the aligned data. This multiple 

datasets approach allowed us to understand how the individual treatments affected the algorithms' 

classification capabilities. 

 

2.4 Classification algorithms 

 

To assess the ability to distinguish between voiced and unvoiced facial configurations, we 

employed three machine learning algorithms: i) a multi-layer perceptron (referred to as MLP), ii) 

a support vector machine (SVM), and iii) a random forest classifier (RFC). Since the frames in 

which the animals were vocalising accounted for only about 10% of those they were not, we 

selected an equal number (N = 300) of instances for each class in every run-through subsampling. 

We executed each algorithm 100 times and ran the classification process for each pre-processed 

dataset. 

  

For the Multilayer Perceptron (MLP), we used the mlp function from the RSNNS package with 

learnFuncParams set to 0.1 and maxit set to 100 (Bergmeir & Benitez-Sánchez, 2012). For the 

Support Vector Machine (SVM), we used the SVM function from the e1071 package. We tested 
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gamma values of 0.005, 0.010, 0.015, 0.020, 0.025, 0.030, 0.035, 0.040, 0.045, and 0.050 for 

tuning, as well as cost values of 10^-8, 10^-4, 10^-2, and 10^0. We also tuned coef0 with values 

of 0.1, 1, and 10. We utilised C-classification and a polynomial kernel with a degree of 2 

(Dimitriadou et al., 2006). We selected the best gamma, cost, and coef0 values from tuning to 

achieve the highest classification rates. For the Random Forest Classifier (RFC), we used the 

randomForest function from the randomForest package in R with N trees set to 500 and N 

variables at each split set to 3. We then trained each classifier using 70% of each subsample and 

tested it on the remaining 30%. We calculated the average correct classification rates and their 

standard deviation for MLP, SVM, and RFC. After checking the distribution of the correct 

classification rates using the Shapiro-Wilk test (Shapiro & Wilk, 1965), we tested for significant 

differences in the correct classification rates using the Paired t-test (De Winter, 2019). In cases of 

deviation from normal distribution, we used the Wilcoxon Paired Test from the coin package 

(Hothorn et al., 2008). To evaluate the effect of the different preprocessing steps on the 

classification of the best-performing algorithm, we compared the correct classification rates using 

Student t-tests (Student, 1908) and Mann-Whitney U tests (McKnight and Najab, 2010). 

Shapley coefficients efficiently explain what happens to a model when we change the value of 

features and provide consistent insight into which features have the greatest influence in a 

machine-learning process (Strumbelj and Kononenko, 2014). For the sake of clarity, we only 

report SHAP analysis results for Random Forest classifications. 

 

3. RESULTS 

 

3.1 DLC models performance 
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We developed three DLC models capable of efficiently identifying the positions of our landmark 

set, demonstrating low root mean square error (RMSE) across all examined species: 3.72 px (with 

p-cutoff: 2.78 px) for I. indri, 3.29 px (with p-cutoff: 3.12 px) for P. diadema and 4.96 px (with p-

cutoff: 4.12 px) for N. gabriellae. Figure S3 shows root mean square error variation with the 

number of iterations in training and testing, for the three species. We provided readers with 

examples of labelled videos using the developed models in the supplementary material (Videos 

S4–S6). 

 

The analysis of novel videos indicated that the developed DLC models could generalise to clips 

not used for sampling images in the training and testing sets. The Mean Absolute Euclidean 

Distance (MEAD) between manually labelled and predicted key points was 5.68 ±  8.06 px for I. 

indri, 6.61 ± 13.70 px for P. diadema and  6.17 ± 1.20 px for N. gabriellae. As summarised in 

Table 2, the MEAD values revealed consistent differences among each key point, with the lowest 

performance observed in the peripheral parts of the mouth (Mouth_Right and Mouth_Left), and 

this trend is shared across all the target species. Examples of labelled novel videos are reported in 

the supplementary material (Videos S7–S9). 
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Table 2. Model 

performance 

across facial key 

points within 

novel videos. The 

number of 

detections that 

overcome the p-

cutoff is reported 

for each 

landmark. MEAD 

= mean absolute 

Euclidean 

distance. 

 

3.2 Classification results 

All the algorithms showed a correct classification rate of vocalising and non-vocalising facial 

gestures, which was higher than the chance for all species, and all the datasets were pre-processed 

differently (Figure 2). Overall, the algorithm that performed the best classification was RFC, with 

the highest results when applied to uncorrelated distances calculated from either aligned or not 

coordinates. However, we detected slight differences in the algorithm performances between 

species. The mean correct classification rates (and standard deviation) for all ML algorithms and 

the mean and standard deviation of the other metrics for the best performing dataset (correct 

classification rate, precision, recall, F1, and AUC score) are reported in the supplementary 

materials (Tables S10).  

 

Key-points 
I.indri P. diadema N. gabriellae 

MEAD (SD) N detections MEAD (SD) N detections MEAD (SD) N detections 

RightEye_top 5.37 (19.49) 107 2.76 (1.81) 143 4.68 (1.20) 106 

RightEye_Bottom 4.30 (2.87) 107 4.52 (2.81) 145 5.25 (3.21) 111 

RightEye_Inner 3.96 (2.93) 93 5.65 (12.34) 136 6.31 (2.25) 96 

RightEye_Outer 6.68 (25.03) 106 8.85 (46.55) 141 5.84 (3.01) 104 

LeftEye_top 4.86  (4.12) 123 5.19 (20.58) 132 6.77 (1.69) 108 

LeftEye_Bottom 5.00 (3.70) 111 4.21 (2.54) 132 7.48 (3.58) 110 

LeftEye_Inner 5.17 (3.46) 92 5.11 (3.76) 108 6.65 (1.00) 90 

LeftEye_Outer 4.22 (2.72) 120 9.92 (36.6) 127 5.70 (2.71) 105 

Nosetip 6.53 (21.08) 158 5.75 (4.43) 149 4.17  (3.30) 125 

Mouth_Top 5.31 (3.86) 86 7.64 (12.76) 127 6.69 (2.37) 114 

Mouth_Bottom 5.13 (3.13) 78 6.44 (7.91) 111 5.31 (2.16) 93 

Mouth_Right 7.97 (4.53) 29 10.68 (11.99) 53 7.29 (2.07) 81 

Mouth_Left 9.30 (7.90) 40 10.56 (12.76) 36 8.03 (6.59) 82 



Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

17 

 

 

Figure 2. Boxplots show the correct classification rates for each machine learning algorithm: multilayer perceptron 

(MLP), random forest classifier (RFC), and support vector machine (SVM). Each subfigure refers to a different 
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primate species: Indri indri (A), Nomascus gabriellae (B), and Propithecus diadema (C). Colours denote different 

processing and preprocessing steps. 

 

Starting from I. indri, all algorithms showed high values of correct classification rates (Figure 3). 

However, RFC outperformed other machine-learning techniques across all pre-processed datasets 

(Figure 2). RFC achieved the highest performance on the dataset derived from unaligned 

coordinates (92.01 + 1.99 %; Table 3). Wilcoxon tests revealed significant differences among the 

techniques applied (RFC-SVM: V = 0, p < 0.01; MLP-RFC: V = 0, p < 0.01). Comparison of the 

RFC correct classification rates across different datasets revealed significant differences between 

those treated with principal component analysis (Mann-Whitney test; noPCA vs PCA: W = 7943,  

p < 0.01; noPCA_aligned vs PCA_aligned: W = 8191,  p < 0.01), while no significant differences 

emerged when comparing aligned and non-aligned data without PCA (Mann-Whitney test; noPCA 

vs noPCA_aligned: W = 4252, p = 0.39).  
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Figure 3. Random Forest classification results (D, J) on I.indri key point distances derived from unaligned 

coordinates (CC = correct classification, MC = misclassification). We used multidimensional scaling (MDS) to 

explore the classification results in a bi-dimensional space identifying a frame close to the 1st quartile for Dimension 

1 for voiced gestures (C) and unvoiced gestures (E), the 2nd quartile (B and F respectively), and the 3rd quartile (A 

and G). Figures H and I display two misclassified gestures. On the lower right corner, a density plot (J) showing the 

predicted probability to the class “Voiced” (i.e. voiced gestures) 
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We obtained similar results for P. diadema (Figure 4): all the algorithms showed good 

classification performance, with RFC as best when applied on distances computed from aligned 

coordinates (89.85 ± 2.81 %; Table 3). As in the previous case, the paired t-tests revealed 

significant differences among the methodologies (RFC-SVM: T = -23.93, p < 0.01; MLP-RFC: T 

= 10.90, p < 0.01). Unlike  I. indri, no significant differences emerged from the comparison with 

dimensionally reduced data (Mann-Whitney test; noPCA_aligned vs PCA: W = 5508, p = 0.21; 

noPCA_aligned vs PCA_aligned: W = 5281, p = 0.49), while not aligned data showed significantly 
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lower performances (Mann-Whitney test; noPCA vs noPCA_aligned: W = 5955, p < 0.05).  

 

 

Figure 4. Random Forest classification results (D, J) on P. diadema key point distances derived from aligned 

coordinates (CC = correct classification, MC = misclassification). We used multidimensional scaling (MDS) to 

explore the classification results in a bi-dimensional space identifying a frame close to the 1st quartile for Dimension 

1 for voiced gestures (C) and unvoiced gestures (F), the 2nd quartile (B and E respectively), and the 3rd quartile (A 

and G). Figures H and I display two misclassified gestures. On the lower right corner, a density plot (J) showing the 

predicted probability to the class “Voiced” (i.e. voiced gestures) 
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Concerning N. gabriellae, the analysis showed very few differences among the classification rates 

of the three techniques. However, the best performance is again represented by RFC (Figure 5)  

applied on aligned data (88.94 ± 2.18; Table 3), and the paired t-test revealed significant 

differences between RFC and the other techniques (MLP-RFC: T = -6.11 p < 0.01; SVM-RFC: T 

= -14.40, p < 0.01). Performance of aligned data was significantly higher than not aligned data (t-

test; noPCA_aligned vs noPCA: T = 2.17, p < 0.05) and than dimensionally reduced aligned data 

(t-test; noPCA_aligned vs PCA_aligned: T = 3.81, p < 0.01), while we found no differences from 

the comparison with not aligned principal components  (t-test; noPCA_aligned vs PCA: T = 0.89, 

p = 0.37). 

 

The SHAP analysis indicated how strongly the individual variables contributed to model 

prediction. We understand from the average SHAP values that Mouth_Left-Mouth_Top, 

LeftEye_Outer-LeftEye_Bottom, Nosetip-RightEye_Bottom, were the most critical distances for 

the indris in determining voiced facial gestures. LeftEye_Outer-LeftEye_Bottom and 

Mouth_Right-Mouth_Bottom, and LeftEye_Inner-RightEye_Top and Mouth_Left-Mouth_Right 

were the most important in models of Nomascus gabriellae and Propithecus diadema, respectively 

(Figure S11).  
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Figure 5. Random Forest classification results (D, J) on N. gabriellae. Key-point distances derived from aligned 

coordinates  (CC = correct classification, MC = misclassification). We used multidimensional scaling (MDS) to 

explore the classification results in a bi-dimensional space identifying a frame close to the 1st quartile for Dimension 

1 for voiced gestures (C) and unvoiced gestures (F), the 2nd quartile (B and G respectively), and the 3rd quartile (A 

and E). Figures H and I display two misclassified gestures. On the lower right corner, a density plot (J) showing the 

predicted probability to the class “Voiced” (i.e. voiced gestures) 
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4. DISCUSSION 

  

We used advanced deep-learning algorithms to analyse the facial expressions of primate species. 

Our research demonstrates that facial gestures associated or not with vocalisations can be 

distinguished using distances between 13 key points. High correct classification rates are held 

across algorithms and in both captive and wild conditions. 

 

1. Deep learning application for studying facial gestures 

 

Our findings extend previous applications of DeepLabCut for studying animal behaviour by 

predicting the position of facial landmarks in different primate species. Our DLC models showed 

RSME for facial landmarks lower than 5 pixels, which is in line with the existing models 

considering animal-specific body parts (Sato et al., 2022; Wrench and Balch-Tomes, 2022). 

Results from our study align with previous DLC models developed for primate pose estimation, 

such as MacaquePose, based on captive macaque recordings (Labuguen et al., 2019; Labuguen et 

al., 2021), and DeepWild, built from wild chimpanzees and bonobos videos (Wiltshire et al., 2023), 

confirming that key points positioned on the subject face are detected efficiently. This result 

corroborates the suitability of DLC application in studying primate facial configurations. Despite 

multi-animal design and a larger key-point set to track the entire body, facial landmarks used in 

those applications showed lower RMSE and better performance than the other body points with 

error rates similar to our study (Labuguen et al., 2019; Labuguen et al., 2021; Wiltshire et al., 

2023). 
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We observed differences in the performances among the three species. Lemurs’ models performed 

better (i.e. lower RMSE) than the crested gibbon model. This result is surprising given that the 

gibbon model was trained on more images, taken in captivity, and included fewer individuals. 

These factors would presumably be associated with lower variability from the recording 

environment. A possible explanation for these differences in performance can reside in the species-

specific morphological characteristics. Unlike indris and sifakas, yellow-cheeked crested gibbons 

have highly dimorphic and dichromatic face and head fur patterns, showing a higher degree of 

inter-individual variation (Bolechovà et al., 2016; Mootnick and Fan, 2011). 

 

Our novel video analysis tested the ability to generalise to new footage of the DLC models, 

including different recording conditions and previously unseen individuals. The results showed 

performance errors (i.e., MEAD values) higher than each model's test errors but remarkably lower 

than those reported by Wiltshire and colleagues (2023), supporting the robustness of our models 

in identifying our set of facial landmarks and their suitability for the analysis of new recordings. 

We also found differences in the MEAD across each landmark, with higher errors and lower 

detection rates in distal points such as the mouth's (Mouth_right and Mouth_left) and eyes' sides 

(Right_Eye_Outer and Left_Eye_Outer).  

 

Considering the facial morphology of the study species (e.g., lemurs' facial protrusion), we can 

understand how the orientation of the face with respect to the camera is an element that can easily 

make some key points less visible or more challenging to predict. This finding aligns with 

differences among landmarks observed in the DeepWild novel video analysis (Wiltshire et al., 
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2023), supporting that each key point's position and intrinsic features can influence its detectability 

(e.g. landmarks in highly contrasted areas are more easily identifiable than those close to fur-

covered regions). 

 

2. Pre-processing steps and classification results 

 

We used different processing approaches to understand those performing best after calculating 

distances between key points and normalising them to the interocular distance (Zhang et al., 2016). 

We tested facial alignment and PCA's influence on the further classification results. The 

comparison revealed that facial alignment is important in improving the classification accuracy of 

all machine-learning techniques (Zhang et al., 2016). On the contrary, principal component 

analysis, applied to aligned or unaligned data, decreased classification accuracy. Applying PCA 

before discrimination is often debated when there is a relatively large number of variables and just 

a few levels of the grouping factor. In our case, variable reduction (i.e. removing highly correlated 

variables) proved more efficient than PCA, leading to higher rates across all the machine-learning 

approaches. Our findings align with previous applications of machine learning in ecology, where 

classification accuracy improved when using a small set of selected features (Tirelli & Pessani, 

2011; Tirelli et al., 2011) but contrast results of studies in which ML classification improved 

following the use of data reduction by PCA (e.g., Awan et al., 2019). Evidence shows that using 

principal components can negatively impact decision tree-based techniques, including random 

forests, which performed exceptionally well in our study (Howley et al., 2006). While, on the one 

hand, our results corroborate the fact that PCA is not to be used when dealing with Decision Trees 

or Random Forests, on the other hand, we have to record how some studies have screened out the 
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effect of adding principal components to the original parameters during a classification process. 

We see this as a prospect that can be evaluated in later studies (Popelinsky & Brazdil, 2000). 

 

An important dogma in ML is that one single algorithm might not necessarily be the best across 

all possible classification problems (Boateng et al. 2020) but, rather, the efficacy depends on type 

and dimensionality of datasets, as well as according to the measure employed for comparing 

classifiers (Gupta et al. 2022). Nonetheless, it seems that Random Forest outperforms a wide range 

of other methods and is one of the most popular algorithms for various prediction and classification 

tasks (Sheykhmousa et al. 2020). In fact, out of 68 studies published between 2000 and 2017, most 

recommend SVM and RFC because of higher accuracy and easier implementation (Boateng et al. 

2020). RFC has been demonstrated to be the best classifier in both training and testing phase of 

financial risk evaluation (Dong et al. 2024), in disease prediction (reaching the highest accuracy 

in 9 studies out of 17 where it was employed: Uddin et al. 2019), in land use classification 

(Ramachandra et al. 2023), and across 121 datasets belonging to the UCI ML repository (achieving 

the best performance in more than 90% of cases: Fernández-Delgado et al. 2014). In line with 

these studies, we found RFC to outperform both SVM and MLP in all classification tasks. 

Furthermore, unlike Gupta and colleagues (2022), but in line with Chowdhury 2024 (employing 

ML algorithms to demarcate built up and bare land in urban settings), we found that RF was the 

best classifier regardless of the measure employed for evaluation (see table S8). Again in line with 

Chowdhury 2024, we also found that MLP performed slightly better than SVM. Hence, our results 

represent a further shred of evidence sustaining RFC to be one of the easier, faster, and more 

accurate algorithms available. Provided that the reasons for performance lie in the data rather than 

in the algorithms themselves (Gupta et al. 2022), RF seems to be more efficient in treating large 
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input datasets and to perform better in mixed classes classification than SVM (Adugna et al. 2022). 

Our configurations, being the result of subtle facial movements, might be intrinsically mixed, and 

might have caused the SVM to be more prone to confusion among classes. Moreover, Neural 

Networks are known to need more data than RF to achieve a comparable accuracy (Roßbach 2018). 

See Boateng et al. 2020 and Roßbach 2018 for thorough comparisons highlighting weaknesses and 

strengths of various ML algorithms. 

3. Voiced vs Unvoiced Classification results 

 

Supervised machine-learning techniques showed high correct classification rates for efficient 

discrimination between vocalised and non-vocalised facial gestures. Despite the fewer landmarks 

compared to the model developed by Witham (2018), our custom set of key points can efficiently 

summarise face configurations, highlighting the differences between faces during the emission of 

vocalisation or in unvoiced gestures.  

Our results indicate that our approach can successfully screen a large set of videos and pictures to 

target voiced gestures. These gestures are indeed of interest in a wide range of comparative studies, 

from the multimodal nature of primate communication to the evolution of vocal communication 

in the animal kingdom (Ghazanfar & Takahashi, 2014). Our methodology could reduce the 

mismatch between the high volume of raw data often collected in ecological studies and the ability 

to extract meaningful information with little human labour (Tuia et al., 2022). 

Our findings agree with studies that have shown that vocal emission modifies facial appearance in 

humans (Lyons et al., 1998; Hontanilla & Aubá, 2008; Dagnes et al., 2019; Yehia et al., 1998; 

Yehia et al., 2002) and non-human primates (rhesus macaques - Hauser et al., 1993; Hauser & 

Ybarra, 1994; Ghazanfar, 2013). Oral tract movements during vocalisation emission can determine 
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remarkable modifications in face configuration. For instance, rhesus macaques can change their 

lip configuration according to the emitted vocal types, protruding their lips while emitting a coo 

call or retracting them during a scream (Hauser et al., 1993; Hauser & Ybarra, 1994). The co-

occurrence of vocalisations and face changes have also been described in lemurs, as shown in 

black-and-white ruffed lemurs roar-shriek chorus (Gamba & Giacoma, 2006) or indri songs (Indri 

indri), which modulate the mouth configuration while singing (Favaro et al., 2008; Gamba et al., 

2011). However, particular call types can be emitted with the mouth closed (e.g. hum and mmm in 

Propithecus diadema - see Valente et al. 2022) or barely open (e.g. grunt in Indri indri - see Maretti 

et al. 2010). Therefore, future research could investigate whether nasal resonating calls correspond 

to subtle variations in the facial configuration not captured by the current key points, potentially 

resulting in misclassification. 

The visual inspection of misclassified frames provided insights into the potential causes behind 

the incorrect classifications, revealing various scenarios. Most misclassified cases were 

"unvoiced" gestures predicted as "voiced". In several instances, these frames depicted subjects 

with open mouths, such as during chewing, supporting the idea that mouth opening plays a critical 

role in vocal emissions (Fitch et al., 2016). Another factor likely influencing misclassification was 

the camera angle. Many misclassified unvoiced configurations, particularly in the indri model, 

showed subjects with their heads rotated upward. Since head rotation characterises the emission 

of indris’ song (Gamba et al., 2011), the most represented vocal type within the present study, the 

camera angle may have contributed to the misclassification of images framing subjects with heads 

rotated upward. Fewer instances involved voiced gestures incorrectly classified, reinforcing that 

facial configuration is highly distinctive during vocal emission in the three study species. Another 

potential source of inconsistency in classification is that, since we were working at a frame-level 
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analysis, the clips, including vocal emissions, could include gestures immediately anticipating or 

following vocalisation. Those gestures could be incorrectly labelled as "voiced" and then 

misclassified. Thus, if labelling frames begins at the video screening stage, the precision with 

which the videos are cut from the footage is important for generating frames correctly labelled a 

priori.  

 

Interestingly, SHAP analyses showed that variables related to oral movements in all species were 

highly important for classification of voiced facial configurations. This results supports the idea 

that jaws movements are critical in determining distinctive facial gestures in nonhuman primates 

(Ghazanfar, 2013). 

 

CONCLUSIONS 

 

In the future, we could use deep learning to decode the facial movements of other animal species. 

Our study has shown that this potential exists, and with increasingly powerful computers, this 

process could become even more accessible. However, this does not mean that human screening 

of images is unnecessary, as it currently allows the detection of differences that can be encoded in 

messages exchanged through facial gestures. Further studies could investigate the ability of DL 

algorithms to identify and classify different facial gestures. This approach could help integrate 

with existing techniques like AnimalFACS (Ekman & Frieser, 1978; Waller et al., 2020) to 

contribute to developing comparative studies concerning communicative multimodality. 
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per bullet point). 
 
 

 DeepLabCut represents a promising tool for quantifying facial movements. 

 We can automatically discriminate among voiced and unvoiced primate faces. 


