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Università degli Studi di Torino
Politecnico di Torino

A.Y. 2019/2020
September 24, 2020

17



This thesis is licensed under a Creative Commons License, Attribution - Noncommercial-18

NoDerivative Works 4.0 International: see www.creativecommons.org. The text19

may be reproduced for non-commercial purposes, provided that credit is given to20

the original author.21

I hereby declare that, the contents and organisation of this dissertation constitute22

my own original work and does not compromise in any way the rights of third23

parties, including those relating to the security of personal data.24

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Salvatore Di Stefano

Turin, September 24, 2020
25

www.creativecommons.org


Summary26

The main goal of this Thesis is the mathematical modelling of certain problems27

in the context of Biomechanics. In particular we have focused on:28

• the remodelling of fibre-reinforced biological tissues, with particular attention29

focused on the articular cartilage of the (human) knee (we address this tissue30

because it is the one for which we have the largest number of experimental31

data);32

• growth and growth-induced structural transformations in the case of tumour33

masses and multicellular spheroids;34

• the effective behaviour of highly heterogeneous media subjected to a reorgan-35

isation of their internal structure, with particular attention to layered tissues36

like the bone.37

The scientific activity has been conducted by developing theoretical and compu-38

tational studies in the field of Nonlinear Continuum Mechanics, with the purpose of39

addressing different aspects of the research lines enlisted above. The main results40

of this Thesis can be summarised as follows.41

First, we review some fundamental aspects of growth and remodelling, by42

switching to non-local theories of inelastic processes to capture phenomena that,43

otherwise, is not possible to catch.44

Second, we adapt some models of growth and remodelling available in the lit-45

erature to more realistic benchmarks, with the possibility to disclose results which,46

to best of our knowledge, were not accounted for by other Authors.47

Third, we enrich models of growth and remodelling by selecting suitable vari-48

ables describing the structural transformations of a tissue and by studying their49

evolution. Such an evolution is respectful of some mathematical restrictions, pre-50

dicted by our theoretical framework.51

This Thesis is mainly conceived for the broad and growing intersection between52

the Physico-Mathematical and Engineering communities that focuses on biome-53

chanical problems from the theoretical, computational and experimental point of54

view. In this respect, the mathematical models proposed for this class of prob-55

lems require, or could require, the development of dedicated numerical procedures,56

iii



which could bring to the opening of new research lines in the field of computational57

mechanics (for studying the robustness and the stability of algorithms, multi-grid58

techniques, solution of coupled problems, discretisation, linearisation methods and59

solvers for very large linear systems), but also new interpretations of theories al-60

ready present in the literature, as well as conceptual generalisations to include and61

investigate some aspects of theirs that are hidden in them and not sufficiently ex-62

plored. An example is given by the standard theories of growth, which often only63

rely on decompositions of the deformation gradient tensor of the BKL-type, without64

resolving explicitly the point dependence of the involved tensor fields. With this at-65

titude in mind, the purpose of this Thesis is not the investigation of ”biomechanical66

applications”, but rather the study of a modelling process of logic-deductive type67

that tries to describe a certain class of phenomena of biomechanical interest that68

are often left out from the majority of models available in the literature. Only later69

the mathematical models developed and presented in this Thesis are specialised to70

cases of interest, for which we know all the necessary experimental data. In the71

chapters of this Thesis, we will refer to articular cartilage, as an example of fibre-72

reinforced soft tissue, to tumour masses, as a reference medium in which growth73

and (growth-induced) remodelling take place, and to the bone tissue, as a proto-74

type of highly heterogeneous layered medium, undergoing a transformation of its75

internal structure.76

The present Thesis is based on the following list of papers:77
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ripartire dai propri errori.142

Al mio maestro, Alfio, che ogni giorno143

mi trasmette come fare il mestiere che144

amo nella maniera migliore in assoluto,145
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Chapter 1293

General Introduction:294

An overview of the main topics295

of the Thesis296

This Thesis focuses on the study of some aspects of remodelling of fibre-reinfor-297

ced biological tissues, as is the case of articular cartilage (Part I), and growth and298

remodelling of tumour masses (Part II).299

With the term “remodelling” we refer to a class of transformations occurring300

in a biological tissue and pertaining to the evolution of its internal structure (we301

do not consider phase transitions among those transformations). In general, this302

transformation results in a change of the tissue’s macroscopic mechanical proper-303

ties. As reported in Chapters 2, 3 and 4, in this Thesis we consider two different304

types of remodelling: one consists in the manifestation, at the tissue scale, of struc-305

tural rearrangements representable in terms of inelastic distortions, while the other306

one is the reorientation of the fibres in fibre-reinforced tissues. The former process307

is described, by exploiting the Bilby-Kröner-Lee decomposition of the deformation308

gradient tensor, in terms of a non-integrable, mixed, second-order tensor, which ac-309

companies the change of shape of a tissue and the flow of its interstitial fluid. The310

latter process studies the change of the mechanical properties of a fibre-reinforced311

tissue in response to the evolution of the fibres’ orientation. The two types of re-312

modelling mentioned above are studied together in Chapters 2 and 3, where we313

highlight some possible interactions between the development of inelastic distor-314

tions and the reorientation of the fibres. In Chapter 4, instead, we focus only315

on the remodelling intended as production of inelastic distortions, and we address316

tissues that do not feature fibre reinforcement, but that are characterised by a317

highly heterogeneous, layered structure. We study these tissues with the aid of the318

Asymptotic Homogenisation Theory and we hypothesise absence of fibres in order319

to simplify the resulting mathematical setting.320

1



General Introduction: An overview of the main topics of the Thesis

With the term “growth”, we denote two classes of phenomena: one is referred321

to as appositional, or surface, growth and consists of the deposition or removal of322

material from an existing one (see e.g. [222, 17]), while the second one is said to be323

volumetric growth and consists of the redistribution and time variation of the mass324

density of a medium (see e.g. [210, 222, 72]). In this Thesis we consider exclusively325

volumetric growth. This will be introduced in Section 1.2 and in Section 1.6, and326

subsequently addressed in Chapters 5, 6 and 7 within different theoretical settings.327

For completeness, we anticipate that the type of remodelling studied in this328

Thesis does not produce variations of mass and is characterised by time scales329

strongly separated from those related to volumetric growth (for instance, in tumour330

spheroids growth occurs over time scales of the order of days or weeks, whereas331

remodelling occurs on the time scale of minutes or seconds, also depending on332

the experiment that is considered). In addition to this consideration, we emphasise333

that, in none of the chapter devoted to remodelling, we shall speak of mass variation334

induced by remodelling. Furthermore, whereas growth may induce remodelling,335

due to the distortions that accompany the uptake or loss of mass, remodelling itself336

induces no growth.337

Some parts of this introductory chapter are taken from [61, 56, 62, 114].338

1.1 Remodelling of fibre-reinforced tissues339

Biological tissues tend to adapt themselves to the stimuli to which they are340

exposed and to the environment in which they are placed [222]. By “stimulus” it is341

meant here any interaction, or combination of interactions, that yields an evolution342

of mass, composition, shape, and internal structure of a given tissue. An interaction343

of this kind can be genetic or epigenetic, physiological or pathological, and may be344

related to the occurrence of phenomena of various nature, associated with different345

time and length scales (see [61] and references therein).346

In this work, emphasis is put on the evolution of the internal structure of fibre-347

reinforced soft tissues saturated with an interstitial fluid and exchanging mechanical348

interactions with it. For a model describing the exchange interactions between the349

fluid and the solid phase of a tissue experiencing anelastic phenomena, we refer, for350

example, to Garikipati et al. [98]. The fibres consist of collagen and are assumed351

to be directed according to a spatially inhomogeneous statistical distribution of352

orientations that makes the tissue anisotropic [151, 22, 100, 83, 79]. The fibres can353

be described as filiform elements with circular section. Within the mathematical354

models presented in this Thesis, a generic fibre is rectified in a neighbourhood355

of a given material point and a unit vector attached to that point is introduced356

to define the local direction of anisotropy of the material. On the other hand, the357

mechanical properties of the fibres are accounted for in the anisotropic contribution358

of the tissue’s energy density function. Hence, at the tissue’s scale and within a359
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large deformation framework, our models lose the resolution of the fibres’ geometry.360

Other details concerning the fibres’ structure and mechanical properties are given in361

[76, 134, 158, 88]. The interactions with the fluid are usually accounted for under362

the hypothesis of validity of Darcy’s law [138, 199, 17] (see [61] and references363

therein).364

Within the modelling framework outlined above, we address a type of struc-365

tural reorganisation that may be associated with two types of phenomena. The366

first one, which is often encountered in the study of cellular aggregates and tumour367

spheroids, occurs through the reorganisation of the extracellular matrix of the con-368

sidered tissue, and leads to the change of the adhesion properties of the tissue cells369

[198, 104, 112]. The second phenomenon, studied in the mechanics of bone, consists370

of the emergence of irreversible strains in conjunction with the formation of micro-371

cracks in diseased or injured tissues [97] (we emphasise, however, that, whereas372

the reference to the work by Garcia et al. [97] serves to highlight the vastity of373

the biomechanical problems that can be addressed by suitably re-interpreting the374

Theory of Plasticity, no model of damage is considered in this Thesis). To give a375

small illustration of the type of remodelling that we investigate in this Thesis, let376

us consider an aggregate of cells of spherical shape. When such cellular aggregate377

is subjected, for instance, to centrifugation, the shape of the aggregate as a whole,378

as well as the shape of the cells that it contains, change, and it is possible to exper-379

imentally observe that, after a sufficiently large amount of time, the cells tend to380

reach a stress-free state (see [86]). Moreover, the cells change their positions and381

redistribute their shape and orientation in a permanent manner, so that the aggre-382

gate does not spontaneously tend to recover its original configuration, regardless of383

the absence of external loads. Although some Authors (as Forgacs and Co-authors384

in [86]) use the theory of viscoelasticity to model the experiment described so far,385

the inelastic behaviour of the cellular aggregate may also suggest interpretations386

close to viscoplasticity. Indeed, the internal structure of the aggregate changes as387

a consequence of the fact that the cells, relaxed or not, have modified their shape388

and arrangement inside the tissue. Therefore, at least in our opinion, to account for389

the just depicted phenomenology, it may be necessary to borrow concepts from the390

theories of plasticity or viscoplasticity, since these are able to describe the tissue’s391

internal kinematics in a way that is similar to the motion of the defects in solids.392

In spite of the fact that the aforementioned phenomena have different nature,393

both of them may be described by suitably re-interpreting some fundamental con-394

cepts of the theory of Plasticity (a general introduction to the Theory of Plasticity395

can be found in [161, 176]). More specifically, it is stipulated that both the re-396

modelling of a tissue’s extra-cellular matrix and the irreversible strains arising in397

the case of damaged or overloaded tissues can be expressed in terms of plastic-like398

distortions. The physical meaning of such distortions can be captured by relating399

them to the concept of residual stresses, which are often believed to accompany400

the structural changes of a tissue. The Reader is referred to [90, 92, 93, 89, 103]401
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for a presentation of the role played by residual stresses in the study of biological402

tissues, with particular emphasis put on articular cartilage and to [120] for arterial403

walls. We also mention [6, 49, 86, 87, 91, 100, 139, 140, 144, 147, 149, 183, 219,404

220] for a treatment of residual stresses in biological tissues, also with reference to405

growth. Since residual stresses persist even when all the loads applied to the tissue406

are switched off, even an unloaded configuration, taken as reference for the tissue’s407

evolution, may happen to be in a stressed state (see [61] and references therein). We408

remark that there exist also other approaches to study residual stresses in biological409

tissues, as reported, for instance, in [49, 175].410

Accordingly, it is possible to identify the plastic distortions with the transfor-411

mations that bring a considered tissue (such as articular cartilage or tumour masses)412

from the stressed state associated with the chosen reference configuration to a413

stress-free state, i.e., a state reached by eliminating all applied loads and relaxing414

all residual stresses [176, 210]. We recall that a similar definition is given in [196]415

for the remodelling associated with growth. We also remark that the types of416

tissues addressed in this work do not comprise muscles for which the mathematical417

formulation, in spite of some similarities with the present one, requires to account418

for active strains (see, for instance, [102]), which are conceived within a different419

phenomenology.420

The study of fibre-reinforced composite materials is of great interest in Biome-421

chanics, since it permits to understand various aspects of the mechanical behaviour422

of biological tissues. In the literature, there are works dedicated to fundamental423

questions, e.g. [140, 174, 228, 170], that focus on the formulation of constitutive424

models for fibre-reinforced tissues with a statistical distribution of fibres (arteries,425

articular cartilage, etc.) and, therefore, they require a “correct” definition of suit-426

able operators of directional averages, studies that infer the elastic and hydraulic427

properties of a tissue on the basis of micro-scale information, e.g. [203, 84, 83, 82,428

80, 194, 195], and studies devoted to the formulation of computational methods429

and algorithms (see e.g. [64, 234, 79, 40, 131, 130] and [56]).430

For fibre reinforced tissues, it is essential to provide a robust theoretical back-431

ground to study their growth, structural reorganisation, and damage (see e.g. [157,432

154, 72, 98, 13, 233]), and to relate such processes to the evolution of the material433

properties. This knowledge, indeed, is helpful for predicting the behaviour of in-434

jured or diseased tissues, and it may supply indications in the design of engineered435

tissues (see [56] and references therein).436

1.2 Growth and remodelling of biological tissues437

The volumetric growth of a biological tissue consists of the variation and redis-438

tribution of its mass, and is the consequence of processes that influence each other439

reciprocally in spite of their being characterised by different time and length scales440
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[55, 91, 222] (see [114] and references therein).441

Besides genetic, bio-chemical, and bio-physical phenomena, which pertain to442

the molecular and intra-cellular scales, the growth of a tissue also depends on443

interactions that occur at the inter-cellular level, as well as on those that involve444

the tissue as a whole. The latter two types of interactions are often studied with445

the purpose of describing how a tissue evolves, for instance, by adapting its internal446

structure and material properties in response to the changes of its environment (see447

[114] and references therein).448

In fact, the structural adaptation of a tissue may manifest itself in several dif-449

ferent ways, and it may involve one or more classes of phenomena, which are often450

referred to with the common name of remodelling. For the types of problems451

addressed in this Thesis, in which a tissue is viewed as an aggregate of cells, a452

reorganisation of its internal structure is assumed to occur through the dissolution453

and reformation of the adhesion bonds among the cells [9, 198, 104], or through a454

rearrangement of the position, shape, and orientation of the cells in the aggregate455

[87, 86]. In both cases, remodelling acquires the character of a configurational pro-456

cess at the inter-cellular scale, and may result in an inelastic change of shape of the457

tissue as a whole. More generally, however, when the extracellular matrix (ECM) is458

accounted for, or in the case of fibre-reinforced tissues, the structural changes take459

place through the distortion of the ECM’s collagenous network [200], or through460

the reorientation of the collagen fibres (see [114] and references therein).461

The problem of fibre reorientation has been addressed in several works, some-462

times in connection with growth, and for different types of tissues, these ranging463

from blood vessels (see e.g. [64, 127, 171, 183]) to articular cartilage (see e.g. [234,464

203, 21, 116, 108, 56]). In other situations, as is the case for bone, the concept of465

structural adaptation is introduced to interpret the formation of cracks [97], the466

onset of damage, and the occurrence of inelastic distortions that are remnant of the467

phenomenon of plasticity in metals (see e.g. [161, 176] and [114]).468

To describe the processes mentioned so far, a tissue may be viewed as a contin-469

uum, or a mixture of continua, and its dynamics may be revealed, at least partially,470

by formulating mathematical models based on the laws of continuum mechanics (see471

[114] and references therein).472

When a tissue is modelled as a mixture of continua —typically a fluid phase473

and one or more solid phases— [38, 17, 11, 110, 104, 105], its growth is usually474

identified with an inter-phase exchange of mass. Such process is assumed to yield475

either an accretion of the solid mass at the expenses of the fluid or a loss of solid476

mass, induced by the disintegration of the tissue cells, which become necrotic and477

are then dissolved into the fluid. In such a framework, the solid phase is taken as478

a representation of the tissue cells (and, where appropriate, of the ECM), and a479

mathematical model of growth should be able to relate the mass variation of the480

solid phase with the availability of nutrients and with the structural transformations481

that possibly accompany growth. As already mentioned above, the latter ones are482
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assumed to have inelastic nature and may refer to the redistribution of the solid483

mass, to the change of the cells’ arrangement inside the tissue, so as to mimic the484

result of the dissolution and reformation of the cellular adhesion bonds, or to a485

combination of both phenomena (see [114] and references therein).486

We remark that some models available in the literature study the mechanics of487

growth and remodelling as independent processes, with the aim of capturing the488

most important aspects of these two phenomena (see, for instance, [116, 5, 6, 7,489

104, 38, 26]). In general, this is possible when the time scales characterising the490

growth and the remodelling of a biological tissue are well separated. In general,491

when it is not possible to appreciate such separation of scales, the two phenomena492

should be studied as coupled, as is the case of the problems of growth and growth-493

induced remodelling in tumour masses addressed in the Thesis (Chapters 5,6,7).494

Hence, understanding how growth and remodelling are related to each other is a495

necessary step towards the comprehension of the evolution of biological tissues.496

In this respect, we remark that the coupling of growth and remodelling has been497

investigated in several papers (see e.g. [9, 105, 166] and the references therein),498

without considering strain-gradient constitutive laws, while second-order theories499

have been proposed e.g. in [47, 48, 50] to investigate the transport of mass in the500

presence of morphogenesis (see also [72] for a discussion on this issue).501

1.3 Summary of the Thesis and research ques-502

tions503

In this section, we give a brief presentation of the contents of each of the fol-504

lowing chapters, and we highlight the research questions driving this Thesis.505

1.3.1 Part I: Remodelling506

We formulate two descriptions of remodelling for two different types of tissues.507

In Chapters 3 and 4, we focus on hydrated, fibre-reinforced, soft tissues and508

select articular cartilage of the (human) knee as the representative member of this509

class of tissues. We make this choice because we are aware of many experimental510

data that specify the material properties of articular cartilage, such as elasticity and511

permeability, and that can thus be used for the numerical simulation of benchmark512

problems and proofs of concepts. Starting from the well-established constitutive513

theory of fibre-reinforced materials in biological context, especially in the case of514

statistical distribution of fibres (see [151, 22, 100, 83, 79]), we conjecture how the515

reorganisation of the tissue’s internal structure affects its mechanical, hydraulic and516

structural properties in terms of stress distribution, fluid flow, pore pressure, and517

evolution of the structural degrees of freedom.518
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In Chapter 5, we consider an idealised version of a biological tissue that, within519

its lowest approximation, can be regarded as a layered medium (not a hydrated520

tissue, this time) consisting of several layers of isotropic materials, each of which is521

characterised by its own elastic properties. The resulting medium is highly hetero-522

geneous and we are interested in looking at how the evolution of the micro-structure523

of each layers affects the overall elastic properties of the layered medium. For this524

purpose, we adopt the Theory of Asymptotic Homogenisation.525

Research questions of Part I526

In this section, we expose the specific research questions addressed in the forth-527

coming Chapters 2, 3, 4.528

We rely on existing literature, in which the remodelling of a given soft tissue529

is understood as a continuous evolution of the tissue’s mechanical properties, that530

is achieved through a stress-driven rearrangement of its cellular adhesion bonds531

[198, 104, 112] (note that, according to this vision, the identification of remodelling532

with the structural adaptation of the tissue is respected). Then, we conjecture533

that this approach can be “imported” to the description of remodelling of a fibre-534

reinforced tissue, like articular cartilage, for which, in addition to the evolution535

of the elastic properties, also the capability of conveying the interstitial fluid is536

affected by its structural reorganisation. In particular, this latter aspect is put in537

connection with the deformation of the solid phase of the tissue, i.e., its matrix,538

which, in turn, induces a variation of the porosity. Furthermore, on the basis of the539

previous models put forward in [176, 200, 198, 199, 104, 112, 111], and by adapting540

the theoretical framework proposed therein to our problem, we also conjecture that541

the above introduced inelastic distortions are triggered by stress, when it exceeds542

a threshold, regarded as a material property. Within this modelling framework, we543

set ourselves the following specific research questions:544

2.1 By comparing the (hypothesised) behaviour of the considered tissue with545

that of well-known elastoplastic materials, can one expect that remodelling546

—intended as onset and development of inelastic, or plastic-like, distortions—547

leads to an optimised re-distribution of stress and fluid pressure? Our answer548

is positive, as shown in Section 2.5 (see Figures (2.2), (2.4) and (2.5)).549

2.2 Since, to the best of our knowledge, inelastic distortions are often studied in550

the biological context for the case of isotropic materials, could there be an551

interplay, or a combined effect, between anisotropy and inelasticity that gives552

rise to new material behaviours? We answered this question in Section 2.5553

(see Figures (2.1), (2.2), (2.4) and (2.5)).554

2.3 Since the interstitial fluid plays a major role in the mechanical behaviour of555

the tissue, should one see, at least in the numerical simulations of the well-556

known benchmark problems addressed in the sequel, some specific phenomena557
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concerning fluid flow? We answered this question in Section 2.5 (see Figure558

(2.1)).559

By extending the modelling framework outlined above, we also focus on the re-560

orientation of the reinforcing collagen fibres embedded in the tissue’s extracellular561

matrix. Such phenomenon consists in a structural process of remodelling, which562

accompanies the deformation and the structural adaptation of the tissue’s extracel-563

lular matrix, as well as the evolution of the flow of the interstitial fluid. We start564

from different results available in the literature [21, 108, 116] in which the alignment565

of the fibres are described by a probability density, which measures the probability566

that a (rectified) fibre is aligned along a given direction. Such probability function567

depends constitutively on different scalar parameters. The reorientation of the fi-568

bre is determined by the evolution of such parameters. In our model, we select the569

so-called fibre-mean angle as structural parameter associated with the kinematics570

of fibres. The fibre mean angle is associated with the most probable direction, at571

each material point of the tissue, with respect to which the fibres tends to align572

themselves. In addition, we also adopt the concept of “target angle” [64, 21, 127,573

183], i.e., a preferred direction that contributes to drive the direction of orientation574

of the fibres, and it is a functional of the deformative and/or of the stress state of575

the tissue.576

We conjecture a constitutive framework in which, through the definition of a577

suitable energy density function, we describe the mutual interactions, at different578

length scales, of the structural evolution of the tissue —intended as stress-driven579

evolution of inelastic distortions of the matrix and fibres’s reorientation— with the580

deformation and the fluid flow and the role played by the target angle. In particular,581

we answer the following research questions:582

3.1 By comparing the model developed in our work with other published works583

concerning the reorientation of fibres, we ask ourselves: In which way does584

the coupling among the above mentioned phenomena influence the main me-585

chanical quantities (pore pressure, deformation, hydraulic properties, stress586

distribution) characterising a sample of tissue? We discussed the answer to587

this question in Section 3.5.588

3.2 What is the role played by the target angle on the reorientation of the fibres?589

Is it possible to find stationary solutions of the evolution equation of the fibre590

mean angle? The answer to this question is given in Section 3.5.591

3.3 Which are the generalised forces dual to the generalised velocities associated592

with the structural changes that are accounted for in the model and what593

is the generalised force that drives the reorientation of the fibres produced594

by the target angle? The answer to these questions are given in Section 3.4595

and in Section 3.4.1, and we anticipate that we have individuated an effective596
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Mandel stress tensor which comes from the constitutive form of the chosen597

strain energy density. In fact, the latter involves the coupling between the598

variables associated with the plastic-like distortions and the gradient of the599

fibre mean angle, since we are dealing with a gradient theory with respect to600

such variable, in order to explicitly resolve its spatial distribution within the601

tissue.602

Finally, we focus on a class of heterogeneous materials with evolving micro-structure,603

which can be used to suitably model certain types of tissues, such as the bone tis-604

sue. In particular, we study materials comprising two hyperelastic media, which605

manifests an evolution of their internal structure. It is, in fact, this evolution that606

we understand here as a manifestation of remodelling for heterogeneous media. We607

assume that the evolution of the micro-structure is an inelastic process that, to608

a certain extent, resembles the phenomenon of Perzyna-type plasticity [176, 161].609

This is done on the basis of previously published mathematical models [200, 198,610

199], all showing agreement with biological evidence [86, 87]. We assume, in partic-611

ular, that the tissue is a layered medium and we conjecture that the variation of the612

internal structure of a given layer is represented by the development of inelastic dis-613

tortions, which are set off when the mechanical stress in that layer exceeds a certain614

threshold. Within this picture, the heterogeneity of the overall medium gives rise615

to a multi-scale problem in which a scale-dependent remodelling takes place. For616

such reason, we apply the asymptotic homogenisation technique to the equations617

describing the dynamics of a heterogeneous material with evolving micro-structure,618

thereby obtaining a set of upscaled, effective equations. We answer the following619

research questions:620

4.1 What is the role played by plastic-like distortions in the effective form of621

the equations describing the dynamics of heterogeneous media whose internal622

structure evolves? The answer to this question is given in Section 4.5.1.623

4.2 What is a suitable evolution law for inelastic distortions in this framework?624

The answer to this question is given in Section 4.5.2.625

4.3 Also in the case of a simplified microstructure (as is the case of a layered626

micro-structure), which could the most suitable computational tools be to627

run our numerical simulations of a problem stated in this framework? The628

answer to this question is given in Section 4.6.629

Although the results we have obtained seem to us plausible, at least from the630

logical and deductive point of view, there is, up to now and to the best of our knowl-631

edge, no experimental evidence that our predictions occur in a real tissue. However,632

our hope is, at least, to suggest targets for new experimental investigations.633
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1.3.2 Part II: Growth634

We study the volumetric growth of isotropic biological tissues by adhering to635

three different modelling scenarios. More specifically, within this part of the Thesis,636

we focus on the growth of tumours in avascular stage, i.e., before the onset and637

development of vascularisation processes. Furthermore, as representative example638

of this class of tumours, we select the ductal carcinoma, a kind of tumour that639

develops inside the breast ducts. Such choice is motivated by the availability in the640

literature of experimental data and benchmark problems [167, 166, 7, 8], which we641

use as comparison to test our own models. The latter one, in fact, are generalisa-642

tions of pre-existing models [104, 105, 66, 11, 38], and, as such, they require new643

parameters that are neither known nor extrapolable from those used in the previous644

studies which we refer to [167, 166, 7, 8, 104, 105, 66, 11, 38]. To circumvent this645

lack of information, we perform a sweep of the new parameters, thereby evaluating646

their influence on the obtained results. Starting from different models of tumour647

growth available in the literature, we conjecture how structural, or configurational,648

processes can affect the growth of a tumour, in addition to the well-studied ones of649

biological and mechanical type.650

In Chapter 5, we propose a model based on a gradient theory of tumour growth.651

Within such a theory, in addition to the growth tensor, which represents the inelastic652

distortions induced by growth in a tumour [66, 69, 72, 47], we consider the material653

gradients up to the second-order of the growth tensor, thereby explicitly accounting654

for the resolution of inhomogeneities within the tumour. Note that, with the term655

“inhomogeneity”, we mean that, at different material points, the growth-induced656

distortions are different, i.e., material points are not equivalent, and the gradients657

of the growth tensor capture the self-interactions between neighbouring points [66].658

In Chapter 6, we enrich the model proposed in the previous chapter in the fol-659

lowing way: we conjecture that, together with growth, also another type of inelastic660

distortions may arise in a growing medium. As discussed in [198, 104, 112] , this661

second type of distortions describes the reorganisation of the internal structure of662

the medium. In order to keep the model at a reasonable level of complexity, our663

theory is of grade zero in the growth-induced distortions (no gradients of the growth664

tensor are accounted for) and of grade one in the second type of distortions. To665

this end, we adapt to our purposes the theory of Anand, Aslan and Chester [15]666

and rephrase it for saturated porous media.667

In Chapter 7, we assume that the time scale characterising the growth of a668

tissue is represented by a thermodynamic quantity called internal time [117, 176,669

227]. We study this aspect with reference to two different theories of growth and670

we compare our results with phenomenological laws of growth [72, 60, 166].671
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Research questions of Part II672

In this section, we expose the specific research questions addressed in the forth-673

coming Chapters 5, 6 and 7.674

We adhere to models of tumour growth in which the tumour is described as a675

biphasic medium comprising a solid phase and a fluid phase. The former consists676

of two families of cells, the proliferating and the necrotic cells, while the latter677

is the interstitial fluid, which conveys various biological molecules and chemical678

agents to activate or deactivate several biological processes. In particular, growth679

is studied as a process of mass transfer among the constituents of the phases,680

through the definition of suitable source and sink terms. Such terms take into681

account, for example, the availability of nutrients within the tumour, their diffusion682

and transport through the interstitial fluid and mechanical interactions among the683

phases. In our work, we conjecture that the growth of the tumour gives rise to the684

onset and development of material inhomogeneities, which contribute in producing685

structural changes within the tumour tissue.686

In Chapter 5, we study such material inhomogeneities by extending the standard687

kinematic description of growing tumours, in order to account for configurational688

effects associated with such material inhomogeneities, together with biological and689

mechanical stimuli [66, 62, 166]. To this end, we introduce a non-integrable, mixed,690

second-order tensor, called “growth tensor”, with which we build a non-Riemannian691

growth-induced metric [66, 62, 235, 236, 106]. The scalar curvature of the Levi-692

Civita connection associated with such a metric has been employed as kinematic693

descriptor of our theory. We reformulate the terms describing the gain/loss of mass694

by introducing non-standard terms, expressed as functions of the growth-induced695

scalar curvature. This way, we rephrase the standard ordinary differential equation696

governing the growth of a tumour into a partial differential equation. Such an697

approach permits to capture the spatial variability of the growth and the influence698

of the material inhomogeneities produced by growth on the growth itself [62]. More699

specifically, we answer the following research questions:700

5.1 In which way, both qualitatively and quantitatively, does the evolution of the701

material inhomogeneities influence the main mechanical entities (displace-702

ment, pore pressure, distribution of stress) and biological processes (tumour703

evolution, development of necrotic cells, distribution of nutrients) of a growing704

tumour? The answer to this question is given in Section 5.5.705

5.2 What is the physical interpretation of the evolution of material inhomo-706

geneities accompanying growth? The answer to this question is given in707

Section 5.6.708

5.3 In which way does the evolution of the material inhomogeneities affect the709

material symmetries of the growing tissue? The answer to this question is710

given in Section 5.6.711
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In Chapter 6, in order to generalise the framework of tumour growth outlined712

above, we investigate the way in which a tumour grows and remodels by virtue713

of growth. When a tissue remodels, the cells tend to change their positions and714

to redistribute their shape and orientation in a permanent manner, so that the715

tissue does not spontaneously tend to recover its original configuration, regardless716

of the absence of external loads. Moreover, experiments suggest the existence of717

an incompatible, stress-free state in which the tumour finds itself after growth,718

which is consistent with the description of the tumour as an elasto-plastic material719

[86]. By bearing in mind such phenomena, we are interested in accurately describe720

the onset of development of growth-induced remodelling which, in turn, influence721

growth itself. More specifically, we conjecture that remodelling is characterised by722

a two-scale behaviour and we introduce a suitable kinematic variable that captures723

the evolution of the inhomogeneities associated with remodelling at the finer scale.724

In doing this, we study the growth and remodelling of a biological tissue on the725

basis of a strain-gradient formulation of remodelling. In particular, we recall that726

the type of remodelling studied in this Thesis is understood in the following two727

fashions: on the one hand, it can be related to the reorganisation of the adhesion728

bonds among the tumour cells, and, on the other hand, it leads to a visible change729

of shape of the tissue, which is generally not recovered when external loads are730

removed. For our purposes and following the model proposed by Anand, Aslan731

and Chester in [15], we formulate a strain-gradient framework with respect to the732

variable describing the fine scale remodelling. We answer the following research733

questions:734

6.1 To which extent, do the onset and evolution of material inhomogeneities asso-735

ciated with a finer scale remodelling impact the principal physical quantities736

that determine the growth of the tumour (displacement, growth parameter,737

distribution of the stress and of the pore pressure, diffusion of the nutrients,738

temporal evolution of the proliferating cells)? The answer to this questions739

is given in Section 6.7.740

6.2 In which way does the fine scale remodelling interact with the remodelling741

phenomena taking at the scale of the tissue? The answer to this questions is742

given in Section 6.7.743

6.3 What kind of remodelling phenomena can be addressed by adhering to the744

strain-gradient framework developed in Chapter 6? The answer to this ques-745

tions is given in Section 6.1.746

In Chapter 7, we introduce a thermodynamic quantity, called internal time,747

in order to represent the characteristic time scale of a body’s structural changes748

associated with growth [117, 113]. This study has been conducted by referring to749
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Vakulenko’s Endochronic Theory [176, 227] and by employing a variational pro-750

cedure based on the use of Noether’s Theorem [117, 113] in the context of two751

different theories of growth [72, 60]. We answer the following research questions:752

7.1 In which way does the choice of a theory of growth between the two considered753

in this Chapter influence the definition of the internal time? The answer to754

this question is given in Section 7.5.755

7.2 How can Noether’s Theorem help in understanding some issues related to756

growth mechanics? The answer to this question is given in Section 7.3.757

7.3 Is it possible to recast some growth laws used in the literature in a fully varia-758

tional fashion, whereas they are generally supposed to be phenomenologically759

written? The answer to this question is given in Sections 7.5 and 7.6.760

1.4 Methodology761

To use a jargon adopted in my research group, this Thesis provides the basis for762

building a logic-deductive “mathematical infrastructure” [56] for studying a “class763

of equivalence” of biomechanical problems. Then, for exemplification purposes, it764

focuses on some specific, selected problems, taken as representative elements of this765

class. In doing this, we worked for catching analogies and differences among several766

theories of biological remodelling and growth available in the literature, and for767

extending previous mathematical models employed for studying these topics. In this768

perspective, the solution of the problems presented in the forthcoming chapters has769

required the use of specific technical tools, but with the peculiarity of highlighting770

a theoretical substrate common to each of them.771

The mathematical models characterising this Thesis are formulated in a rather772

general way, in order to cover the mechanical behaviour of a large class of tissues.773

Subsequently, they are specialised, by way of benchmarking, in order to address774

specific topics concerning, for instance, articular cartilage, tumours and idealised775

layered tissues, such as the bone tissue. Indeed, for these tissues, we have enough776

experimental information. More specifically, we refer to articular cartilage, for777

example of the human knee, as the prototype of the fibre-reinforced tissues in778

which remodelling occurs, and to tumour masses, such as tumour spheroids or779

ductal carcinoma, as prototypes of the tissues in which growth or the binomial780

remodelling and growth take place. Analogously, we refer to the bone tissue as781

representative of a class of strongly heterogeneous biological tissues, undergoing782

remodelling and whose effective behaviour is studied by means of the Asymptotic783

Homogenisation technique. We emphasise that our scope is not the biomechanical784

analysis of the tissue itself, but the establishment of a mathematical framework785
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capable of describing the anelastic phenomena of remodelling and growth in the786

addressed class of tissues.787

We need to clarify that the results presented in this Thesis are not ready for788

being employed within a medical context for therapeutic purposes, or to explain,789

in their complexity, the biological processes which we discuss (for instance, the790

growth of a tumour or the degradation of articular cartilage due to osteoarthritis).791

Similarly, we have not performed the experiments described in the Thesis, but792

we referred to standard experimental protocols reported in the literature, such as793

the unconfined compression test for investigating the mechanical properties of the794

articular cartilage of the knee. Rather, the results of the Thesis set themselves the795

scope of helping in the understanding of some physical aspects (more specifically,796

mechanical aspects) of the studied phenomena.797

In fact, the results reported in the following extend some models already present798

in the literature, re-interpreting them, above all, from the mechanical point of view.799

Although such results can have, at this stage, a mainly speculative and deductive800

value, they are meant to give indications and suggestions for the research of new801

experimental goals. In this sense, it is important to underline that, mostly for the802

studies concerning articular cartilage, both the Thesis and the papers which it is803

based on, re-propose well-consolidated numerical experiments available in the lit-804

erature, which have the aim of simulating laboratory experiments. Such numerical805

experiments are used to estimate the impact of the theoretical generalisations pro-806

posed in the Thesis on the experimental results. In this perspective, the case that807

can be considered as representative of this view is the “syringe effect”, obtained808

as an outcome of the study of anisotropic remodelling of articular cartilage. To809

the best of our knowledge, it has not been observed in the context of “classical”810

experimental protocols yet (unconfined compression test of a cylindrical specimen811

of articular cartilage in elastic regime). In a different way, the same approach also812

applies to the case of tumour growth, even though, in this case, the computational813

cost of our models has imposed us to restrict ourselves to benchmark problems of814

academic rather than biological interest (growth in a cylinder duct studied as a815

one-dimensional problem).816

817

In light of the above discussion, the methodology employed in this Thesis can818

be summarised as follows:819

1. Given a biological tissue, we investigate its mechanical properties, its response820

to external or internal stimuli, which lead to the evolution of the internal821

structure of the tissue itself.822

2. We individuate a class of phenomena characterising the evolution of a bio-823

logical tissue. In this Thesis, we focused on remodelling and/or growth, also824

with the purpose of paving the way towards the study of even other types of825

processes, like damage and ageing.826
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3. We develop methodologies for describing remodelling and growth in a whole827

class of tissues, characterised by fibre-reinforcement, chemo-mechanical inter-828

actions and evolution of the micro-structure. This is done in a way that is kept829

on purpose as general as possible, in the attempt of constructing a unifying830

framework to the formulation of the above mentioned problems. Whereas the831

main drawback of this approach is the impossibility of accounting for several832

details, the advantage is the flexibility of the proposed models. This, in fact,833

can particularised in a second stage, when relevant biological facts must be834

considered.835

4. Finally, to test our models, we specialised them to cases of interest, of which836

we know parameters and experimental measurements, in order to have a com-837

parison with results available in the literature.838

With respect to this last point of the list above, we highlight that the Thesis839

is denoted by a strong Physico-Mathematical character. Moreover, although its840

structure is of logic-deductive type, the Thesis is not limited to pure speculative841

statements. Rather, it tries to stimulate the interest of the experimental commu-842

nity. This is the case, for instance, for the models of tumour growth presented843

hereafter, which involve the derivatives of order higher than the first of the tensors844

of anelastic distortions associated with growth and remodelling. In this perspective,845

even though our models are not verified from the experimental point of view, noth-846

ing forbids, at least in principle, that experimental procedures could be developed847

to find evidences of the effects predicted by our models.848

1.5 Main concepts and notation in the study of849

remodelling850

In this section, we present the main concepts, definitions, modelling hypothesis851

and notations necessary for the development of the specific topics related to the852

remodelling of fibre-reinforced tissue within the forthcoming chapters.853

1.5.1 Modelling hypothesis854

We regard the tissue under study as a mixture comprising a solid and a fluid.855

The solid represents a porous medium and is assumed to feature a matrix and856

reinforcing collagen fibres. The matrix is composed of biological polymers and857

tissue cells. The fluid consists of water and several other chemical substances.858

Remark 1.5.1. In spite of its major role on the tissue’s dynamics, in this study859

we neglect the presence of chemical substances other than water. Clearly, this860

is just a simplifying modelling assumption, which is not meant to contradict the861
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statement about the presence of chemical substances in the interstitial fluid. The862

latter, indeed, is a fact. However, to motivate our approach, we notice that, on the863

one hand, this modelling choice precludes the resolution of the phenomena related864

to the tissue’s chemistry. On the other hand, however, it is capable of accounting865

for a strong entanglement among the flow of the fluid, the deformation of the tissue,866

the reorganisation of its internal structure, and the reorientation of the reinforcing867

fibres, while containing computational costs. Moreover, the results predicted by our868

model can be used as inputs for studying the evolution of chemical agents when the869

coupling between their dynamics and the aforementioned processes is weak enough.870

We are aware of the efforts of some Authors to account for the stress contribu-871

tion stemming from the ionic phases of articular cartilage. For example, Huyghe872

et al. [143] developed a “quadriphasic theory” for tissues like cartilage with the873

purpose of reformulating, within the context of porous media, the chemo-electro-874

mechanical interactions typically studied for membranes. In the context of articular875

cartilage, Ateshian [17] elaborated a model in which the stress of the tissue’s solid876

phase features, apart from the classical contributions due to the pore pressure and877

the (assumed) hyperelastic response of the solid phase, also a contribution related878

to the electric potential in the tissue itself and the electric valence of its ionic879

constituents. More recently, Bongué-Boma et al. [32, 1] formulated a model of880

articular cartilage in which, under the hypothesis of Donnan equilibrium, the stress881

consists of a hyperelastic term, a term of electric type and a contribution due to882

osmotic pressure.883

As reported by Ateshian [17] within the context of cartilage mechanics, great884

attention has been drawn on osmosis, on its relations with residual stresses, and885

on the issue of swelling stress. As explained in [17], this stress is attributed to886

the matrix of articular cartilage and is related to “Donnan osmotic pressure in the887

interstitial fluid” [17]. By re-interpreting the explanation given in [17], osmotic888

pressure stems from the electro-mechanical interactions between the polymers con-889

stituting the matrix of articular cartilage, which are charged negatively, and the890

ions (both anions and cations) dissolved in the interstitial fluid, under the con-891

straint of electroneutrality of the overall solution. These interactions result in an892

“increased pressure”, whose main effect is to produce a nonzero-stress state in the893

tissue’s matrix, even when the matrix itself is free of external tractions. Because of894

this evidence and the inhomogeneous distribution of the negatively charged poly-895

mers in the cartilage, the osmotic pressure is also distributed inhomogeneously,896

thereby giving rise to residual stresses [17]. Under the light shed by the preceding897

comments, it is possible to infer that the physics at the basis of the onset of the898

just defined residual stresses is different from the one that triggers those residual899

stresses related to the structural reorganisation (remodelling) of the solid phase900

of articular cartilage and to the anelastic distortions accompanying such phenom-901

ena. For this reason, and since we are currently interested in a purely mechanical902

model of cartilage, we have opted for a simplified description of this tissue, in which903
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the presence of the chemical substances dissolved in the interstitial fluid is disre-904

garded. Hence, we have concentrated our study only on the anelastic aspects of905

the solid phase ascribable to the transformation of its internal structure and to the906

mechanical interactions with the interstitial fluid.907

In this Thesis, as mentioned above, we focus on the remodelling of articular908

cartilage, as representative example of the equivalence class of fibre-reinforced bi-909

ological tissues we have in mind. To this end, the mathematical models discussed910

in this Thesis rest on the following main hypotheses (see [56]):911

(i) the solid is hyperelastic and the fluid macroscopically inviscid;912

(ii) both constituents are intrinsically incompressible, so that the change of vol-913

ume of the tissue as a whole is due to the variation of porosity (since the914

saturation condition applies, such variation is expressed through the varia-915

tion of the volumetric fraction of the solid or of the fluid);916

(iii) the dynamics of the fluid adheres to Darcy’s law;917

(iv) all body forces acting on the solid are negligible, with the exception of those918

describing the momentum exchange with the fluid;919

(v) growth is not accounted for in the model, so that the fluid and the solid locally920

preserve their mass.921

1.5.2 Kinematics922

We recall some concepts of the kinematics of biphasic mixtures. To this end, we923

adopt the theory put forward in [202], and used in [40, 108, 112, 225]. Moreover,924

we adopt with slight variations the covariant formalism of Continuum Mechanics925

presented in [165].926

Accordingly, we introduce the set B ⊂ S as the reference placement of the927

solid phase. Then, given the interval of time I , the motion χ : B × I → S is a928

smooth mapping such that Bs(t) ≡ χ(B, t) ⊂ S is the configuration of the solid929

at time t ∈ I . Moreover, Bf(t) is the portion of S occupied by the fluid at the930

same instant of time. Finally, B(t) := Bs(t) ∩ Bf(t) ⊂ S is the region of space in931

which the solid-fluid mixture finds itself at t ∈ S . Even though χ( · , t) : B → S932

is not invertible, the map χ̂( · , t) : B → Bs(t), defined by χ̂(X, t) = χ(X, t) for933

all (X, t) ∈ B × I , is invertible and such that B = χ̂−1(Bs(t), t). In general, it934

occurs that χ̂−1(B(t), t) ⊂ B. However, in all the cases studied in this Thesis, it is935

possible to apply the kinematical hypothesis χ̂−1(B(t), t) = B, since the identity936

Bs(t) = B(t) is verified for all t ∈ I (see Figure (1.1) ). For this reason, B can937

be viewed as a reference placement for the mixture as a whole [56].938

With each x ∈ B(t) we associate the spatial volumetric fractions ϕs(x, t) and939

ϕf(x, t), which measure, respectively, the local volumetric content of solid and fluid940
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with respect to a representative volume of the mixture. Since the mixture is as-941

sumed to be saturated, it holds that ϕs(x, t) + ϕf(x, t) = 1, for all x ∈ B(t) and942

for all t. Along with ϕs and ϕf , we also introduce Φs(X, t) = ϕs(χ(X, t), t) and943

Φf(X, t) = ϕf(χ(X, t), t), for X ∈ χ̂−1(B(t), t) (see [56]).

X x

χ( · , t)

S

B

S

Bs(t)

B(t)

Bf(t)

Figure 1.1: Schematic representation of the considered kinematics of mixtures [56].
944

For every x ∈ S and X ∈ B, TxS and TXB are the tangent spaces of S945

and B at x and X, respectively. The disjoint unions TS := ⊔x∈STxS and946

TB := ⊔X∈BTXB are the tangent bundles of S and B. The spaces dual to TxS947

and TXB are referred to as co-tangent spaces and denoted by T ⋆
x S and T ⋆

XB,948

while T ⋆S := ⊔x∈ST
⋆
x S and T ⋆B := ⊔X∈BT

⋆
XB are the co-tangent bundles (see949

[61] and references therein).950

We identify the deformation gradient tensor of the solid phase with the tangent951

map of χ, i.e., F ( · , t) ≡ Tχ( · , t) : TB → TS , so that, for every X ∈ B,952

F (X, t) : TXB → Tχ(X,t)S maps vectors of TXB into vectors of Tχ(X,t)S . Once953

the two local systems of coordinates {XA}A=1,2,3 and {xa}a=1,2,3 are chosen in B954

and S , the components of F read F a
A = ∂χa/∂XA ≡ χa

,A, with a,A = 1,2,3. The955

determinant J = det F , called volumetric ratio, is strictly positive at all points956

X ∈ B and at all times (see [61] and references therein).957

We denote by g and G the metric tensors associated with S and B, respectively958

so that the Cauchy-Green deformation tensor, C = F T.F = F TgF , reduces to959

C = G in the absence of deformation [165] (see [56] and references therein). Note960

that, in components, we have CAB = (F T)A
agabF

b
B = gabF

a
AF

b
B.961

1.5.3 The BKL decomposition in the case of remodelling962

Inelastic distortions are, generally, incompatible [60, 176, 213], i.e., they are963

not expressible as the gradient of a deformation. Hence, their descriptor should be964

at least a non-integrable second-order tensor field over B (see [56] and references965

therein). We remark that, in this Thesis, the terms “distortions”, “inelastic distor-966

tions” and “structural transformations” are regarded as synonyms of “remodelling”.967

Following the same line of thought as Elastoplasticity, this tensor is called dis-968

tortion tensor and denoted by Fp, where the subscript “p” stands for “plastic-like969
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distortions”. A rationale for Fp is given by invoking the BKL decomposition of the970

deformation gradient tensor (see [56] and references therein).971

Consequently, F is written as F = FeFp, where Fe is said to be the tensor of972

elastic distortions and J = JeJp, with Je := detFe > 0 and Jp := detFp > 0. In the973

literature, decompositions of the deformation gradient tensor have been extensively974

used to address problems of biomechanical interest (see e.g. [210, 72, 160, 5, 6, 96,975

110, 112, 111]). The physical and geometrical meaning of the BKL decomposition976

have been explained in detail, for instance, in [176, 106] and they have been recently977

used to study the structural evolution of a growing tumour in [62]. For every pair978

(X, t) ∈ B × I , Fp(X, t) maps TXB into a vector space, denoted by NX(t) and979

consisting in the image of TXB through Fp(X, t) [62], whose vectors represent body980

elements in a stress-free state [60]. The way in which Fp(X, t) operates on TXB is981

illustrated in Figure (1.2).982

In light of the BKL decomposition, each vector associated with the natural state983

uX(t) ∈ NX(t) can be distorted elastically into ux(t) = Fe(X, t)uX(t) ∈ TxS ,984

with x = χ(X, t). Moreover, we introduce the tensor H(X, t) : NX(t) → TXB985

as the inverse of Fp(X, t), so that the relation UX = H(X, t)uX(t) ∈ TXB holds986

true. Finally, we notice that, since F (X, t) : TXB → TxS is such that ux(t) =987

F (X, t)UX(t), with x = χ(X, t), it also holds true that988

ux(t) = F (X, t)UX = F (X, t)H(X, t)uX(t) = Fe(X, t)uX(t). (1.1)

It follows from this chain of equalities, which has to be respected for all uX(t) ∈989

NX(t), that the elastic distortion tensor is given by Fe = F H1. We remark that990

this result goes far behind the simple renaming of F−1
p with H , for it actually991

discloses the possibility of exploring some comparisons of the BKL decomposition992

with the theory of material uniformity [70, 169, 72, 69, 197] (quoting verbatim from993

[72] “a body is said to be materially uniform if all its points are made of the same994

material”). However, we do not speculate here on this comparison because it is out995

of the scope of this Thesis (see [61]). Similarly to Fp, we introduce the determinant996

of H , JH := detH > 0, such that Je = JJH .997

Finally, we introduce the metric tensor η, associated with the tissue’s natural998

state, which allows to define the tensors Cp = F T
p .Fp = F T

p ηFp and Bp = C−1
p =999

F−1
p η−1F−T

p . We keep η formally different from g and G, although, in some cases,1000

it could be taken equal to one of those (see e.g. [183]). For future use, we also1001

define the right elastic Cauchy-Green tensor Ce = F T
e .Fe = F T

e gFe = HTCH1002

(see [56] and reference therein).1003

For further use, we introduce Λp := ḢH−1 = −F−1
p Fṗ and Lp = Fṗ F−1

p to1004

denote two rates of anelastic distortions associated with remodelling.1005

1We highlight that the symbol H, used in this Thesis, corresponds to the symbol K in [72]
and to the symbol P in [169, 70, 69].
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F

FeFp

collection of natural states

B BtB B(t)
F

FeFp

H

X

X

F

F p F e

Reference
configuration

Actual
configuration

Natural
state

B B(t)

NX(t)

Figure 1.2: BKL decomposition in the case of remodelling ([61] and [56]).

1.5.4 The fibre pattern1006

Following the framework presented in [84, 80, 225, 40, 108, 107], we study1007

fibre-reinforced tissues in which the fibres are oriented statistically. We recall that,1008

even though the study concerning the fibre pattern could be employed to study1009

other fibre-reinforced tissues, here we focus on articular cartilage, as reported in1010

the previous parts of the Thesis.1011

The first assumption of our approach is that, at each material point X that1012

finds itself in a natural state, the tissue is transversely isotropic with respect to1013

the direction associated with the unit vector mX , which defines the direction of1014

local alignment of the fibre passing through X. The second assumption is that1015

the fibres’ directional distribution is such that the tissue as a whole is transversely1016

isotropic with respect to a global symmetry axis, identified with the unit vector m0.1017

Moreover, in the sequel we restrict our attention to a sample of tissue characterised1018

by cylindrical shape and material properties that vary only along its geometrical1019

axis. The sample is thus homogeneous on each cross section. A consequence of1020

this setting is that the sample’s geometric axis coincides with the axis of transverse1021

isotropy, which is then also symmetry axis of the tissue.1022

To account for the statistical orientation of the fibres, we adhere to the frame-1023

work discussed in [80] and we introduce the function ℘X : S2NX(t) → R+
0 , with1024

S2NX(t) := {mX ∈ NX(t) : ∥mX∥ = 1}, (1.2)

and ℘X(mX) measuring the probability density that a (rectified) fibre passing1025

through X be directed along mX .1026

With respect to an orthonormal vector basis {eα}3
α=1 of NX(t), such that e3 is1027

parallel to m0, a unit vector mX ∈ NX(t) can be expressed in spherical coordinates1028

as mX = m̌X(ϑ, φ), where the vector-valued function m̌X : [0, π]×[0,2π[→ S2NX(t)1029

is given by1030

m̌X(ϑ, φ) = sinϑ cosφ e1 + sinϑ sinφ e2 + cosϑ e3. (1.3)
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Accordingly, a physical quantity FX depending on the local direction of fibre align-1031

ment, and thus defined over the set S2NX(t), can be rewritten as a function of ϑ1032

and φ, i.e., FX(mX) = FX(m̌X(ϑ, φ)) = F̌X(ϑ, φ). In particular, the probability1033

density becomes ℘X(mX) = ℘̌X(ϑ, φ) and, since the tissue as a whole is assumed1034

to be transversely isotropic with respect to m0, ℘̌ is not allowed to depend on the1035

longitude, φ. Consequently, the equality ℘X(mX) = ℘̌X(ϑ) must be fulfilled.1036

By adopting the formalism of [81], the directional average of FX is defined as1037

⟨⟨FX(mX)⟩⟩ =
∫︂
S2NX(t)

FX(mX)℘X(mX) =
∫︂ 2π

0

∫︂ π

0
F̌X(ϑ, φ)℘̌X(ϑ) sinϑ dϑdφ. (1.4)

All physical quantities featuring in the mathematical model, including the proba-1038

bility density, are assumed to be invariant under the reflection mX → −mX , for all1039

mX . This permits to rephrase the directional average (1.4) as1040

⟨⟨FX(mX)⟩⟩=2
∫︂
S2+NX(t)

FX(mX)℘X(mX)=
∫︂ 2π

0

∫︂ π/2

0
F̌X(ϑ, φ)ψ̌X(ϑ) sinϑ dϑdφ, (1.5)

where S2+NX(t) is the “northern” hemisphere [40], i.e.,1041

S2+NX(t) := {mX ∈S2NX(t) : ∥mX∥ = 1, mX .m0 ≥ 0}, (1.6)

and the probability density ψ̌X : [0, π/2] → R+
0 is defined by the equality ψ̌X(ϑ) =1042

ψX(m̌X(ϑ, φ)), for all (ϑ, φ) ∈ [0, π/2] × [0,2π[, with ψX = 2℘X |S2+
X B [40]. As done1043

in previous works [85, 40], we assume that ψ̌X is the pseudo-Gaussian distribution1044

ψ̌X(ϑ) = γ̌X(ϑ)
2π
∫︁ π/2

0 γ̌X(ϑ′) sinϑ′dϑ′
, γ̌X(ϑ) = exp

(︄
− [ϑ− q]2

2ω2

)︄
, (1.7)

where q and ω are referred to as fibre mean angle and standard deviation, respec-1045

tively. Since, as anticipated above, q and ω are hypothesised to vary only along1046

the axis of the sample, they can be written as functions of the normalised axial1047

variable ξ ∈ [0,1], which is zero at the sample’s lower boundary and equal to one1048

at the upper boundary. In particular, the normalised axial variable ξ is given by1049

ξ := X3

L
, where X3 is the coordinate along the geometrical axis of the cylindrical1050

specimen, and L is its height in the reference configuration. Hereafter, we take the1051

expressions [85]1052

q(ξ) = π

2

{︃
1 − cos

(︃
π

2

[︃
−2

3ξ
2 + 5

3ξ
]︃)︃}︃

, ω(ξ) = 103[(1 − ξ)ξ]4 + 3 · 10−2, (1.8)

which qualitatively reproduce the alignment of fibres in articular cartilage [179].1053

According to (1.8), the mean angle takes on the values q(0) = 0 and q(1) = π/2,1054

and the standard deviation attains its minimum at ξ = 0 and ξ = 1. Hence, the1055
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fibres are more likely to be found aligned with the sample’s symmetry axis at the1056

bottom of the sample, and more likely to be lying on transverse plane at the top.1057

Moreover, at ξ = 1/2, the standard deviation reaches its maximum, thereby tending1058

to randomise the fibre orientation and, consequently, to make the tissue isotropic in1059

the middle of the sample. Note that m : B → N (t) indicates the vector field such1060

that m(X) = mX , and N (t) := ⊔X∈BNX(t) is the bundle of all spaces NX(t).1061

1.6 Main concepts and notation in the study of1062

growth and remodelling1063

In this section, we present the main concepts, definitions, modelling hypothesis1064

and notation necessary for the development of the specific topics related to the1065

growth and remodelling of biological tissues within the forthcoming chapters.1066

The problems under investigation involve the motion of the solid phase, the1067

motion of the fluid phase, the distortions related to growth, and plastic-like distor-1068

tions, which are associated with the reorganisation of the tissue’s internal structure.1069

The definitions supplied in this section can be encountered in many works address-1070

ing Mixture Theory, and have been recently used for establishing the theoretical1071

framework of previous works [225, 108, 62, 56].1072

1.6.1 Basics of Mixture Theory1073

The motion of the solid phase is described by the smooth mapping χ : B×I →1074

S , where B is the tissue’s reference configuration, I is an interval of time and S1075

is the three-dimensional Euclidean space. For each pair (X, t) ∈ B×I , the spatial1076

point occupied by the solid phase is given by x = χ(X, t) ∈ S . By differentiating1077

χ with respect to its arguments, we obtain the deformation gradient tensor, i.e.,1078

the tangent map of χ, defined by F (X, t) = Tχ(X, t) : TXB → Tχ(X,t)S [165],1079

and the solid phase velocity Vs(X, t) = χ̇(X, t). Here, TXB and Tχ(X,t)S are the1080

tangent space of B at X and the tangent space of S at χ(X, t), respectively [165],1081

and the superimposed dot means partial differentiation with respect to time. For1082

completeness, we recall the relationship between Vs and the Eulerian velocity of1083

the solid phase, i.e., vs(x, t) = vs(χ(X, t), t) = Vs(X, t), so that the composition1084

vs( · , t)◦χ( · , t) = Vs( · , t) holds true for all t ∈ I (see [114] and references therein).1085

Remark 1.6.1. The “classical” definition of reference placement, or configuration,1086

although widely used in Solid Mechanics, may not apply to biological tissues. To1087

the best of our knowledge, this is particularly true for a medium undergoing ap-1088

positional growth, i.e., the process in which material particles are either deposited1089

on the growing medium, or depleted from it. In both cases, the “number” of ma-1090

terial particles constituting the medium varies with time and, consequently, it is1091

impossible to define a unique reference configuration for the medium, at least in1092
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the classical sense [17]. Rather, as reported in [17], “the reference configuration of a1093

material point is defined at the time it is deposited,” which means that, at different1094

times, the medium has to be associated with different reference configurations. In1095

our setting, however, we deal with volumetric growth. This type of growth, in fact,1096

still permits the definition of a fixed reference configuration for a growing medium1097

if, as stated in [72], the addition or depletion of material is assumed to occur “in1098

such a way that material points preserve their identity”. With the aid of this hy-1099

pothesis, we can assume the existence of a fixed reference configuration for the1100

medium under investigation (see [62] and reference therein).1101

The fluid motion is described by the Eulerian velocity vf(x, t), evaluated at1102

every point x ∈ S occupied by the fluid and at time t ∈ I . Note that, since the1103

system under investigation is a mixture, the fluid co-exists with the solid at every1104

point x ∈ S at which the tissue is observed. Thus, the point x can also be viewed1105

as the image of X through the solid motion, i.e., x = χ(X, t), and the fluid motion1106

can be studied by means of the composition V f( · , t) ≡ vf( · , t) ◦ χ( · , t), such that1107

V f(X, t) = vf(χ(X, t), t) (see [114] and references therein).1108

Finally, w ≡ vf − vs is the velocity of the fluid relative to the solid. Note that1109

the product φfw is often referred to as filtration velocity [138], although it actually1110

represents a specific mass flux vector [25] (see [114] and references therein).1111

1.6.2 Kinematics of growth and remodelling1112

A number of papers has been produced in which growth and remodelling have been1113

described by adopting the language and formalism of continuum theories (see e.g.1114

[173] and the references therein). In some works devoted to the theoretical founda-1115

tions of volumetric growth (see e.g. [72, 160, 60]), emphasis is put on the necessity1116

of defining variables that, together with the descriptors of the tissue’s standard me-1117

chanical state, are capable of catching its structural transformations. In [72], this1118

is done by having recourse to the theory of uniformity [67, 69], and introducing the1119

concepts of “archetype” and “transplant operator” [72, 67, 69]. On the other hand,1120

in several other contexts, the Bilby-Kröner-Lee (BKL) multiplicative decomposi-1121

tion of the deformation gradient tensor is adopted, along with its generalisations,1122

in order to frame remodelling in terms of “plastic-like distortions” (see e.g. [112]).1123

Remark 1.6.2. (Plastic-like distortions and remodelling).1124

In the presence of remodelling, the structural transformations of the tissues consid-1125

ered in this work recall the plastic distortions of non-living, elasto-plastic materials.1126

Sometimes, we use the adjectives “plastic” and “remodelling” interchangeably: we1127

take this liberty when a physical quantity, historically conceived for the theory of1128

plasticity, has to be re-interpreted in compliance with the physical context of the1129

present work. A relevant example is the accumulated plastic strain, a variable for1130

which we use both its original name and the name accumulated remodelling strain.1131
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In other cases, however, we use quotation marks for “plastic” and “plasticity”, if1132

we need to recall that we are borrowing terms from the theory of plasticity. For1133

instance, we use this convention when we speak of micro-scale plasticity (see [114]1134

and references therein).1135

The BKL-decomposition in the case of growth1136

A major character of our theory is the BKL-decomposition, F = FeFγ. From1137

the Mechanical point of view, Fγ describes the inelastic changes of the tissue’s1138

internal structure that are induced by growth, while Fe is the accommodating part1139

of F , and is assumed to be elastic. Both Fe and Fγ are non-singular, and their1140

determinants, Je = det Fe and Jγ = det Fγ, are strictly positive (see [62] and1141

references therein).1142

For every pair (X, t) ∈ B×I , we prescribe that Fγ(X, t) maps vectors of TXB1143

into “relaxed” vectors of another tangent space. Such space is denoted by NX(t),1144

and can be identified with the image of TXB through Fγ(X, t) [106]. Coherently, we1145

write Fγ(X, t) : TXB → NX(t), and, putting together this result and the definition1146

of F (X, t), we express the elastic part of F (X, t) as Fe(X, t) : NX(t) → Tχ(X,t)S1147

(see [62] and references therein).1148

We notice that, at this stage, Fγ is not subjected to any restriction. Hence,1149

granted the polar decompositions F γ(X, t) = Rγ(X, t)Uγ(X, t) and Fγ(X, t) =1150

V γ(X, t)Rγ(X, t), which hold true for each pair (X, t) ∈ B × I , Fγ(X, t) is gener-1151

ally obtained by combining one of the inelastic stretches, Uγ(X, t) : TXB → TXB1152

and V γ(X, t) : NX(t) → NX(t), with the rotation tensor Rγ(X, t) : TXB → NX(t).1153

In general, the tissue may find itself in a stressed state both in the current and1154

in the reference configuration. Stresses may have different origin but, in the present1155

context, they are generated either by growth or by the loading history undergone by1156

the tissue. Since in our framework growth is the only process regarded as inelastic,1157

it produces stresses that cannot be eliminated by simply switching off the applied1158

loads. Indeed, even though all such loads were suppressed, the tissue would still1159

occupy a configuration in which the growth-induced stresses are nonzero (see [62]1160

and [56]).1161

To achieve a state in which every part of the tissue is free of stress, one should1162

virtually disassemble the tissue into a “conglomerate” of completely relaxed pieces1163

[148]. Each of such pieces can be thought of as an arbitrarily small neighbourhood1164

of a point x ∈ B(t), and, for infinitesimally small neighbourhoods, the body piece1165

associated with x can be identified with the tangent space TxB(t). In this case,1166

the whole relaxation can be viewed as a linear mapping between tangent spaces. In1167

particular, since the relaxation is elastic, it is represented by F−1
e (x, t) : TxB(t) →1168

NX(t), with X = χ̂−1(x, t) (see [62] and references therein).1169

The vector space NX(t) depends on time, and is associated with a state of the1170

tissue characterised by an important property: it is free of stress, and is obtained1171
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by distorting the elements of TXB, or the elements of TxB(t), in a generally incom-1172

patible way. Hence, neither Fγ(X, t) nor F−1
e (x, t) can be taken from the outset as1173

the tangent maps of deformations that determine a configuration of the tissue as a1174

subset of the Euclidean space. We recall, however, that NX(t) can be assembled1175

in a stress-free Riemannian manifold, endowed with the curved metric induced by1176

Fγ (cf. e.g. [148, 147, 106]). Moreover, for all X ∈ B, the vectors of NX(t) are1177

associated with the natural, or ground, state of the tissue, i.e., with the state in1178

which the tissue is free of stress. Such state encompasses the whole structural evo-1179

lution undergone by the tissue, which occurs from the reference configuration in1180

the form of the distortional tensor map Fγ(X, t) : TXB → TNX(t). A sketch of1181

the explanation given so far is given in Fig. (1.3), where NX(t) is represented as a1182

“conglomerate” of stress-free body pieces [148].1183

For further use, we introduce Lγ := F−1
γ Fγ

̇ and Lγ := Fγ
̇ F−1

γ to denote the1184

rate of anelastic distortions associated with growth.1185

1.6.3 Phenomenology of the growth tensor1186

The introduction of the growth tensor, Fγ, produces many similarities among1187

growth, finite strain elastoplasticity, and the theory of defects in solids (see e.g.1188

[161, 176] for a review) and, in fact, many biological aspects of growth can be re-1189

interpreted in terms of the evolution of inelastic distortions. One similarity with1190

elastoplasticity is the definition of a stress-free “intermediate configuration”, which1191

exemplifies the conceptual separation between growth and deformation. Actually,1192

the “intermediate configuration” is a collection of tissue pieces rather than a true1193

configuration, and is obtained in two steps: First, by removing all the loads acting1194

on the current configuration of the tissue, and then, by ideally chopping the tissue1195

in small, stress-free pieces [176]. These can be assembled in a reference configuration1196

by means of a transformation that is identifiable with F−1
γ . Hence, growth can be1197

understood as the reverse process, which maps the tissue pieces from the reference1198

configuration into the intermediate one (see [62] and references therein).1199

Tensor F−1
γ is formally related to the existence of growth-induced inhomo-1200

geneities, [72, 66, 69, 67]. We have emphasised the adverb “formally” because,1201

in our theory, we are not using the concept of “archetype” [66, 69, 67]. This notion,1202

instead, is used to define an inhomogeneous body as a body for which it is possible1203

to define a non-singular tensor field, whose inverse is non-integrable [72, 66].1204

Clearly, the way in which the inhomogeneities evolve depends on the biological1205

problem under study and, thus, on the proposed model of growth. For instance,1206

in [72], a prototypal evolution law for the growth inhomogeneities is set in the form1207

of a relation between Eshelby stress and the rate at which the inhomogeneities1208

themselves are produced. In this case, the law is obtained by following a reduc-1209

tion procedure that requires its compliance with the body’s material symmetries,1210

and with the principles of uniformity, objectivity, and independence of the reference1211
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configuration. A different perspective is considered e.g. in [98, 172], where some phe-1212

nomenological growth laws are discussed within a chemo-mechanical framework. For1213

arteries [183], an evolution law for the growth tensor is obtained in terms of a gen-1214

eralised Onsager’s relation, in which the driving force of growth is identified with1215

the difference between a suitable measure of mechanical stress and a target stress,1216

referred to as “homoeostatic stress” (see [62] and references therein).1217
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Figure 1.3: Schematic representation of the introduced mappings [62].

A different geometric picture about growth1218

Before going further, we mention that a different formulation of the BKL-1219

decomposition is presented in [197, 46]. The core of such formulation is the use1220

of two mappings that define a base and a “target” [46] configuration for each of the1221

factors of the BKL-decomposition. In summary, one indicates by Fa and Fg the1222

accommodating and the growth part of F , so that F = FaFg holds true, and intro-1223

duces the differentiable mappings χa and χg such that Fa and Fg are expressed as1224

Fa = (Tχa)Ha and Fg = (Tχg)Hg [46]. Here, Tχa and Tχg are the tangent maps1225

of χa and χg, and they represent the compatible contributions to Fa and Fg. On the1226

contrary, in general Ha and Hg cannot be identified with the tangent map of any1227

deformation. Indeed, Hg describes the generally incompatible structural changes1228

due to growth, while Ha models the elastic distortions that may have to be applied1229

to the grown body pieces to restore a global configuration (see [62] and references1230

therein).1231

For every t ∈ I , the map χg( · , t) is identified with the diffeomorphism χg( · , t) :1232

B → Ct, where Ct is referred to as “intermediate configuration”, while Tχg( · , t)1233

and Hg( · , t) are defined in terms of maps between tangent spaces, i.e., Tχg(X, t) :1234

TXB → Tχg(X,t)Ct and Hg(X, t) : TXB → TXB, respectively [46]. Analogous1235

considerations hold for χa( · , t) : Ct → B(t) and for Tχa( · , t), and Ha( · , t) (see [46]1236

for details). A drawing summarising the view of the BKL-decomposition presented1237
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in [46] is given in Fig. 1.3 (right). We notice that Hg plays the same role as Fγ in1238

the present context (see [62] and references therein).1239

We emphasise that, although we do not use here the approach by [46], we find1240

it important to draw attention on it because, through χg (or χa), it introduces1241

an additional degree of freedom that, along with Fγ, could be useful for other1242

applications of the BKL-decomposition (see [62] and references therein).1243

1.6.4 The role of stress1244

Mathematical models of growth and remodelling should capture the “two-level”1245

nature of the phenomena that they are meant to resolve, thereby trying to connect1246

the visible transformations of a tissue with the chemical, electrical, and mechanical1247

interactions occurring inside it. For instance, in the case of growth, a connection1248

of this kind is established by mechanotransduction [51, 166], i.e., the modulation1249

that mechanical stress exerts on the tissue’s growth rate due to its interplay with1250

the tissue’s mass sources (see [114] and references therein).1251

To move forward in the comprehension of how growth and remodelling inter-1252

act, an important question to answer is how to relate mechanical stress with both1253

phenomena (see e.g. [173, 12]). For example, the tearing of the inter-cellular bonds1254

in a tumour, which can be interpreted as an expression of remodelling [9, 198],1255

leads to the relaxation of stress, and stress, apart from mechanotransduction, may1256

play a role on the growth of the tumour. Indeed, a recent result presented in1257

[166], seems to show that remodelling enhances the growth of a tumour in the avas-1258

cular stage by increasing the speed at which the tumour’s boundary advances in1259

space . The observed behaviour was the consequence of the smoothing effect of the1260

plastic-like distortions on mechanical stress, and such effect was transferred to the1261

term describing growth through the mechanotransduction (see [114] and references1262

therein).1263

The type of remodelling induced by mechanical stress can be viewed as a plastic-1264

like behaviour and, if one assumes plastic response to be triggered by a yield stress1265

(as is the case, for instance, in rate-independent [176, 124] or in Perzyna-like plas-1266

ticity [176]), one may conclude that remodelling commences in the regions of the1267

tissue in which the stress exceeds a certain threshold. Since in a growing tissue1268

such regions are those in which the growth is predominant and the deformation is1269

inhibited, it is very important to resolve accurately the plastic-like distortions. This1270

exigency becomes stringent when the “plastic” strains accumulate in very narrow1271

zones. In such cases, a useful tool of investigation could be to switch from a local to1272

a “non-local” model of plasticity and this aspect will be discussed in the following1273

(see [114] and references therein). We conclude by summarising some of the main1274

symbols employed in the Thesis and introduced in the introductory chapter.1275

1276
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a structural tensor in the spatial configuration
b left Cauchy-Green deformation tensor
be elastic left Cauchy-Green deformation tensor
d spatial diffusivity tensor
g metric tensor associated with the spatial configuration
i identity tensor associated with the spatial configuration
k permeability tensor associated with the spatial configuration
vs spatial solid velocity
vf spatial fluid velocity
A structural tensor in the reference configuration
C right Cauchy- Green deformation gradient tensor
Cp right Cauchy-Green tensor associated with remodelling
Cγ right Cauchy-Green tensor associated with growth
Ce elastic right Cauchy-Green tensor
D material diffusivity tensor
F deformation gradient tensor
Fp remodelling tensor
Fγ growth tensor
Fe accommodation tensor
G metric tensor associated with the reference configuration

I1, I2, I3 orthogonal invariants of C
I1e, I2e, I3e orthogonal invariants of Ce

I4 fourth invariant of C
I4e fourth invariant of Ce
I identity tensor associated with the reference configuration
J determinant of F
Jp determinant of Fp
Je determinant of Fe
Jγ determinant of F γ

H inverse of the remodelling tensor
P first Piola-Kirchhoff stress tensor
S second Piola-Kirchhoff stress tensor

Y e,Y i external and internal generalised forces
Z generalised growth velocity

1277
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V s material solid velocity
V f material fluid velocity

V γ,U γ growth stretches
Rγ growth rotation tensor
η metric tensor associated with the natural state
χ motion
γ growth parameter
ω variance
σ Cauchy stress tensor
Σ Mandel stress tensor
ϕs spatial volumetric fraction of the solid phase
ϕf spatial volumetric fraction of the fluid phase
Φs referential volumetric fraction of the solid phase
Φf referential volumetric fraction of the fluid phase
Λp rate of anelastic distortions (reference configuration)
Lp rate of anelastic distortions (natural state)
Lγ rate of growths (reference configuration)
Lγ rate of growth (natural state)
S three-dimensional Euclidean space
I three-dimensional Euclidean space
B reference placement of the solid phase
Bs current configuration of the solid phase
Bf current configuration of the fluid phase

NX(t) natural state
a structural tensor in the natural state
m field of unit normal
q fibre mean angle

1278
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Chapter 21279

Anelastic reorganisation of1280

biological tissues1281

The work reported in this chapter has been previously published in [61].1282

2.1 Anelastic processes and structural changes1283

In this Chapter, we contribute to the study of the structural reorganisation of1284

biological tissues in response to mechanical stimuli. We specialise our investiga-1285

tion to a class of hydrated soft tissues, whose internal structure features reinforcing1286

fibres. These are oriented statistically within the tissue, and their pattern of ori-1287

entation is such that, at each material point, the tissue is anisotropic. From in1288

its natural, stress-free state, the tissue can be distorted anelastically into a global1289

reference configuration, and then deformed under the action of external mechan-1290

ical loads. The anelastic distortions are responsible for changing irreversibly the1291

internal structure of the tissue, which, in the present context, occurs through both1292

the rearrangement of the bonds among the tissue cells and the deformation-driven1293

reorientation of the fibres. The anelastic strains, in addition, are assumed to model1294

the onset and evolution of micro cracks in the tissue, which may be triggered by the1295

mechanical loads applied to the tissue in the case of traumatic events, or diseases.1296

For our purposes, we formulate an anisotropic model of remodelling and we con-1297

sider a fully isotropic model of structural reorganisation for comparison, with the1298

aim of studying if, how, and to what extent the evolution of anelastic distortions is1299

influenced by the tissue’s anisotropy.1300

Determining physically sound evolution laws for the distortions characterising1301

the structural adaptation of biological tissues is a crucial task, which has been1302

undertaken by several authors (see e.g. [72, 160, 98, 5, 157, 99, 183, 110]). One1303

of the main challenges of mathematical modelling is to predict how the structural1304

evolution of a tissue is modulated by mechanical stress. This issue is particularly1305
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relevant when also other phenomena, such as growth [200], mechano-transduction1306

[51], and interactions with other stimuli [159, 167, 62], have to be accounted for.1307

Moreover, since the formulation of models for the structural evolution of tissues1308

allows for a certain freedom, and since a model that is reliable for a certain tissue1309

may be inaccurate for another one, it is difficult to find a unified criterion for1310

determining a priori how such models should be constructed. To our knowledge,1311

however, Epstein and Maugin [72] prescribed a series of conditions that should be1312

satisfied in order to formulate acceptable structural evolutions. These rules, in1313

turn, are based on the theory developed, for example, in [70, 169, 69].1314

With the purpose of seeking for a unified form of the structural evolution laws of1315

biological tissues, we take a phenomenological law of remodelling in isotropic media1316

[104] and, by following the rules put forward in [72], we rephrase it for the case of an1317

anisotropic tissue. To this end, we elaborate the anisotropic hyperelastic model of1318

fibre-reinforced tissues developed in [84, 80, 225], in which the interaction with an1319

interstitial fluid is considered, and we extend it to the case of nonlinear elastoplastic1320

material behaviour. Then, after specifying the equations governing the deformation1321

of the tissue, the fluid flow, and the evolution of the plastic-like distortions, we test1322

our model by solving numerically dedicated benchmark problems. The main goal1323

of our work is to evaluate the interplay between remodelling and the anisotropy of1324

the tissue. This interplay is highlighted by comparing the results of our anisotropic1325

model with those predicted by an isotropic model taken as reference [112].1326

2.2 Constitutive laws1327

At each material point, the solid phase of the tissue is modelled as a hyperelastic1328

material. This hypothesis allows to describe the mechanical behaviour of the solid1329

phase entirely in terms of a strain energy density, and to express the latter as a1330

function of the elastic part of the deformation, only. More precisely, if we denote1331

by WR = ŴR(C, X, t) the strain energy density of the solid phase, written per unit1332

volume of the reference configuration (note that the the material inhomogeneities1333

and their evolution are accounted for by the explicit dependence of ŴR on the1334

material points and time, respectively), it is possible to write [53, 72]1335

ŴR(C, X, t) = Jp(X, t)Ŵν(Ce(X, t), X) = 1
JH(X, t)Ŵν(Ce(X, t), X), (2.1)

where Ŵν is measured per unit volume of the natural state (see the subsection1336

Kinematics of Section 1.5.1 for the notation employed in (2.1) and hereafter). We1337

remark that, in Equation (2.1), the explicit dependence of strain energy function1338

on material points is given through ξ. In the following, however, for the sake of a1339

lighter notation, the explicit dependence of Ŵν on material points, X, is omitted1340

but understood. We adapt to the present framework a strain energy density used1341
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in previous works [84, 80, 225, 40, 111, 107], i.e.,1342

Ŵν(Ce) = ΦsνÛ(Je) + Φ0sνŴ 0(Ce) + Φ1sνŴ en(Ce), (2.2)

where1343

Φ0sν = Jeϕ0s, (2.3a)
Φ1sν = Jeϕ1s, (2.3b)
Φsν = Φ0sν + Φ1sν = Jeϕs (2.3c)

are the volumetric fractions of the non-fibrous matrix, fibres, and solid phase as a1344

whole, respectively, all measured per unit volume of the natural state. Similarly1345

ϕ0s and ϕ1s are the volumetric fractions of the non-fibrous matrix and of the fibres,1346

respectively, misured per unit volume of the actual configuration and such that1347

ϕs = ϕ0s + ϕ01s. Moreover Û(Je), Ŵ 0(Ce), and Ŵ en(Ce) are given by1348

Û(Je) = α0H(Jcr − Je)
[Je − Jcr]2q

[Je − Φsν ]r , (2.4a)

Ŵ 0(Ce) = α0

[︄
exp (α1[I1e − 3] + α2[I2e − 3])

[I3e]α3
− 1

]︄
, (2.4b)

Ŵ en(Ce) = Ŵ 1i(Ce) + ⟨⟨Ŵ 1a(Ce,m)⟩⟩. (2.4c)

In (2.4a)–(2.4c), α0 = 0.125 MPa, α1 = 0.778, α2 = 0.111, α3 = α1 + 2α2 = 1,1349

q ≥ 0, and r ∈]0,1] are material parameters, Jcr ∈]Φsν ,1] is a critical value of1350

Je (in this work, we take q = 2, r = 0.5, and Jcr = Φsν + 0.1), I1e = tr(Ce),1351

I2e = 1
2{[tr(Ce)]2 − tr(C2

e )}, and I3e = det Ce are the principal invariants of Ce,1352

Ŵ 1i is the isotropic part of the strain energy density of the fibres (it has the same1353

functional form as (2.4b), but it features different coefficients), and Ŵ 1a(Ce,m)1354

reads1355

Ŵ 1a(Ce,m) = H(I4e − 1)1
2c[I4e − 1]2, (2.5)

where I4e = Ce : m⊗m = C : (Hm⊗Hm) and c = 7.46 MPa. In (2.4a) and (2.5),1356

H is the Heaviside function, i.e., H(s) = 1 for all s ≥ 0, and H(s) = 0 for all s < 0.1357

Finally, it is possible to define the unit vector field1358

M = Hm

∥Hm∥
. (2.6)

Consequently, the structure tensor field in the natural state, i.e., a = m ⊗ m,1359

transforms as1360

A = M ⊗ M = HaHT

(HT.H) : a
, (2.7)
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with A being the structure tensor field associated with the reference configuration,1361

and the invariant I4e becomes I4e = I4I4Π, where we used the notation1362

I4 = C : A, I4Π = (HT.H) : a. (2.8a)

The energy Û(Je) is zero for Je above the critical volume ratio Jcr (which, in general,1363

is a function of material points), and diverges for Je tending to Φsν from above,1364

thereby preventing the elastic distortions from violating the unilateral constraint1365

Je ≥ Φsν . The constitutive part of the first Piola-Kirchhoff stress tensor associated1366

with the solid phase is given by1367

P sc = F

[︄
1
JH

H

(︄
2∂Ŵν

∂Ce
(Ce)

)︄
HT

]︄
. (2.9)

Consequently, P sc can be expressed constitutively as a function of F and H , i.e.,1368

P sc = P̂ sc(F ,H). Also in this case, the explicit dependence on material points is1369

omitted but understood.1370

The mathematical model presented in the following is based on the hypothesis1371

that the interstitial fluid obeys Darcy’s law. This requires the introduction of a1372

permeability tensor for the tissue. In this work, we adapt to our problem the1373

constitutive framework developed in [83, 82, 80, 225, 108]. Hence, we assume that1374

the spatial permeability tensor reads [225]1375

k =k0
[JJH − Φ1sν ]2

J2J2
H

g−1 + k0
[JJH − Φ1sν ]Φ1sν

J2J2
H

F H
⟨︃⟨︃

a

I4e

⟩︃⟩︃
HTF T, (2.10)

where k0 is taken to be of the Holmes and Mow type [138], i.e.,1376

k0 = k0ν

[︄
JJH − Φsν

1 − Φsν

]︄κ0

exp
(︃1

2m0[J2J2
H − 1]

)︃
, (2.11)

where κ0 = 0.0848 and m0 = 4.638 are model parameters, and k0ν is a reference1377

permeability. As done elsewhere (e.g. in [225]), k0ν is taken as a function of the axial1378

coordinate, ξ, and its functional form is defined in (2.14). From (2.10) and (2.11)1379

we notice that, since the product JJH = Je has to be greater than, or equal to,1380

Φsν , the permeability tensor is positive semi-definite for JJH ≥ Φsν ≥ Φ1sν and,1381

in particular, it is positive definite when the strict inequality is satisfied, i.e., when1382

JJH > Φsν .1383

For future use, we compute the Piola transform of k, i.e., K = JF−1kF−T,1384

which reads1385

K =k0
[JJH − Φ1sν ]2

JJ2
H

C−1 + k0
[JJH − Φ1sν ]Φ1sν

JJ2
H

H
⟨︃⟨︃

a

I4e

⟩︃⟩︃
HT. (2.12)
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Clearly, since k is positive semi-definite, K is positive semi-definite too. Note also1386

that K can be written as K = K̂(F ,H), where the dependence on F is through1387

C because of objectivity, and the dependence on X is understood. In fact, in the1388

case of inhomogeneous materials, the dependence of k0ν on material points can1389

be taken into account by expressing k0ν as a function of the void ratio associated1390

with the natural state, eν = (1 − Φsν)/Φsν , and specifying how the volumetric1391

fraction Φsν depends on the normalised axial coordinate ξ (we recall, indeed, that1392

the material is assumed here to be inhomogeneous only axially). In this work, we1393

assign the volumetric fractions of matrix and fibres in the tissue’s natural state,1394

Φ0sν and Φ1sν , and we compute thus the volumetric fraction of the solid phase as1395

Φsν = Φ0sν + Φ1sν . In particular, we prescribe [225]1396

Φ0sν = Φ̂0sν(ξ) = −0.062ξ2 + 0.038ξ + 0.046, (2.13a)
Φ1sν = Φ̂1sν(ξ) = +0.062ξ2 − 0.138ξ + 0.204, (2.13b)
Φsν = Φ̂sν(ξ) = −0.100ξ + 0.250. (2.13c)

Following the constitutive framework adopted in previous works, we assume that1397

k0ν depends on eν as suggested by Holmes and Mow [138]. Hence, given the constant1398

referential void ratio e(0)
ν = 4 and the constant referential scalar permeability k(0)

0ν =1399

3.7729 · 10−3 mm4(Ns)−1, we assign k0ν through the expression [225]1400

k0ν

k
(0)
0ν

=
[︄
eν

e
(0)
ν

]︄κ0

exp
⎛⎝m0

2

⎡⎣(︄ 1 + eν

1 + e
(0)
ν

)︄2

− 1
⎤⎦⎞⎠ . (2.14)

In summary, the constitutive framework adopted here describes a hydrated,1401

fibre-reinforced tissue, whose solid phase is hyperelastic, transversely isotropic with1402

respect to a global symmetry axis (the direction of which is identified by the unit1403

vector m0), and inhomogeneous along this axis. We emphasise that, within the1404

employed approach, the inhomogeneity is due to the fact that the volumetric frac-1405

tions of matrix and fibres, Φ0sν and Φ1sν , the standard deviation of the probability1406

density, ω, and the mean angle of fibre orientation, q, depend on the normalised1407

axial coordinate through the expressions (1.8), which are in qualitative agreement1408

with the histological features of articular cartilage, as revealed by X-ray diffraction1409

experiments [179].1410

2.3 Description of Remodelling1411

The mathematical model of the physical system under study is characterised1412

by two dissipative phenomena. First we consider the one related to the fluid flow,1413

which is affected by dissipative forces exchanged between the fluid and the solid1414

phase. We prescribe that these forces depend linearly on the filtration velocity1415
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q = ϕf [vf − vs] and, by disregarding the influence of gravity on the flow, we obtain1416

Darcy’s law, which reads q = −k grad p in spatial form [17], and Q = −KGrad p1417

in the so-called “material” form. Here, Q := JF−1q is the Piola transform of1418

the filtration velocity, and Grad p = F Tgrad p is the “material” pressure gradient,1419

obtained by differentiating p with respect to the coordinates associated with the ref-1420

erence configuration. We remark that the filtration velocity represents the specific1421

mass flux vector associated with the motion of the fluid relative to the solid.1422

The second dissipative phenomenon addressed in this work is due to the re-1423

organisation of the tissue’s internal structure. This process is described here in1424

analogy with the theory of finite strain plasticity through the introduction of H1425

[72]. The rate with which the anelastic distortions associated with H evolve in time1426

is given by Λp = ḢH−1 and it will be referred to as tensor of rate of remodelling.1427

In the sequel, we shall assume that remodelling is a volume-preserving process,1428

which yields the restriction JH = 1 and implies that Λp is a deviatoric second-order1429

tensor. Within this framework, the generalised force power-conjugate to Λp is the1430

Mandel stress tensor Σ = CS [70, 169], where S = F−1P sc is the constitutive part1431

of the second Piola-Kirchhoff stress tensor of the solid phase.1432

2.3.1 Dissipation Inequality1433

By accounting for the contributions due to the flow and remodelling, denoted1434

by Dflow and Drem, respectively, the dissipation of the system under study can be1435

written as [112]1436

DR = K : [Grad p⊗ Grad p]⏞ ⏟⏟ ⏞
Dflow≥0

−Σ : Λp⏞ ⏟⏟ ⏞
Drem

≥ 0. (2.15)

Since the positive semi-definiteness of K guarantees that Dflow is non-negative1437

for all pressure gradients, the fulfilment of the inequality DR ≥ 0 is equivalent to1438

requiring the condition Drem = −Σ : Λp ≥ 0 for all Σ and Λp. Moreover, the1439

physical observation that remodelling is triggered by stress suggests to relate Σ to1440

Λp in such a way that the aforementioned restriction is respected. This should be1441

done, however, by exploiting the fact that Σ complies, by construction, with the1442

symmetry condition ΣC = CSC = (ΣC)T [70, 169]. Upon setting Y := CSC,1443

this yields the chain of equalities1444

Σ : Λp = (CSC) : (ΛpC−1) = Y : sym(ΛpC−1), (2.16)

which allows to rephrase Drem as [70]1445

Drem = −Y : sym(ΛpC−1) ≥ 0. (2.17)

We recall that the stress tensor Y can be obtained by expressing the strain energy1446

density as a function of the Piola strain E = 1
2 [G−1 − C−1] [70, 169].1447
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2.3 – Description of Remodelling

We prescribe here that Y and sym(ΛpC−1) are related to each other through1448

an expression of the type1449

sym(ΛpC−1) = −R, (2.18)

where R is a tensor-valued function that has to be specified constitutively. Equa-1450

tion (2.18) shall also be referred to as the remodelling law.1451

To satisfy the condition Drem ≥ 0, we assume here that R can be written as1452

R = T : Y , where T is a fourth-order tensor endowed with the major symmetry1453

and such that the inequality Drem = Y : T : Y ≥ 0 (i.e., T has to be positive semi-1454

definite). The constitutive expression defining T specifies the law of remodelling1455

that one is interested in. It should be noticed, however, that since Λp is deviatoric1456

(i.e., trΛp = 0), the right-hand-side of (2.18), R, must comply with the restriction1457

tr(CR) = 0. This requires T to fulfil the condition tr[C(T : Y )] = C : T : Y = 0,1458

for all Y .1459

2.3.2 Remodelling laws1460

Equation (2.18) is the remodelling equation and it describes how the anelas-1461

tic phenomena evolve during all the deformative process. It is formulated as an1462

evolution law for H through the tensor Λp = ḢH−1.1463

In this work, we assume that remodelling occurs at a given material point when1464

the Frobenius norm ∥devσ∥ =
√︂
gab[devσ]acgcd[devσ]db of the deviatoric part of1465

the constitutive solid phase Cauchy stress, σ = J−1P scF
T, exceeds at that point a1466

threshold equivalent stress, σY , termed “yield stress” in analogy with Plasticity. To1467

take this requirement into account, we write T as T = ζL, where ζ is a scalar stress-1468

dependent “remodelling switch”. Hence, following [104], we prescribe a Perzyna-like1469

model [176]1470

ζ = λ(ϕs)
⎡⎣∥devσ∥ −

√︂
2/3σY

∥devσ∥

⎤⎦
+

, (2.19)

where λ(ϕs) is a material parameter depending on the volumetric fraction of the1471

solid phase, and the operator [ · ]+ extracts the positive part of the function to which1472

it is applied (see also [56]). In this work, we assume that the yield stress is constant,1473

and we set σY = 0.002 MPa. We emphasise that λ(ϕs) vanishes for vanishing ϕs,1474

since no remodelling may occur if the solid phase is absent. In the following, we1475

adopt the simple law λ(ϕs) = λ0ϕ
2
s = λ0[Φsν/JJH ]2, with λ0 = 0.5 (MPa · s)−1. We1476

also remark that, since the condition JH = 1 applies in this context, the equality1477

ϕs = Φsν/J allows to rephrase the dependence of λ on ϕs in terms of the volume1478

ratio J alone, rather than in terms of J and JH .1479
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To complete the description of remodelling, it is necessary to specify the fourth-1480

order tensor L. In this work, we consider the expression1481

L = M∗ : D : M∗T, (2.20)

where M∗ and M∗T are specified in Appendix A. The fourth-order tensor D encodes1482

information about the material properties of the tissue and, in general, is a function1483

of C and H . With the notation introduced in Appendix A, D transforms tensors1484

of ([TB]02, sym) into tensors of ([TB]20, sym). According to (2.20), the tensor R1485

featuring in (2.18) reads1486

R = T : Y = ζ L : Y = ζM∗ : D : M∗T : Y . (2.21)

We remark that the double-contraction of M∗T with Y extracts the deviatoric part1487

of Y with respect to the metric C, i.e.,1488

M∗T : Y = Y − 1
3tr(C−1Y )C. (2.22)

Moreover, by introducing the tensor Z := D : M∗T : Y , the left-multiplication by1489

M∗ in (2.21) leads to1490

R = ζM∗ : Z = ζ
[︂
Z − 1

3tr(CZ)C−1
]︂
, (2.23)

which guarantees the compliance with the constraint1491

0 = tr Λp = tr
[︂
C sym(ΛpC−1)

]︂
− tr(CR) = −ζ tr[C(M∗ : Z)] = 0. (2.24)

For the sake of simplicity, in the following we set D = I♯∗ (see Appendix A for the1492

definition of I♯∗), which implies1493

Z = I♯∗ : M∗T : Y = S − 1
3tr(CS)C−1 = M∗ : S = S̃, (2.25a)

L : Y = M∗ : Z = M∗ : I♯∗ : M∗T : Y = M♯∗ : Y , (2.25b)

where S̃ is said to be the deviatoric part of S with respect to the metric C, and1494

M♯∗ is defined in Appendix A. Furthermore, since M∗ is idempotent (i.e., it holds1495

that M∗ : M∗ = M∗), we obtain the identity1496

M∗ : Z = M∗ : M∗ : S = M∗ : S = Z. (2.26)

Thus, Equation (2.23) reduces to1497

R = ζM∗ : Z = ζ Z = ζ
[︂
S − 1

3tr(CS)C−1
]︂
, (2.27)

and the remodelling law takes on the form1498

sym(ΛpC−1) = −ζ
[︂
S − 1

3tr(CS)C−1
]︂

= −ζ S̃, (2.28)

thereby satisfying the requirement (2.24).1499
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Model M1: Fully isotropic model We use this model for comparison with1500

the other ones, and we obtain it in the limit of vanishing volumetric fraction of the1501

fibres. Hence, we set Φ1sν = 0, which implies Φ0sν = Φsν , and we rewrite the strain1502

energy density (2.2) as1503

Ŵν(Ce) = ΦsνÛ(Je) + ΦsνŴ 0(Ce). (2.29)

Consequently, the second Piola-Kirchhoff stress tensor consists of the isotropic con-1504

tribution only, i.e.,1505

Siso = 1
JH

H

[︄
2Φsν

(︄
∂Û

∂Ce
+ ∂Ŵ 0

∂Ce

)︄]︄
HT, (2.30)

and the permeability tensor reduces to K iso = Jk0C
−1. Furthermore, we prescribe1506

the remodelling law1507

sym(ΛpC−1) = −R(1) = −ζ L : Y iso. (2.31)

with Y iso = CSisoC. By substituting Y iso into (2.31) and performing all the1508

necessary algebraic calculations, we obtain1509

sym(ΛpC−1) = −R(1) = −ζS̃iso, (2.32)

with S̃iso = M∗ : Siso = Siso − 1
3tr(CSiso)C−1.1510

Model M2: Semi-isotropic model In this model, we use the full permeability1511

tensor defined in (2.12) and the transversely isotropic strain energy density (2.2),1512

which produces the second Piola-Kirchhoff stress tensor1513

S = Si + Sa, (2.33)

with1514

Si = 1
JH

H

[︄
2Φsν

∂Û

∂Ce
+ 2Φ0sν

∂Ŵ 0

∂Ce
+ 2Φ1sν

∂Ŵ 1i

∂Ce

]︄
HT, (2.34a)

Sa = 1
JH

H

[︄
2Φ1sν

∂⟨⟨Ŵ 1a⟩⟩
∂Ce

]︄
HT. (2.34b)

Note that Si and Sa represent, respectively, the isotropic and transversely isotropic1515

contributions to the overall constitutive part of the second Piola-Kirchhoff stress1516

tensor of the solid phase, S.1517

In spite of the fact that both the elastic and the hydraulic response of the tissue1518

are transversely isotropic, we consider the same remodelling law as in the Model1519

M1. Hence, we set1520

sym(ΛpC−1) = −R(2) = −ζ L : Y , (2.35)
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where Y splits additively as Y = CSC = CSiC + CSaC. Analogously to the1521

Model M1, also in this case the remodelling law can be written as1522

sym(ΛpC−1) = −R(2) = −ζ
[︂
S̃i + S̃a

]︂
, (2.36)

with1523

S̃i = M∗ : Si = Si − 1
3tr(CSi)C−1, (2.37a)

S̃a = M∗ : Sa = Sa − 1
3tr(CSa)C−1 (2.37b)

being the deviatoric parts of Si and Sa, respectively, with respect to the deformed1524

metric C. We remark that, according to (2.36), the presence of the fibres supplies1525

a direct contribution to the remodelling law through S̃a.1526

Remark 2.3.1. Each remodelling law, i.e., (2.31) or (2.35), is in general equivalent1527

to a set of six scalar differential equations in the components of H . However, when1528

the isochoric condition JH = 1 is enforced, as is the case in this work, the number1529

of independent equations is five, because the constraint tr(Λp) = tr(ḢH−1) = 01530

has to be respected. Since, in general, H possesses nine independent components,1531

which become eight when the isochoric condition JH = 1 applies, the remodelling1532

laws are not closed. To obtain the closure, we perform the polar decomposition of1533

H , i.e., H = V .R ≡ V GR, where R is a rotation tensor and V is a symmetric1534

and positive-definite tensor. In this work, we impose that the rotations associated1535

with remodelling are not allowed, so that only V is unknown. Since it has only six1536

independent components (actually five, because it holds that JH = det V = 1), the1537

remodelling laws become closed. We also notice that the identity Λp = ḢH−1 =1538

V̇ V −1 holds true.1539

2.4 Benchmark test and numerical settings1540

We formulate a finite strain poroplastic problem for a porous medium in which1541

the interstitial fluid obeys Darcy’s law and the solid phase exhibits hyperelastic1542

behaviour. Given the reference configuration of the tissue B ⊂ S and the interval1543

of time I ⊂ R, find the motion χ, pressure p, and V such that1544

Div (K Grad p) = J̇ , in B × I, (2.38a)
Div

(︂
−Jp g−1F−T + P sc

)︂
= 0, in B × I, (2.38b)

sym(ΛpC−1) = −R, in B × I, (2.38c)

where R can be equal to R(1) or R(2), depending on whether the model M11545

or M2 is computed. We emphasise that, by construction, both R(1) and R(2)1546

have to be understood as functionals of χ, and V , i.e., R(α) = R̂(α)(χ,V ), for1547
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α ∈ {1,2}. Whereas (2.38c) expresses the general form of the investigated remod-1548

elling law, (2.38a) and (2.38b) represent, respectively, the mass balance law and1549

the momentum balance law for the biphasic system with which the tissue is ap-1550

proximated. We recall, indeed, that the tissue is assumed here to consist of a solid1551

phase, which comprises a porous matrix and the reinforcing fibres, and an inviscid1552

interstitial fluid obeying Darcy’s law. Equations (2.38a)–(2.38c) are determined1553

under the hypotheses that the mass densities of the solid and the fluid phase are1554

constant (a condition implying the intrinsic incompressibility of both phases), and1555

that all the external body forces —including the inertial ones— as well as all the1556

quantities of order higher than the first in the relative velocity vfs := vf − vs are1557

negligible. More specifically, the mass balance law (2.38a) implies that the opposite1558

of the divergence of the specific (material) mass flux Q = −KGrad p is compen-1559

sated for by the time derivative of the volume ratio J . Furthermore, the momentum1560

balance law (2.38b) defines the overall stress tensor of the biphasic system under1561

study as P tot = −Jp g−1F−T +P sc, where the pressure p is the Lagrange multiplier1562

associated with the incompressibility and the saturation constraints.1563

The logical steps leading to (2.38a) and (2.38b) have been presented elsewhere1564

(cf. e.g. [115, 80, 225, 109, 116, 112, 40, 111]), and will not be repeated here. In1565

addition to them, the remodelling law (2.38c) supplies a further coupling among1566

deformation, pressure, and plastic-like distortions.1567

Equations (2.38a)–(2.38c) shall be solved for simulating an unconfined compres-1568

sion test of the sample under study. This test represents a typical benchmark1569

problem for investigating the elastic and hydraulic properties of biological tissues1570

(cf. (2.38a) and (2.38b), respectively), and has been adapted here in order to also1571

account for the reorganisation of the sample’s internal structure (cf. (2.38c)). In1572

the experiment simulated in this work, a specimen of tissue of cylindrical shape is1573

positioned between two rigid, parallel plates, and compressed. The two plates are1574

impermeable to the fluid flow. The compression takes place in displacement control1575

and, in particular, by displacing the upper plate according to a given loading ramp.1576

The lower plate is instead kept fixed, and the specimen is clamped on it. The1577

upper plate constitutes a frictionless glide surface for the specimen, whose upper1578

boundary is thus allowed to deform radially in axial-symmetric way. The lateral1579

boundary is assumed to be free of contact forces, thereby requiring that both the1580

pressure and the radial component of the overall stress vanish on it (see (2.39b)).1581

By introducing a reference frame with origin O coinciding with the centre of the1582

lower boundary of the sample, and orthonormal Cartesian basis vectors {ΞI}3
I=11583

emanating from O, such that Ξ3 is the unit vector directed along the specimen’s1584

symmetry axis, the experiment described above is represented by the boundary1585

conditions [40, 108]:1586 {︄
χ3 = f
(−KGrad p).N = 0 on ∂B(u), (2.39a)
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{︄
(−Jpg−1F−T + P sc).N = 0
p = 0 on ∂B(l), (2.39b){︄
χ(X, t) − χ(X,0) = 0
(−KGrad p).N = 0 on ∂B(L). (2.39c)

In (2.39a), χ3 is the axial component of the motion, and f is the loading ramp1587

f(t) =
{︄
L− t

Tramp
uT, for t ∈ [0, Tramp],

L− uT, for t ∈ ]Tramp, Tend], (2.40)

where uT = 0.20 mm is the target displacement imposed to the sample and L =1588

1 mm is the sample’s initial length. The initial cross section of the sample has1589

diameter D = 3 mm. The target displacement is reached at the end of the loading1590

ramp, i.e., at Tramp = 20 s, and is then kept constant until Tend = 300 s. Moreover,1591

in (2.39a)–(2.39c), ∂B(u), ∂B(l) and ∂B(L) are the upper, lateral and lower part of1592

the boundary ∂B, such that ∂B = ∂B(u) ⊔ ∂B(l) ⊔ ∂B(L). Finally, N is the unit1593

vector normal to ∂B.1594

It is assumed that, at the initial time, the sample finds itself in an undeformed1595

state, with zero pressure, and in the absence of anelastic distortions. These require-1596

ments lead to the initial conditions1597

χ(X,0) = X, ∀ X ∈ B, (2.41a)
p(X,0) = 0, ∀ X ∈ B, (2.41b)
V (X,0) = G−1(X) ∀ X ∈ B. (2.41c)

The numerical solution of (2.38a)–(2.38c), with (2.41a)–(2.41c) and (2.39a)–1598

(2.39c), is achieved by performing Finite Element simulations. In particular, fol-1599

lowing [112, 40], (2.38a) and (2.38b) are put in weak form, and solved according to1600

a given Finite Element scheme, while (2.38c) is solved only at the integration points1601

of the finite elements. To this end, by searching for the motion χ and pressure p in1602

the Sobolev spaces (H1(B × I,S))3 and H1(B × I,S), respectively, and enforcing1603

the boundary conditions (2.39a)–(2.39c), the model equations (2.38a)–(2.38c) are1604

reformulated as1605

Fχ = F̂χ(χ, p,V ) =
∫︂

B
P̂ (χ, p,V ) : gggGrad ũ = 0, (2.42a)

Fp = F̂p(χ, p,V ) =
∫︂

B

{︃
(Grad p̃)K̂(χ,V )(Grad p) + p̃J̇

}︃
= 0, (2.42b)

FV = F̂V (χ,V ) = sym(V̇ V −1) + R̂(χ,V ) = 0, (2.42c)

where ũ and p̃ are the test functions associated with the velocity and pressure and1606

are sometimes referred to as “virtual velocity” and “virtual pressure”, respectively.1607

We notice that the functionals F̂χ and F̂p depend linearly on the virtual fields ũ1608

and p̃. However, for the sake of a lighter notation, we have omitted this dependence1609

in their definitions.1610
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2.5 Results1611

In this section, we present and discuss the main results of our simulations (see1612

Figures 2.1–2.5). In particular, we show (i) how remodelling modulates the mechan-1613

ical and hydraulic response of the tissue, and (ii) how the fibre reinforcement, which1614

makes the tissue transversely isotropic, influences the evolution of the anelastic dis-1615

tortions. To highlight the consequences of remodelling, we run a set of simulations1616

in which remodelling is switched off, and we compare the corresponding results with1617

those stemming from the set of simulations in which the models M1 and M2 are1618

implemented. Moreover, in order to see the role played by the fibre reinforcement,1619

we compare the results predicted by the model M1, in which an ideal isotropic1620

tissue without fibres is simulated, with those predicted by the model M2, in which1621

the presence of the fibres is accounted for. In all the plots (Figures 2.1–2.5), we1622

evaluate the physical quantity of interest at the point XU of Cartesian coordinates1623

given by (1.3,0.0,1.0) [mm], which is on the upper boundary and close to the lateral1624

boundary of the sample. In Figure 2.1a, we report the time trend of the magni-1625

tude of the (spatial) filtration velocity, ∥q(XU, t)∥, evaluated at the point XU for1626

t ∈ [0, Tend[, where we let Tend be arbitrarily greater than Tramp. We show both1627

the case of no remodelling and the case of remodelling, as described by the models1628

M1 and M2. In the absence of remodelling, the magnitude of the filtration velocity1629

grows monotonically until the target displacement is reached, i.e., until t = Tramp.1630

Then, it relaxes asymptotically towards zero for increasing time. When remodelling1631

occurs, the trend of ∥q(XU, t)∥ depends on whether or not the fibres are accounted1632

for. In the simulation performed by applying the model M1, the influence of re-1633

modelling on ∥q(XU, t)∥M1 is twofold: on the one hand, it lowers considerably the1634

maximum value of ∥q(XU, t)∥, which is however attained at t = Tramp, and, on1635

the other hand, it leads to a much slower relaxation time. Hence, even though1636

∥q(XU, t)∥M1 decreases monotonically towards zero, the curve associated with M11637

intersects the curve of no remodelling, and it holds that1638

∥q(XU, t)∥M1 ≥ ∥q(XU, t)∥no-rem, (2.43)

for all t ≥ T1, with T1 > Tramp being the time at which the two curves intersect each1639

other. The simulation performed considering the model M2 leads, instead, to quite1640

different results. First of all, the maximum value of ∥q(XU, t)∥M2, always attained1641

at T = Tramp, is smaller than the one reached in the case of no remodelling and1642

bigger than the one predicted by M1. Moreover, the relaxation of ∥q(XU, t)∥M21643

towards zero is slower than that observed in the case of no remodelling, but slightly1644

faster than the one obtained by employing the model M1. The most noticeable1645

results, however, are given by the loss of monotonicity of ∥q(XU, t)∥M2 in the inter-1646

val [Tramp, Tend[, and by the presence of the point of non-differentiability, hereafter1647

denoted by Tc, between Tramp and t = 50 s. This behaviour is due to the fact that,1648

when remodelling occurs and the anisotropy of the fibre pattern is considered, the1649
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Figure 2.1: Norm of Darcy velocity vs time (a) and radial component of
Darcy velocity vs time (b), evaluated at the point XU of Cartesian coordinates
(1.3,0.0,1.0) [mm]. The anisotropic model predicts an inversion of the filtration ve-
locity, which yields thus an inflow of fluid after a critical instant of time is reached.
This behaviour is not captured by the isotropic model M1.

radial component of the filtration velocity decreases for t > Tramp, becomes nega-1650

tive until it attains a global minimum and, subsequently, it grows asymptotically1651

towards zero for a sufficiently long time (see Figure 2.1b). The above discussion1652

contributes to answer the research questions 2.2 and 2.3.1653

The change of sign in the radial velocity may be interpreted as a “syringe effect”,1654

thereby meaning that, for t > Tc, the fluid tends to flow back into the tissue. Since1655

the fluid filtration velocity complies with Darcy’s law, this behaviour is accompanied1656

by a change of sign of the radial pressure gradient, which implies that the pressure1657

at XU becomes smaller than zero for t > Tc (we recall, indeed, that our boundary1658

conditions prescribe that, on the lateral boundary of the sample, the pressure is1659

zero at all times). This observation seems to be supported by the results shown in1660

Figure 2.2. In the absence of remodelling, pressure grows until a global maximum is1661

reached, and it relaxes then towards zero for increasing time. A qualitatively similar1662

trend is also observed when remodelling is switched on and the model M1 is used,1663
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Figure 2.2: Pressure vs time, p(XU, t), evaluated at the point XU of Cartesian co-
ordinates (1.3,0.0,1.0) [mm]. The isotropic model M1 predicts a dramatic decrease
of pressure due to the progression of remodelling. In the case of the model M2,
instead, the interplay between the evolution of the plastic distortions and the tis-
sue’s anisotropy contains the pressure fall and induces a loss of monotonicity in the
time trend. This is consistent with the inversion of the filtration velocity observed
in Figure 2.1.

even though the maximum value of pressure is much smaller than the one obtained1664

in the case of no remodelling. The model M1 predicts, indeed, that [p(XU, t)]M11665

consists of two monotonic branches, one increasing over the interval [0, Tramp] and1666

the other one decreasing over [Tramp, Tend[. The decreasing branch intersects the1667

relaxing branch of the pressure curve of no remodelling and tends towards zero1668

more slowly than the latter one. The curve determined by simulating the model1669

M2 grows rather steeply until the maximum pressure is attained, and this maximum1670

places itself in between the values obtained in the case of no remodelling and that of1671

model M1, respectively. Then, [p(XU, t)]M2 decreases much faster than it happens1672

in the other cases, becomes negative, and reaches a global minimum. Afterwards it1673

grows again, and it then tends to zero from below at a rate comparable with that1674

of no remodelling. We remark that the instant of time at which pressure equals1675

zero coincides with Tc, i.e., the time at which the radial component of the filtration1676

velocity changes its sign.The above discussion contributes to answer the research1677

questions 2.1, 2.2 and 2.3.1678

In Figure 2.3, we study the time trend of porosity at XU. We notice that, both1679

in the case of no remodelling and in the case of the model M1, porosity decreases1680

monotonically in time. In the absence of remodelling, porosity varies very smoothly,1681

and the amplitude of the variation between its initial and asymptotic values is bigger1682

than in the other case. The model M1, in turn, predicts a rather pronounced change1683

of slope of the porosity curve, and the asymptotic value of porosity is reached more1684

slowly. A quite different behaviour can be observed when the tissue’s anisotropy1685
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Figure 2.3: Porosity vs time, 1 − Φsν(XU)/J(XU, t), evaluated at the point XU of
Cartesian coordinates (1.3,0.0,1.0) [mm]. Whereas the case of no remodelling and
the model M1 predict quantitatively different, but qualitatively similar, results, the
model M2 is characterised by a trend that is both quantitatively and qualitatively
different from the other two. The loss of monotonicity is, in fact, consistent with
that of Figures 2.1 and 2.2, and represents an opening of the tissue’s pores (with
corresponding increase of porosity) on the way towards the stationary state.

is accounted for. Indeed, in accordance with the inversion of the fluid filtration1686

velocity (see Figure 2.1) and the change of sign of the pressure (see Figure 2.2), the1687

model M2 prescribes that porosity varies in time in a non-monotonic way. More1688

specifically, it decreases until it comes to a global minimum, which corresponds to1689

the end of the loading ramp, and then it grows towards a stationary value. This1690

behaviour is consistent with the fact that, to permit the inflow of fluid, the tissue1691

must increase its porosity, and it seems to be a consequence of the interplay between1692

the tissue’s anisotropy and the evolution of the anelastic distortions. The above1693

discussion contributes to answer the research question 2.3.1694

In terms of Fp, a measure of the magnitude of plastic-like distortions is the1695

Frobenius norm of the anelastic strain tensor1696

Ep = 1
2

[︂
F T

p .Fp − G
]︂
. (2.44)

Since it holds that Fp is the inverse of H , Ep may be rewritten as1697

Ep = 1
2 [H−T.H−1 − G] = −AH , (2.45)

where AH is the Almansi-Euler-like strain tensor associated with H . Finally, by1698

enforcing the polar decomposition H = V .R, Ep becomes1699

Ep = 1
2 [V −1.V −1 − G]. (2.46)

Equation (2.45) suggests which tensor field should be used to address remodelling1700

within the theory of uniformity [70, 169, 53, 197].1701
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Figure 2.4: Frobenius norm of Ep = 1
2 [V −1.V −1 − G] vs time, ∥Ep(XU, t)∥, evalu-

ated at the point XU of Cartesian coordinates (1.3,0.0,1.0) [mm]. The magnitude of
the plastic strains is bigger in the transversely isotropic model M2. In the isotropic
model M1, instead, the plastic strains are rather small, but they tend to the sta-
tionary state much more slowly than predicted by the model M2.

The Frobenius norm of Ep is now evaluated at XU and its variation in time is1702

reported in Figure 2.4. We notice that the magnitude of the anelastic distortions1703

as predicted by the model M2 is much bigger than that obtained by the model M1.1704

Thus, the anisotropy of the tissue seems to enhance the growth of the plastic distor-1705

tions, whose magnitude increases quite rapidly and tends to approach a stationary1706

value. In the case of the model M1, instead, ∥Ep(XU, t)∥ grows much more slowly1707

(and almost linearly) towards a stationary value. The above discussion contribute1708

to answer the research questions 2.2 and 2.3.1709

Finally, we investigate how the onset of plastic distortions modulates the stress1710

borne by the tissue. To this end, we plot in Figure 2.5 the von Mises equivalent1711

stress at XU, and we notice that the curve corresponding to the model M1 is, until1712

about 200 s, bounded from above by the curve pertaining to the model M2. This1713

means that, even though the plastic distortions are characterised by a magnitude of1714

Ep that is bigger in the anisotropic case than in the isotropic one, the level of stress1715

reached in the first case is higher. We remark that the onset of remodelling occurs1716

only when the von Mises equivalent stress, ∥devσ∥, overcomes the yield stress,1717

σY . In fact, there exists an instant of time such that the condition of incipient1718

remodelling, i.e., ∥devσ∥ = σY , is verified, and the von Mises equivalent stress is1719

bigger than σY for all subsequent times. To highlight this behaviour, we plotted in1720

Figure 2.5 the yield stress (which is constant in time in this work), and we showed1721

that, in all the considered cases, the von Mises equivalent stress exceeds the yield1722

stress after a quite short interval of time.The above discussion contributes to answer1723

the research questions 2.1, 2.2 and 2.3.1724
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Figure 2.5: Equivalent stress vs time, evaluated at the point XU of Cartesian
coordinates (1.3,0.0,1.0) [mm]. The equivalent stress is the Frobenius norm of
the deviatoric part of the constitutive Cauchy stress tensor, i.e., ∥devσ∥, with
σ = J−1F SF T. The 2nd Piola-Kirchhoff stress tensor S is given by (2.30) for the
model M1, and by (2.33) both for the model M2 and for the case of no remodelling
(in which, however, the identity V = G−1 applies).

2.6 Conclusions1725

In this work, we employed an inhomogeneous and transversely isotropic poro-1726

plastic model of fibre-reinforced biological tissue in order to study how the variation1727

of the tissue’s internal structure (i.e., the process of remodelling), which manifests1728

itself through the onset and evolution of anelastic distortions, is influenced by the1729

material symmetries of the tissue itself.1730

For our purposes, we rephrased the poroelastic model of hydrated, fibre-reinfor-1731

ced tissues summarised in [80, 225] in order to account for the presence of anelastic1732

distortions (the definition of the hyperelastic strain energy energy is developed from1733

[84, 80] and the tissue’s permeability has been adapted from [83, 82, 80, 225]). Then,1734

we formulated and solved numerically the two different descriptions of structural1735

remodelling denoted by model M1 and model M2. We recall that, while the tissue1736

has been simulated as inhomogeneous and transversely isotropic both in the case of1737

the model M2 and in the reference case of no remodelling, it has been regarded as1738

inhomogeneous but isotropic in the model M1. We emphasise that this idealisation1739

serves as a basis for comparison with the transversely isotropic model M2, and has1740

been done to highlight the interplay between the tissue’s material symmetries and1741

the development of plastic distortions. These, indeed, drive an evolution of the1742

group of material symmetries, but they do not change it (see [68, 69] for further1743

details).1744

Among the obtained results, represented graphically in Figures 2.1–2.5, we give1745

prominence to the “syringe effect” discussed in Section 2.5, which is observed in1746

48



2.6 – Conclusions

our simulations only when remodelling occurs in the tissue modelled as an inhomo-1747

geneous and transversely isotropic material (cf. model M2). Such effect seems to1748

be an evidence of the change of the tissue’s mechanical and hydraulic behaviour.1749

Such alteration of material response could characterise a diseased or damaged tis-1750

sue, and could thus also provide some indications on how the tissue might behave1751

in non-physiological conditions.1752

Finally, since the observed changes of material behaviour occur both qualita-1753

tively and quantitatively in the case of anisotropy (while the change is only quanti-1754

tative in the case of isotropy), our results could be used for studying the interplay1755

between growth and remodelling in anisotropic tissues. For example, this could1756

be of interest for elaborating more detailed and more accurate models of tumour1757

growth, in which the onset of remodelling has appreciable consequences on the1758

tumour evolution [167, 166].1759

In summary, the research questions 2.1—2.3 have been answered in the following1760

way:1761

• The “syringe effect”, discussed in Section 2.5, is observed in our simulations1762

only when remodelling occurs in the tissue described as inhomogeneous and1763

transversely isotropic material. We, thus, conclude that this behaviour is an1764

output of the interplay between anelasticity and anisotropy.1765

• The observed changes of the material behaviour occur both qualitatively and1766

quantitatively in the case of anisotropy, while the change is only quantitative1767

in the case of isotropy.1768

• Changes of the tissue’s mechanical properties manifest themselves through1769

stress relaxation, loss of monotonicity in the temporal evolution of the poros-1770

ity and through the production of plastic-like distortions, whereas the changes1771

of the tissue’s hydraulic properties involve the filtration velocity and the pres-1772

sure distribution in time and space.1773

1774
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Chapter 31775

Structural reorganisation and1776

fibre reorientation in1777

fibre-reinforced biological tissues1778

The work reported in this chapter has been previously published in [56].1779

3.1 Introduction1780

We highlight some mechanical aspects of the coupling among deformation, fluid1781

flow, structural evolution, and reorientation of fibres in fibre-reinforced, hydrated,1782

soft biological tissues. For our purposes, we elaborate a model in which the tissue’s1783

interstitial fluid is inviscid and obeys Darcy’s law, and the solid constituents are1784

transversely isotropic, hyperelastic materials. Within this setting, we consider two1785

different types of remodelling: One consists of the reorientation of the fibres, while1786

the other one is the manifestation, at the tissue scale, of structural rearrangements1787

representable in terms of inelastic distortions. Our focus is on the interplay between1788

the latter ones and the fibre reorientation. In our model, such interplay is a conse-1789

quence of the constitutive framework, which resolves explicitly the space variability1790

of a parameter, the “fibre mean angle”, that determines the direction along which1791

the fibres tend to align themselves. Our main results concern the description of a1792

Mandel-like stress tensor, which drives the inelastic distortions when the fibre mean1793

angle is distributed inhomogeneously throughout the tissue, and of a diffusion-like1794

tensor depending on the inelastic distortions, which guides the evolution of the fibre1795

mean angle.1796

With these motivations, we propose to improve and extend the model presented1797

in [108], where the reorientation of fibres was studied in a transversely isotropic1798

fibre-reinforced tissue, with fibres aligned according to a prescribed probability1799

density. Such probability density was parametrised by an angle denominated “fibre1800
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mean angle” and determining, at each material point, the direction of the most1801

probable fibre alignment.1802

In the present work, there are three relevant differences with respect to [108].1803

The first and major difference is that we now account for plastic-like distortions1804

and study their influence on the reorientation of the collagen fibres by adhering1805

to the formalism introduced in [61]. Plastic-like distortions are meant to describe1806

the onset and progression of irreversible strains in the tissue, which may arise in1807

response to diseases or injuries [97], or the reorganisation of the tissue’s extracel-1808

lular matrix, as is the case for cellular aggregates and tumour spheroids [198, 104,1809

112]. In the literature, the concept of inelastic distortions is often related to that of1810

residual stresses, an issue typically investigated with the aid of the Bilby-Kröner-1811

Lee decomposition of the deformation gradient tensor. A rather different point1812

view, however, has been recently proposed in [175], where a study on the impact of1813

residual stresses on the mechanical behaviour of tissues is presented. The second1814

difference is related to the rationale with which the concept of target angle is ac-1815

counted for. We recall that the “target angle” is a preferred angle that, depending1816

on the deformation or stress state in the tissue, contributes to direct the evolution1817

of the fibre mean angle. In fact, it can be thought of as the generator of an ex-1818

ternal force that drives the fibre mean angle towards the value determined by the1819

interactions of the fibres with the environment in which they are embedded. After1820

mentioning the approaches proposed, for example, in [64, 21, 127, 183], we select1821

for our purposes a modification of the target angle put forward in [64]. The third1822

difference is a re-definition of the constitutive framework and, in particular, of the1823

free energy density of the Allen-Cahn type [108], which models the reorientation of1824

the fibres and constituted the crux of [108].1825

The most significant contribution of our work is the enrichment of the constitu-1826

tive framework through the definition of two “non-standard” terms in the total free1827

energy density of the system, Wν . One of these terms, denoted by WGrad, is said to1828

be the “gradient part” of Wν since it features the material gradient of the fibre mean1829

angle, q. The energy density WGrad keeps track, already at the constitutive level,1830

of the explicit dependence of q on material points [108]. Thus, such dependence is1831

not inherited from the quantities involved in the evolution equation of q. Rather,1832

it is accounted for a priori by enrolling Gradq among the constitutive arguments of1833

Wν . This gives rise to a generalised force that, by embodying the inhomogeneity of1834

q, contributes to drive the evolution of q itself. As a consequence, the coupling of1835

q with the dynamics of the plastic-like distortions introduce a novelty with respect1836

to [108].1837

The other non-standard term in Wν is referred to as the “structural part” and is1838

denoted by Wstr. In our view, it represents the potential energy that pertains to a1839

given distribution of q, and its existence is postulated a priori, regardless of the fact1840

that the tissue is deformed elastically or distorted inelastically. In fact, Wstr can be1841

non trivial also in the absence of deformation and plastic-like distortions, although1842
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we do allow for its coupling with these kinematic variables. The way in which this1843

is done here is another novelty of our work, for we strongly modify the coupling1844

previously defined in [108]. Moreover, we compare our concept of structural energy1845

with the one introduced in [21], within a setting rather different from ours.1846

The proposed constitutive framework leads to the key point of this work: The1847

coupling among the kinematic variables is such that the dynamics of the system1848

can be depicted as a “game among three players”, i.e., the motion, the plastic-like1849

distortions, and the fibre mean angle.1850

In our model, plastic-like distortions are assumed to be set off, for instance, when1851

the tissue undergoes irreversible strains [97], when the cells of the tissue redistribute1852

their adhesion bonds, or when the tissue’s extracellular matrix rearranges the cross-1853

links forming its structure [112]. In these cases, the solid constituent of the tissue1854

experiences transformations that cannot be described in terms of shape changes,1855

and that necessitate, thus, new descriptors. As suggested in [60], such descriptors1856

should be regarded as independent kinematic variables that represent the structural1857

degrees of freedom of the tissue. Within this picture, and by regarding the tissue1858

as a deformable porous medium permeated by an interstitial fluid, our goal is to1859

describe the interactions among deformation, fluid flow, and the aforementioned1860

structural changes, emphasising the coupling between the plastic-like distortions1861

and the fibre reorientation.1862

3.2 Dynamical equations1863

According to the mathematical model presented in Chapter 2, also in this case1864

the flow of the fluid and the deformation of the considered tissue are accounted for1865

by the mass balance law and the linear momentum balance law for the tissue as a1866

whole, i.e.,1867

J̇ = Div [KGrad p] , in B × I , (3.1a)
Div

[︂
−Jp g−1F−T + Psc

]︂
= 0, in B × I . (3.1b)

We first consider the reorganisation of the tissue due to the production of in-1868

elastic distortions. Then, in accordance with [60], we introduce a set of generalised1869

forces dual of the virtual velocity associated with Fp, and we distinguish between1870

the internal and the external forces of this kind, denoted by Y int
ν and Y ext

ν , re-1871

spectively. Hence, by invoking the Principle of Virtual Powers, we obtain the force1872

balance [60]1873

Y int
ν = Y ext

ν , in B × I , (3.2)

where the subscript “ν” means that Y int
ν and Y ext

ν are defined with respect to the1874

natural state of the tissue [44]. Finally, using the jargon of [60], we remark that1875
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Eq. (3.2) is consistent with a “grade zero” theory, in which no gradient of Fp is1876

accounted for.1877

We now turn to the reorientation of the reinforcing fibres. As reported in [21,1878

108, 116], the alignment of the fibres in the tissue is governed by a probability1879

density that depends on a given set of scalar parameters. The variation of these1880

parameters is responsible for the reorientation of the fibres. In our model, we1881

select one parameter only, which we indicate with q and employ to describe the1882

kinematics of the fibres. In particular, q acquires the meaning of “fibre mean angle”.1883

Analogously to the reasoning that has led us to (3.2), we consider both internal and1884

external generalised forces dual of the (scalar) virtual velocity v associated with q.1885

In this case, however, since we aim at resolving explicitly the point dependence of q,1886

we also need to account for the kinematic descriptor Grad q, along with its virtual1887

counterpart Grad v. Then, by employing again the Principle of Virtual Powers, and1888

restricting it for brevity only to the sub-problem of the fibre reorientation, we find1889 ∫︂
B

{︂
y(0)v + y(1) Gradv

}︂
=
∫︂

B
h(0)v +

∫︂
∂BN

h(1) v, (3.3)

where y(0) and y(1) are a scalar and a vector-like internal force, defined as the dual1890

entities of v and Gradv, respectively, h(0) is an external force, h(1) is an external1891

contact force, ∂BN is the Neumann boundary of ∂B, and the virtual velocity v1892

is assumed to vanish identically on the Dirichlet portion of ∂B, i.e., on ∂BD =1893

∂B\∂BN . Equation (3.3) leads to the balance laws1894

y(0) − Div y(1) = h(0), in B × I , (3.4a)
y(1).N = h(1), on ∂BN × I . (3.4b)

Upon setting, in the case of isochoric plastic-like distortions,1895

Rext
ν ≡ h(0), (3.5a)

R int
ν ≡ y(0) − Div y(1), (3.5b)

we can rephrase (3.4a) as1896

R int
ν = Rext

ν , in B × I , (3.6)

thereby generalising the results in [183, 116].1897

Equations (3.1a), (3.1b), (3.2), reformulated for the case of isochoric plastic-like1898

distortions, and (3.6) describe the dynamics of the system under study. Their solu-1899

tion determines the model unknowns, identified with p, χ, Fp, and q. Among those,1900

a true configuration of the solid is obtained by specifying the triple of descriptors1901

(χ,Fp, q). In the sequel, we refer to q and Fp as to remodelling variables, and to1902

Y int
ν , Y ext

ν , R int
ν , and Rext

ν as to generalised remodelling forces.1903
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3.3 Constitutive laws1904

To constitutively characterise the fibre-reinforced medium under study, we as-1905

sign a free energy density consisting of two terms, both of which are written per1906

unit volume of the material in its natural state, i.e. [108],1907

Wν = Wstd +Wrem. (3.7)

The term Wstd takes into account the hyperelastic behaviour of the solid mate-1908

rial, and relies on a mechanical model of fibre-reinforced media, in which the fibres1909

are oriented statistically [84, 83, 80]. In this respect, we denote the corresponding1910

strain energy density by Wstd, where the subscript “std” stands for “standard”. The1911

other term, Wrem, is not standard and it has been introduced in order to specifi-1912

cally account for remodelling [21, 108, 138]. The energy density Wrem is assumed1913

to exist independently of deformation and, in fact, it is conceived as the energetic1914

contribution that characterises each possible directional distribution of the fibres1915

in the tissue. For this reason, Wrem may be nontrivial also in the undeformed1916

configuration of the tissue [108].1917

3.3.1 “Standard” Constitutive laws1918

Following [84, 83, 80, 108, 116], we define Wstd as a function of Ce and q, i.e.,1919

we set Wstd = Ŵ std(Ce, q), with1920

Ŵ std(Ce, q) =ΦsνÛ(Je) + Φ0sνŴ 0(Ce) + Φ1sν
[︂
Ŵ 1i(Ce) + Ŵ 1a(Ce, q)

]︂
. (3.8)

For the expressions of Φsν ,Φ0sν and Φ1sν , we refer to Eqs. (2.13a)-(2.13c) and Table1921

3.1. The definitions of the Û(Je) and Ŵ 0(Ce) are reported in Eqs. (2.4a) and1922

(2.4b), respectively, while Ŵ 1i(Ce) has the same functional form of Ŵ 0(Ce), but1923

with different coefficients. For convenience of the Reader, in Table 3.1 the material1924

parameters involved in (3.8) are reported. The latter term of (3.8), W1a, is defined1925

through the directional average [228, 83, 80, 79, 151, 100]1926

Ŵ 1a(Ce, q) =
⟨︂⟨︂
Ŵ 1a(Ce,m)

⟩︂⟩︂
(q) =

∫︂
S2B

Ŵ 1a(Ce,m)Ψ(m, q). (3.9)

where Ŵ 1a(Ce,m) is the transversely isotropic strain energy density of a single1927

fibre, and m is a field of unit vectors individuating the direction of space along1928

which the fibres are locally oriented.1929

A possible explicit constitutive expressions Ŵ 1a(Ce,m) is given by [80, 225]1930

Ŵ 1a(Ce,m) = W̌ 1a(I4e) = V̌ 1a(I4e)H(I4e − 1), (3.10a)

V̌ 1a(I4e) = k1

2k2

{︂
exp

(︂
k2[I4e − 1]2

)︂
− 1

}︂
. (3.10b)
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The constitutive expression of V̌ 1a is taken from [183, 139].1931

Here, the probability density function Ψ is assumed to depend only on the1932

direction of the local fibre orientation and on the remodelling variable, q. However,1933

in more general contexts, it can depend on several other parameters. It is important1934

to remark that, in this work, it is taken transversely isotropic with respect to a1935

direction m0 for the tissue as a whole. To justify this assumption, we consider a1936

specimen of tissue of cylindrical shape, and we assume that the symmetry axis of1937

the cylinder coincides with m0.1938

Symbol Definition Units Symbol Definition Units

r 0.50 [—] Φ0sν 0.046 + 0.038ξ − 0.062ξ2 [—]
q 2.00 [—] Φ1sν 0.204 − 0.138ξ + 0.062ξ2 [—]
α0 0.125 [MPa] Γ 1 · 104 [Pa s]
α1 = αi1 0.778 [—] D0 1 · 10−4 [N(rad)−1]
α2 = αi2 0.111 [—] ζ0 0.50 [(MPa s)−1]
αi0 7.59 [MPa] eν (1 − Φsν)/Φsν [—]
Jcr 0.1 + Φsν(ξ) [—] e(0)

ν 4.0 [—]
k1 13.00 [kPa] κ0 0.0848 [—]
k2 12.20 [—] m0 4.6380 [—]
σy 0.002 [MPa] k

(0)
0ν 3.7729 · 10−3 [mm4(N s)−1]

Φsν Φ0sν + Φ1sν [—] A0 (k1/k2)(4.387 ξ2.228 + 1) [kPa]

Table 3.1: Parameters used in the numerical simulations. See [80, 225], and the
references therein, for the values in the first seven rows on the left.

We remark that Ŵ 1a(Ce,m) depends on m through the structure tensor a :=1939

m ⊗ m and, since a is invariant under the transformation m → −m, it also holds1940

that Ŵ 1a(Ce(X, t),mX) = Ŵ 1a(Ce(X, t),−mX), for all X ∈ B and for all times.1941

While the strain energy density of a single fibre, Ŵ 1a(Ce,m), is transversely1942

isotropic with respect to m, the directional average (3.9) models a material that1943

is transversely isotropic with respect to m0. To guarantee this property, for all1944

X ∈ B in the natural state, we first choose a triad {eα(X)}3
α=1 of basis unit1945

vectors, with e3(X) parallel to m0. Then, we introduce the polar coordinates1946

(ϑ, φ) ∈ [0, π] × [0,2π[, so that mX reads1947

mX ≡ m̌X(ϑ, φ) = sinϑ cosφ e1 + sinϑ sinφ e2 + cosϑ e3, (3.11)

and we enforce the condition1948

Ψ(mX , q) = Ψ(m̌X(ϑ, φ), q) ≡ Ψ̌(ϑ, q). (3.12)

Since the probability density Ψ̌(ϑ, q) re-defined in (3.12) is independent of φ, the1949

directional average (3.9) has to be transversely isotropic with respect to m0. Several1950
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functional forms can be used to express Ψ̌(ϑ, q). For example, it can be a pseudo-1951

Gaussian distribution [21, 108, 116, 85], defined by1952

Ψ̌PG(ϑ, q) ≡ Ψ̂PG(ϑ, q, ω) = γ̂(ϑ, q, ω)
N (q, ω) , (3.13a)

γ̂(ϑ, q, ω) = exp
(︄

−(ϑ− q)2

2ω2

)︄
, (3.13b)

N (q, ω) = 2π
∫︂ π/2

0
γ̂(ϑ, q, ω) sinϑ dϑ. (3.13c)

In (3.13a)–(3.13c), ω2 > 0 is the variance of the pseudo-Gaussian distribution,1953

N (q, ω) is the normalisation factor, and the remodelling angle q is the angle, taken1954

from m0, that denotes the semi-aperture of a cone of fibres with the apex in X.1955

The angle q is conceived in such a way that m̌(q, φ) represents the set of most1956

probable directions of fibre alignment, with φ varying in ∈ [0,2π[. We remark that,1957

according to the definitions(3.13a)–(3.13c), the values of ϑ that are admissible for1958

Ψ̌PG range in [0, π/2]. For this reason, also q is allowed to vary within the same1959

interval only.1960

Other forms of the probability density can be found e.g. in [21, 100]1961

3.3.2 “Non-Standard” constitutive laws1962

The energy density associated with remodelling is given in the form [108]1963

Ŵ rem(Fe,F p, q,Grad q) = Φ1sν
[︂
Ŵ str(Ce, q)+ŴGrad(Fe,F p,Grad q)

]︂
, (3.14)

where Ŵ str(Ce, q) and ŴGrad(Fe,F p,Grad q) are referred to as the structural part1964

and the gradient part of the strain energy density, respectively. Although (3.14) has1965

recently been introduced in [108], in the present work the constitutive expressions1966

of Ŵ str and ŴGrad are rather different from those supplied in [108].1967

The first difference concerns Ŵ str(Ce, q), which is assumed here to be trans-1968

versely isotropic, and to depend on Ce only through C̄e = J−2/3
e Ce, i.e.,1969

Ŵ str(Ce, q) = A0P(q)
[︄
1 + k2

k1

⟨︂⟨︂
V̌ 1a(Ī4e)H(I4e − 1)

⟩︂⟩︂
(q)
]︄
, (3.15)

where Ī4e = C̄e : (m⊗m) = J−2/3
e I4e, A0 is a point-dependent material coefficient,1970

and P(q) a double-well function of the fibre mean angle [108], i.e.,1971

P(q) = 1
(π/4)4q

2
(︃
q − π

2

)︃2
. (3.16)

As noticed above, a more complete constitutive approach would call for expressing1972

V̌ 1a as a function of I4e and I5e [59]. However, since such a modelling choice does1973

not change the “philosophy” of our work, we opt here for an easier form of V̌ 1a.1974
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The second difference concerns the definition of WGrad, which is assumed to1975

depend also on the plastic-like distortions through the expression1976

WGrad = 1
2d : grad sq ⊗ grad sq = 1

2F−1
p F−1

e dF−T
e F−T

p : Grad q ⊗ Grad q, (3.17)

where we employed the identity grad sq(x, t) = F−T(X, t)Grad q(X, t), with sq( · , t) :1977

B(t) → [0, π/2] being the spatial version of the fibre mean angle. Among the many1978

possible choices for expressing the second-order tensor d, which has the physi-1979

cal meaning of angular stiffness per unit length [108], we select d = D0be, where1980

be = Fe.F
T
e is the elastic left Cauchy-Green deformation tensor, and the coefficient1981

D0 is assumed to be constant. In general, D0 should be a function of material1982

points. However, in this work, we attribute the dependence on material points1983

to the “effective” coefficient Φ1sνD0, which features in the definition of Wrem, and1984

is obtained by multiplying WGrad by Φ1sν , as done in (3.14). Upon substituting1985

d = D0be into (3.17), we can rephrase WGrad as a function of Fp and Grad q, i.e.,1986

WGrad = W̃Grad(Fp,Grad q) = 1
2D0Bp : Grad q ⊗ Grad q. (3.18)

3.4 Residual Dissipation Inequality and Remod-1987

elling Equations1988

We adapt the study of the dissipation inequality from [108, 110] and, to avoid1989

lengthy calculations, we report here only the results that are most important for this1990

work. By exploiting the identity Ce = F−T
p CF−1

p , we can rephrase the constitutive1991

expression of the overall free energy density Wν as a function of C, Fp and q, i.e.,1992

Wν = W̃ν(C,Fp, q,Grad q). (3.19)

By assuming isochoric plastic-like distortions, i.e., Jp = 1, we obtain1993

Ps = −Φsνp g−1F−T + F

(︄
2∂W̃ν

∂C

)︄
, (3.20a)

Pf = −(J − Φsν)p g−1F−T, (3.20b)

where Ps and Pf are the first Piola-Kirchhoff stress tensors of the solid and the1994

fluid, respectively. Next, we write Wstd = W̃ std(C,Fp, q), Wstr = W̃ str(C,Fp, q),1995

and WGrad = W̃Grad(Fp,Gradq). Subsequently, we introduce the Mandel stress1996

tensors1997

Σstd = −F T
p
∂W̃ std

∂Fp
= C

(︄
2∂W̃ std

∂C

)︄
, (3.21a)

Σstr = −F T
p

(︄
Φ1sν

∂W̃ str

∂Fp

)︄
= C

(︄
2Φ1sν

∂W̃ str

∂C

)︄
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=
⟨︂⟨︂
fDev

(︂
CF−1

p aF−T
p

)︂⟩︂⟩︂
, (3.21b)

ΣGrad = −F T
p

(︄
Φ1sν

∂W̃Grad

∂Fp

)︄
= Grad q ⊗

(︄
Φ1sν

∂W̃Grad

∂Grad q

)︄
, (3.21c)

where the factor f is defined by1998

f = 2Φ1sνA0P(q)I−1/3
3e k2[Ī4e − 1]exp

(︂
k2[Ī4e − 1]2

)︂
H(I4e − 1). (3.22)

We highlight that, with the Eqs. (3.21a), (3.21b) and (3.21c) we contribute to1999

answer the research question 3.3.2000

Hence, we obtain the residual dissipation inequality2001

Dres = − ϕ−1
f πfd.F Q +

{︄
y(0) − ∂W̃ ν

∂q

}︄
q̇ +

{︄
y(1) − ∂W̃ ν

∂Gradq

}︄
Gradq̇

+
{︂
F−T

p

(︂
F T

p Y int
ν + Σstd + Σstr + ΣGrad

)︂
F T

p

}︂
: Lp ≥ 0, (3.23)

where πfd is the force density describing the exchange of linear momentum between2002

the solid and the fluid, and Q = JF−1q is referred to as material filtration velocity,2003

i.e., the backward Piola-transformation of the filtration velocity q = ϕf [vf − vs].2004

With reference to (3.21a)–(3.21c), Σstd can be found in several theories on re-2005

modelling available in the literature (see e.g. [98, 13]); Σstr represents a structural2006

generalised force that descends from the coupling between the deformation and the2007

evolution of the fibres accounted for by Wstr; ΣGrad stems from the coupling of the2008

plastic-like distortions with the evolution of the fibres, and is a direct consequence2009

of the introduction of the free energy density WGrad.2010

Tensor ΣGrad can be interpreted as a generalisation of the Korteweg stress ten-2011

sor. Coherently with WGrad, it represents a generalised configurational force that2012

is power-conjugate to Lp = ḞpF−1
p , and that results from the coupling between Fp2013

and q. We also remark that, since in our model WGrad is independent of C, the2014

differentiation of WGrad with respect to C is null, thereby implying that WGrad does2015

not contribute to the second Piola-Kirchhoff stress tensor of the solid. Therefore,2016

ΣGrad cannot possess the same properties as the Mandel stress tensors Σstd and2017

Σstr defined in (3.21a) and (3.21b), respectively. For instance, it cannot be written2018

in terms of the product of C with (2Φ1sν∂W̃Grad/∂C), and it does not fulfil the2019

symmetry conditions ΣstdC = (ΣstdC)T and ΣstrC = (ΣstrC)T. These stem from2020

the coupling among F , Fp, and q, a coupling that is accounted for by W̃ std and2021

W̃ str, but not by W̃Grad. We notice that ΣGrad satisfies the symmetry conditions2022

BpΣGrad = (BpΣGrad)T [169].2023

In (3.23), we perform the identification2024

y(1) = ∂W̃ ν

∂Gradq = Φ1sνD0BpGradq, (3.24)
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which amounts to require that y(1) has no dissipative contribution, and, by recalling2025

the definition of R int
ν given in (3.5b), we introduce the dissipative parts of the2026

internal generalised forces R int
ν and Y int

ν :2027

R int
ν,d := y(0) − ∂W̃ ν

∂q
= R int

ν − E (q,Grad q), (3.25a)

F T
p Y int

ν,d := dev(F T
p Y int

ν ) + dev(Σstd + Σstr + ΣGrad), (3.25b)

where E (q,Grad q) is the scalar generalised force given by2028

E (q,Grad q) := ∂W̃ν

∂q
− Div

(︄
∂W̃ν

∂Grad q

)︄
. (3.26)

Hence, Dres becomes2029

Dres = − ϕ−1
f πfd.F Q + R int

ν,dq̇ + F−T
p

(︂
F T

p Y int
ν,d

)︂
F T

p : Lp ≥ 0. (3.27)

By recalling the force balances (3.2), reformulated for the case of isochoric plastic-2030

like distortions, and (3.6), which allow to substitute R int
ν with Rext

ν in (3.25a) and2031

Y int
ν with Y ext

ν in (3.25b), we obtain [108, 183, 110]2032

R int
ν,d = Rext

ν − E (q,Grad q), (3.28a)
F T

p Y int
ν,d = dev(F T

p Y ext
ν ) + dev(Σstd + Σstr + ΣGrad). (3.28b)

If R int
ν,d and Y int

ν,d can be related constitutively to q̇ and Lp, respectively, (3.28a)2033

and (3.28b) become evolution laws for q and Fp. For this purpose, we study the2034

dissipation inequality, and we require here each summand of (3.27) to be non-2035

negative independently on the other ones [112], i.e.,2036

Dflow = −ϕ−1
f πfd.F Q ≥ 0, (3.29a)

Dq = R int
ν,dq̇ ≥ 0, (3.29b)

Dp = F−T
p

(︂
F T

p Y int
ν,d

)︂
F T

p : Lp ≥ 0. (3.29c)

First, we consider the inequality Dflow ≥ 0, and, by hypothesising a linear relation-2037

ship between πfd and Q [132, 27], we obtain Darcy’s law, i.e.,2038

Q = −K Grad p. (3.30)

Then, to satisfy Dq ≥ 0, we assume R int
ν,d = Γq̇, with Γ being a strictly positive2039

quantity (in general, it suffices that Γ be non-negative).2040

Finally, we turn to Dp, and we assume that the plastic-like distortions evolve2041

according to a modified rate-independent formulation of plasticity, compatible with2042
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an associative normality rule [124]. Moreover, we hypothesise that Y ext
ν is iden-2043

tically null [44] and, by performing the change of variable H = F−1
p and setting2044

Λp = ḢH−1, we obtain2045

H−TY int
ν,d = dev(Σstd + Σstr + ΣGrad) ≡ devΣeff , (3.31a)

Dp = −Σeff : Λp = −(devΣeff) : Λp ≥ 0, (3.31b)

where Σeff is referred to as the effective Mandel-like stress tensor and is the sum of2046

Σstd, Σstr, and ΣGrad. We remark that, because of the constraint det H = 1, Λp is2047

deviatoric and, consequently, it selects only the deviatoric part of Σeff in Dp.2048

Next, we use Σeff to define the effective Cauchy-like stress tensor2049

σeff := J−1g−1F−TΣeffF T. (3.32)

We remark that, because of the presence of ΣGrad, Σeff is not a true Mandel stress2050

tensor and, analogously, σeff is not a true Cauchy stress tensor. Rather, σeff only2051

represents the spatial counterpart of Σeff , constructed as shown in (3.32), but it2052

does not necessarily satisfy the properties that a true Cauchy stress tensor should2053

fulfil. For example, it is not symmetric. Still, we employ σeff to formulate a yield2054

criterion of the von Mises type. To this end, we introduce the yield function2055

Y = ∥devσeff∥g −
√︂

(2/3)σy, (3.33)

where σy is a strictly positive yield stress, and, to comply with the condition Jp = 1,2056

only the deviatoric part of σeff is considered. We remark that the norm ∥devσeff∥g2057

is computed with respect to the spatial metric g, i.e.,2058

∥devσeff∥g =
√︂

g : (devσeff)g(devσeff)T. (3.34)

By expressing the norm ∥devσeff∥g in terms of Σeff , i.e.,2059

∥devσeff∥g = J−1∥devΣeff∥C , (3.35a)

∥devΣeff∥C :=
√︂

C−1 : (devΣeff)C(devΣeff)T, (3.35b)

we rephrase Y in terms of Σeff and C, thereby obtaining2060

Y = Ŷ (C,Σeff) = J−1∥devΣeff∥C −
√︂

(2/3)σy. (3.36)

We use (3.36) to maximise Dp over all the possible stresses [218]. For this pur-2061

pose, we adopt the Karush-Kuhn-Tucker technique [218], along with the modified2062

dissipation2063

D̃p(C,Σeff , λ) = −devΣeff : Λp − λŶ (C,Σeff) ≥ 0, (3.37)
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where λ is a Karush-Kuhn-Tucker (KKT) multiplier, to be determined. The search2064

for maximisers of D̃p(C,Σeff , λ) is accomplished by differentiating D̃p with respect2065

to Σeff and λ, and leads to the Karush-Kuhn-Tucker optimality conditions [218].2066

Since in this work the yield stress, σy, is assumed to be a given model parameter,2067

such optimality conditions read2068

∂D̃p

∂Σeff
(C,Σeff , λ) = −Λp − λ

∂Ŷ

∂Σeff
(C,Σeff) = 0, (3.38a)

λ ≥ 0, Ŷ (C,Σeff) ≤ 0, λŶ (C,Σeff) = 0. (3.38b)

3.4.1 Reorientation of the fibres2069

By substituting R int
ν,d = Γq̇ into (3.28a), and writing E (q,Grad q) explicitly, Eq.2070

(3.28a) takes on the form2071

Γq̇ = Div [Φ1sνD0BpGrad q] − Φ1sν
∂(Ŵ 1a + Ŵ str)

∂q
+ Rext

ν . (3.39)

The first term on the right-hand-side of (3.39) contributes to the evolution of the2072

fibre mean angle by resolving the spatial variability of q. The coefficient Φ1sνD02073

multiplies the inverse (plastic) metric tensor Bp, thereby leading to the tensorial2074

coefficient Φ1sνD0Bp. We notice that, in spite of some formal similarities with2075

a diffusion-reaction equation, (3.39) describes no diffusion, since it is not a mass2076

balance, but the evolution of an order parameter [122].2077

To solve (3.39), we need to provide Rext
ν . In two previous papers on this subject2078

[108, 116], one of us reviewed some results presented by other authors, e.g. [127,2079

183], who defined the external remodelling force Rext
ν by introducing the concept2080

of target angle, qT . The target angle is an angle that defines the direction of space,2081

which we may call target direction, along which the fibres “would like to be aligned”.2082

By definition, the fibres tend to orient themselves along the target direction and it2083

has been observed that, in a tissue subjected to mechanical stress and deformation,2084

the target angle depends on stress [127, 183] or deformation [64, 21].2085

Although the issue of the target angle was discussed in [108, 116], the focus in2086

those papers was on the particular situations in which no external force Rext
ν was2087

active, i.e., when the condition Rext
ν = 0 applies in (3.39). In these cases, indeed, a2088

“target angle” may be identified with a stationary solution of (3.39), i.e., a function2089

q∞ satisfying2090

Div [Φ1sνD0BpGrad q] − Φ1sν
∂(Ŵ 1a + Ŵ str)

∂q
= 0, (3.40)

together with time-independent boundary conditions. Since ∂Ŵ str/∂q does not2091

vanish when Bp = G−1 and the tissue is undeformed, (3.40) admits solutions of2092
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sigmoidal shape that interpolate between the zeroes of the double-well potential2093

P(q), i.e., q0 = 0 and q1 = π/2. Always in the absence of deformation, such2094

profiles can also be obtained as the stationary solutions of (3.39), when the initial2095

distribution of q is a random function of material points [108].2096

In the case of vanishing D0, the energy density WGrad is null, and we end up2097

with a description of remodelling determined by ordinary differential equations. In2098

such situations, and for Rext
ν = 0, the search for stationary solutions amounts to2099

seek for the zeros of the equation2100

−Φ1sν
∂(Ŵ 1a + Ŵ str)

∂q
= 0. (3.41)

In general, however, (3.41) may admit either no solutions or multiple solutions, i.e.,2101

different target angles. Whereas the existence of multiple stationary solutions to2102

(3.41) can be a normal fact, because the Cauchy problem2103

Γq̇ = −Φ1sν
∂(Ŵ 1a + Ŵ str)

∂q
, (3.42a)

q(X,0) = qin(X), (3.42b)

if well-posed, selects a unique solution, the case of no stationary solution may be2104

non-physical. Similar circumstances may occur when the right-hand-side of (3.42a)2105

features only ∂Ŵ 1a/∂q.2106

By introducing a non-vanishing Rext
ν , relating it to the concept of an a priori2107

defined target angle, qT , and assuming the existence of a stationary limit q∞T , the2108

non-physical case of no stationary solutions is eliminated at source. Indeed, it2109

suffices to notice that a stationary angle is attained when the external force Rext
ν2110

balances the internal ones under the condition q̇ = 0. This implies that the following2111

equality has to be verified [183]2112

Rext
ν = Φ1sν

∂(Ŵ 1a + Ŵ str)
∂q

⃓⃓⃓⃓
⃓
q=q∞

T

. (3.43)

This result can also be generalised to the case in which the target angle is not2113

stationary, so that Eq. (3.42a) is rewritten as2114

Γq̇ = −Φ1sν
∂(Ŵ 1a + Ŵ str)

∂q
+ Φ1sν

∂(Ŵ 1a + Ŵ str)
∂q

⃓⃓⃓⃓
⃓
q=qT

, (3.44)

where the term on the right-hand-side is computed for a non-stationary target angle2115

qT , driven by stress or deformation.2116

Even more generally, when the remodelling equation is given by (3.39), the2117

external force Rext
ν may be defined as2118

Rext
ν = E (qT,Grad qT )
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= −Div [Φ1sνD0BpGradqT ] + Φ1sν
∂(Ŵ 1a + Ŵ str)

∂q

⃓⃓⃓⃓
⃓
q=qT

, (3.45)

thereby obtaining the following generalisation of [108, 183, 116]:2119

Γq̇ =Div [Φ1sνD0BpGrad q] − Φ1sν
∂(Ŵ 1a + Ŵ str)

∂q

− Div [Φ1sνD0BpGrad qT ] + Φ1sν
∂(Ŵ 1a + Ŵ str)

∂q

⃓⃓⃓⃓
⃓
q=qT

. (3.46)

We highlight that, within the above discussion, we contribute to answer the research2120

question 3.3.2121

3.4.2 Evolution of the plastic-like distortions2122

The explicit computation of the derivative of Ŷ with respect to Σeff , see (3.36),2123

permits to rewrite (3.38a) as2124

Λp = −J−1λ
C−1(devΣeff)C

∥devΣeff∥C

, (3.47)

which implies ∥Λp∥C ≡
√︂

C : ΛpC−1ΛT
p = J−1λ ≥ 0. Moreover, since Λp is given2125

by Λp = ḢH−1, (3.47) can be recast in the form of an evolution equation for H2126

or, equivalently, for Fp = H−1, i.e.,2127

Ḣ =
{︄

−J−1λ
C−1(devΣeff)C

∥devΣeff∥C

}︄
H . (3.48)

Within the classical framework of finite Elastoplasticity, the KKT-multiplier λ is2128

determined by enforcing a condition known as “consistency condition” [218], which2129

has to be solved together with the flow rule —represented here by (3.48)— and2130

the other model equations. Very often, the consistency condition is solved algo-2131

rithmically (see e.g. [218]). In this work, however, we propose a rather different2132

approach, which is motivated by the need of keeping our calculations at a minimum2133

level of complexity. In fact, we prescribe λ from the outset, and, for our purposes,2134

we define it as2135

λ=Jζ0ϕs

[︃
∥devσeff∥g−

√︂
(2/3)σy

]︃
+
=ζ0Φsν

[︃
J−1∥devΣeff∥C−

√︂
(2/3)σy

]︃
+
, (3.49)

where ζ0 > 0 is a constant model parameter, and [A]+ = A, for A > 0, and2136

[A]+ = 0, otherwise. We notice that the equality Φsν = Jϕs is verified, because2137
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it holds that J = Je, since the condition Jp = 1 applies. Finally, by substituting2138

(3.49) into (3.48), we obtain2139

Ḣ = −
ζ0Φsν

[︂
J−1∥devΣeff∥C −

√︂
(2/3)σy

]︂
+

J

C−1(devΣeff)C
∥devΣeff∥C

H , (3.50)

i.e., the ordinary differential equation describing the evolution of H .2140

Equation (3.50) looks like an evolution law of the Norton-Hoff type [181] and,2141

with some modifications, might be rated among those. However, compared with2142

that in [181], our (3.50) features three differences: (i) the full tensor devΣeff is2143

considered in lieu of its symmetric part only (see [181] for some remarks on this2144

issue); (ii) the “transformed” generalised stress C−1devΣeffC, rather than devΣeff ,2145

is regarded as the driving force for H ; (iii) our Σeff contains ΣGrad, which is a2146

fundamental character of our framework.2147

We notice that the coefficient λ in (3.49) has the form of the activation factor2148

featuring in the flow rule of a Perzyna-like model of viscoplasticity [176]. Dimen-2149

sional analysis shows that the parameter ζ0 can be expressed as ζ0 = (τcσc)−1, where2150

τc is the characteristic relaxation time of H , and σc is a reference value of stress.2151

The time scale τc is available in the literature, and we choose τc = 22 s, as suggested2152

in [104], where the inelastic behaviour of cellular aggregates is studied by means of2153

a Perzyna-like flow rule. However, there seems to be some freedom in the choice of2154

the reference stress σc. In principle, indeed, σc could be taken equal to σy, if one2155

wants to normalise λ with the yield stress, or it could be defined by combining the2156

material parameters involved in the definition of σeff . In the latter case, one should2157

use parameters, such as D0 and A0, that, being other than the standard elastic co-2158

efficients, are not available in the literature, at least to the best of our knowledge.2159

Thus, we refer here to a value of σc that has already been used in [104], within a2160

framework similar to ours. To this end, by comparing (3.49) with the flow rule in2161

[104], we identify σc with σc = 2µ0⟨Φsν⟩, where µ0 is the shear modulus of the ma-2162

trix, and ⟨Φsν⟩ is the mean value of the solid phase volumetric ratio. Hence, upon2163

computing µ0 = 2(α1 + α2)α0 ≈ 0.222 MPa [138] and ⟨Φsν⟩ =
∫︁ 1

0 Φsν(ξ)dξ = 0.22164

(see Table 3.1), we find σc ≈ 0.09 MPa and ζ0 ≈ 0.50 MPa−1s−1 (cf. Table 3.1).2165

Such σc is obtained by considering only the isotropic part of the standard energy2166

of our model, whereas considering also the other terms of the energy would lead to2167

higher values of σc and, then, to smaller values of ζ0. On the other hand, smaller2168

values of σc are conceivable, but they could result into too high values of ζ0 for the2169

problem at hand, thereby leading to non-physical time scales for the evolution of2170

H .2171
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3.4.3 Summary of the model equations and technical de-2172

tails2173

After enforcing the left polar decomposition of H , i.e., H = V .R [165], we2174

study only the case in which R reduces to a shifter [165], so that the unknown2175

determining the plastic-like distortions becomes the symmetric, second-order tensor2176

V . Even though this choice has the disadvantage of restricting the investigation2177

to the case of no plastic-like rotations, it allows to work with V , which, being2178

symmetric, is computationally cheaper. In summary, thus, our mathematical model2179

consists of the following set of four, highly non-linear, coupled equations,2180

J̇ − Div (KGrad p) = 0, (3.51a)
Div

(︂
−J p g−1F−T + P sc

)︂
= 0, (3.51b)

Γq̇ = Div [Φ1sνD0BpGrad q] − Φ1sν
∂(Ŵ 1a + Ŵ str)

∂q

− Div [Φ1sνD0BpGrad qT ] + Φ1sν
∂(Ŵ 1a + Ŵ str)

∂q

⃓⃓⃓⃓
⃓
q=qT

, (3.51c)

V̇ = −sym
[︄(︄

λ

J

C−1(devΣeff)C
∥devΣeff∥C

)︄
V

]︄
, (3.51d)

in the unknowns p, χ, q, and V , respectively. Note that we take the symmetric part2181

of the right-hand-side of (3.51d) in order to ensure that V̇ , and its time discrete2182

form, be symmetric. Moreover, the material permeability tensor is given by [138,2183

84, 82, 80]2184

K = k0
(J − Φ1sν)2

J
C−1 + k0

(J − Φ1sν)Φ1sν

J
H
⟨︃⟨︃

a

I4e

⟩︃⟩︃
HT, (3.52a)

k0 = k0ν

[︄
J − Φsν

1 − Φsν

]︄κ0

exp
(︂

1
2m0[J2 − 1]

)︂
. (3.52b)

The material parameters κ0 and m0 are reported in Table 3.1.2185

We solve Eqs. (3.51a)–(3.51d) for a cylindrical specimen of tissue, of initial2186

height L = 1 mm and initial radius R = 1.5 mm, and whose boundary can be2187

written as ∂B = ∂BU ⊔ ∂BL ⊔ ∂Bℓ, where the subscripts “U”, “L”, “ℓ” stand2188

for “upper”, “lower” and “lateral”, respectively. Then, we complete Eqs. (3.51a)–2189

(3.51d) with the following boundary and initial conditions2190

−(K Grad p).N = 0, on ∂BU ⊔ ∂BL, (3.53a)
p = 0, on ∂Bℓ, (3.53b)

[χ(X,0) − χ(X, t)].e3 = u(t), on ∂BU, (3.53c)
χ(X, t) − χ(X,0) = 0, on ∂BL, (3.53d)

66



3.4 – Residual Dissipation Inequality and Remodelling Equations

(︂
−J p g−1F−T + P sc

)︂
.N = 0, on ∂Bℓ, (3.53e)

(Φ1sνD0Bp Grad q).N = 0, on ∂BU ⊔ ∂Bℓ, (3.53f)
q(X, t) = 0, on ∂BL, (3.53g)
χ(X,0) = χ0(X), in B, (3.53h)
q(X,0) = qhist(X), in B, (3.53i)

V (X,0) = G−1(X), in B. (3.53j)

In (3.53a), (3.53e), and (3.53f), N is the field of unit vectors normal to ∂B; in2191

(3.53c), the imposed displacement u(t) is given by2192

u(t) = umax t

tramp
[Θ(t) − Θ(t− tramp)] + umaxΘ(t− tramp), (3.54)

where Θ(s) = 1, for s ≥ 0, and Θ(s) = 0, for s < 0, umax = 0.20 mm is the2193

maximum imposed displacement, and tramp = 20 s is the final time of the loading2194

ramp. In the simulated compression test, umax is kept constant until tf = 120 s.2195

In (3.53h), χ0(X) represents the initial placement and, in this work, it returns2196

the points X of the reference configuration B. In (3.53i), qhist(X) denotes the2197

initial distribution of the fibre mean angle, and is taken here to be equal to an2198

experimentally observed “histological” profile [85], given by2199

qhist(X) = π

2

⎧⎨⎩1 − cos
⎛⎝π

2

⎡⎣−2
3

(︄
X3

L

)︄2

+ 5
3
X3

L

⎤⎦⎞⎠⎫⎬⎭ , (3.55)

where X3 is the axial coordinate. Finally, the initial value V (X,0) is taken in2200

(3.53j) equal to the inverse metric tensor associated with B, which means that no2201

inelastic distortions occur before the deformation process commences.2202

We remark that (3.51a)–(3.51d) are valid in general, in the sense that they apply2203

to the studied system, under all the specified hypotheses, but without any speciali-2204

sation to a particular benchmark problem. In fact, they can be adopted for a variety2205

of case studies, and to formulate a proof of concept for testing a proposed model. In2206

our work, we employ (3.51a)–(3.51d) for analysing the coupling among fluid flow,2207

deformation and structural reorganisation of the matrix, and fibre reorientation in2208

the tissue under study. For this purpose, we solve numerically a well-documented2209

benchmark test consisting in the unconfined compression of a cylindrical specimen2210

of tissue. The latter is assumed here to be articular cartilage because of the avail-2211

ability of experimental data, but the test can also be performed on other tissues.2212

For the considered test, a sample of tissue is placed between two plates, assumed2213

to be rigid and impermeable (see (3.53a)), as shown in 3.1. The lower plate is2214

fixed and the specimen is clamped to it, so as to simulate the adhesion of the carti-2215

lage to bone (see (3.53d)). The upper plate, instead, compresses axially the sample2216

(see (3.53c)), in such a way that the deformation remains axial-symmetric over the2217
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Upper
boundary

Lower
boundary

lateral
boundary

Moving and imper-
meable upper plate

Fixed and imper-
meable lower plane

Figure 3.1: Panel describing the considered benchmark test

whole duration of the simulation. The lateral surface of the sample is assumed2218

to constitute a free boundary, which means that both the pressure and the radial2219

stress have to be equal to zero (see (3.53b) and (3.53e)).2220

We also have to impose boundary conditions on the fibre mean angle, q. These2221

are specified by (3.53f) and (3.53g). The Dirichlet condition (3.53g) forces the2222

fibres to remain orthogonal to the bone-cartilage interface for the whole duration2223

of the simulation. Due to the geometry of the specimen and the symmetry of2224

the problem, this restriction implies that, on the lower boundary, the fibres are2225

maintained parallel to the specimen’s symmetry axis. Furthermore, the Neumann2226

condition (3.53f) requires that the normal component of y(1) = Φ1sνD0BpGradq2227

vanishes on the upper and lateral boundary of the sample. We notice that the2228

coupling between q and F p, accounted for by Bp = F−1
p .F−T

p , affects the way2229

in which (3.53f) is satisfied and, consequently, the way in which q approaches the2230

boundary. Indeed, in the absence of plastic-like distortions, i.e., for Bp = G−1,2231

(3.53f) requires that the normal derivative of q is zero on ∂BU⊔∂Bℓ. For Bp /= G−1,2232

this result is no longer true, and the gradient of q is no longer orthogonal to N .2233

Remark 3.4.1. To clarify the physical meaning of (3.53f), we recall that, in our2234

model, q and Gradq are kinematic descriptors and, consistently with (3.3), the2235

vector y(1) is the internal generalised force conjugated with Gradq. Thus, y(1) plays2236

the role of stress and, as anticipated in (3.4b), y(1).N is the stress component2237

that has to balance the generalised “contact” force h(1), defined on the Neumann2238

boundary of the sample. It follows from these considerations that (3.53f) rephrases2239

(3.4b) in the particular case in which no such forces are active, thereby yielding2240

y(1).N = h(1) = 0. This amounts to say that ∂BU ⊔ ∂Bℓ is a free boundary with2241

respect to q.2242
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3.5 Results2243

To perform a comparative study of the various phenomena accounted for in our2244

work, we consider four different sub-models, which we denominate M1, M2, M3,2245

and M4.2246

Model M1 (poroelasticity with Rext
ν = 0) As reference case, we consider a2247

deformable porelastic material, in which the evolution of the fibre direction is driven2248

by deformation only. Thus, we solve (3.51a)–(3.51c), along with (3.53a)–(3.53i). In2249

the computations we set Rext
ν equal to zero, which amounts to ignore in (3.51c) all2250

the terms containing the target angle qT . We do that with the aim of providing an2251

estimate of the importance of the target angle on the guidance of the fibre evolution.2252

Indeed, even in the absence of Rext
ν , the inhomogeneity of the fibre mean angle and2253

the generalised forces Φ1sν∂(Ŵ 1a + Ŵ str)/∂q are capable of triggering the evolution2254

of the fibres. By dealing with a poroelastic model, V is kept equal to its initial2255

value, G−1, thereby switching off the evolution of the plastic-like distortions.2256

Model M2 (poroelasticity with Rext
ν /= 0) This case is the completion of the2257

model M1, as fibre re-orientation is also driven by the target angle. To this end, we2258

solve the same set of equations and initial and boundary conditions as implemented2259

in M1. In M2, however, all the terms appearing in (3.51c) are activated, and qT is2260

computed as2261

qT =arctan
(︃ 1
Ce33

[︃ 1
2π

∫︂ 2π

0
Ce : eR(φ) ⊗ eR(φ)dφ

]︃)︃
=arctan

(︄ 1
2 [Ce11 + Ce22]

Ce33

)︄
,

(3.56)

where eR(φ) = cosφ e1 + sinφ e2 is a unit vector orthogonal to the specimen’s2262

symmetry axis, and oriented radially. Note that other definitions are possible. For2263

example, one may define the target angle as a function of stress [64, 21, 127, 183]2264

or as a function of the deformation [21]. The expression of qT given in (3.56) takes2265

inspiration from [64, 21], and assumes that the target angle is entirely determined2266

by Ce. Specifically, the factor 1
2 [Ce11 + Ce22] is the in-plane directional average of2267

the radial component of Ce, while Ce33 is the axial component of Ce. Under the2268

considered loading conditions, (3.56) implies that, for increasing radial dilatation2269

and increasing axial contraction, 1
2 [Ce11 +Ce22]/Ce33 tends towards infinity, and qT2270

tends towards π/2. In this limit, the target angle indicates that the fibres should be2271

preferably aligned orthogonally to the specimen’s symmetry axis. Clearly, the way2272

in which the fibre mean angle complies with this condition is modulated both by2273

the deformation and the plastic-like distortions. To us, another physically relevant2274

situation occurs in the absence of deformation and elastic distortions, i.e., when2275
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(3.56) prescribes qT = π/4, and (3.51c) becomes2276

Γq̇ = Div[Φ1sνD0G
−1Gradq] − Φ1sνA0

dP

dq . (3.57)

In this case, the concept of target angle qT as manifestation of external force is not2277

explicitly present in (3.57), and the evolution of q is self-driven, with the target2278

angles being identified with the stationary solutions of (3.57).2279

Model M3 (full model, with Rext
ν = 0) This case study is complete, since it2280

requires to solve the whole set of the model equations (3.51a)–(3.51d) together with2281

(3.53a)–(3.53g) and (3.53h)–(3.53j). However, as done in M1, in the computations2282

we set Rext
ν equal to zero.2283

Model M4 (full model) As for M3, also M4 describes the complete model and2284

requires the solution of the same list of equations, with the same boundary and2285

initial conditions. However, in M4 the target angle is accounted for.2286

Computational aspects To determine the numerical solution of our problem,2287

we perform Finite Element simulations for each of the sub-models M1, M2, M3,2288

and M4. This requires the weak formulation of (3.51a)–(3.51d), the generation of2289

a grid for the discretisation of B and ∂B, and the selection of a time integration2290

scheme. Since the problem is nonlinear, a linearisation procedure is necessary. In2291

general, the grid is unstructured and the interpolations adopted for p, χ, and q are2292

different from each other. Equation (3.51d) is solved only at the integration points2293

of the finite element discretisation, for it does not contain partial derivatives of V2294

with respect to the spatial variables. Hence, we do not provide any weak form for2295

(3.51d), nor do we introduce in this work test functions associated with V .2296

A Backward Euler scheme of the fifth order is used for the integration in time2297

of all the model equations and boundary conditions. Moreover, in each sub-model,2298

the directional averages of the constitutive functions are computed by employing2299

the Spherical Design Algorithm (see e.g. [79, 126]) as implemented in [40], i.e., the2300

integrals over S2B are evaluated for each time step and at each iteration of the2301

Newton method.2302

In our work, the numerical simulations were performed with the aid of the2303

commercial software COMSOL©v5.3. Details about the algorithms used for the2304

Finite Element solution of a problem involving (3.51a), (3.51b), and an evolution2305

equation similar to (3.51d) can be found in [112, 111].2306

Comments to figures Within the following discussion, we answer the research2307

questions 3.1 and 3.2.To sample the data, we took four measuring points, located2308
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Figure 3.2: Pressure. 3D contour plots of the pressure for the models M2 (panel
a) and M4 (panel b), whilst showing the deformation undergone by the tissue.
The models M1 and M3 are not reported since they would lead to no observable
difference with respect to M2 and M4, respectively.

along the vertical axis, and with Cartesian coordinates XL = (0,0, L), X3L/4 =2309

(0,0,3L/4), XL/4 = (0,0, L/4), X0 = (0,0,0).2310

First of all, we present a three-dimensional view of the deformed tissue at the2311

end of the loading history. Figure 3.2 depicts the differences in the deformation of2312

the sample and in the pressure distribution for the models M2 and M4. The radial2313

displacement of the tissue appears relatively contained in M2 (Fig. 3.2a), while it2314

is more pronounced in M4, i.e., when plastic distortions are active (Fig. 3.2b). A2315

peculiar characteristic of this case is given by the shape of the profile of the deformed2316

lateral boundary. Indeed, in M2, such profile undergoes a gradual deformation from2317

the bottom to the top, whereas in M4 it experiences an abrupt deformation close2318

to the bottom, while it remains almost parallel to the symmetry axis in the middle2319

and in the upper parts of the sample. A possible explanation of this phenomenon2320

can be outlined through the analysis of the fibre mean angle, as shown in Fig. 3.5.2321

Another peculiarity of Fig. 3.2 concerns the values attained by the pressure.2322

In contrast to the elastic case, when plastic-like distortions are accounted for, the2323

pressure goes lower than zero, thereby leading to a “syringe effect” [61]. To better2324

describe this phenomenon, Fig. 3.3 presents the time variation of the pressure in2325

X0. No significant differences can be observed for models M1 and M2, in which,2326

after the increase due to the loading ramp, the pressure monotonically decreases2327

toward zero. On the other hand, for both models accounting for the plastic-like2328

distortions, i.e., M3 and M4, after a first rapid increase at the beginning of the2329

loading experiment, we observed a rather slow increase of the pressure values. Af-2330

terwards, when the loading ramp terminates, we assist to an abrupt pressure drop,2331

that leads to negative pressure values. This sudden change is then followed by a2332

slow recovery, that would lead to null pressure in the long term.2333

A key point of this work is the role played by the fibre mean angle and by the2334

target angle. To analyse their evolution we present Fig. 3.4. The top panels of2335

Fig. 3.4 depict the evolution of the fibre mean angle, q, along the symmetry axis,2336
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Figure 3.3: Time-evolution of the pore pressure. For all the implemented models,
the temporal evolution of the pore pressure is monitored in X0.

starting from the initial histological profile (3.53i), to the final fibre distribution2337

obtained within M2 (Fig. 3.4a) and M4 (Fig. 3.4b). Note that, thanks to the upper2338

boundary condition (3.53f), the value of q corresponding to the upper surface is free2339

to evolve. Interestingly, the greater variations are registered in the plastic case (M4)2340

and, enhanced by the introduction of the gradient term, the variability extends to2341

the tissue beneath. While in the middle-upper portion of the tissue we assist to a2342

smooth change of the fibre mean angle, on the lower part there is quite an abrupt2343

variation from the histological profile. This might be due to the Dirichlet boundary2344

condition on the lower boundary of the specimen.2345

To understand the role of qT and to further describe the behaviour of q, the2346

temporal evolution of the fibre mean angle is shown in the lower panels of Fig. 3.4,2347

where the trend of the target angle qT is presented alongside the fibre mean angle,2348

evaluated in two different sampling points. Indeed, by comparing M1 with M2,2349

and M3 with M4, it is evident that the introduction of qT strongly modulates q2350

by controlling, and then by reducing, its variation, especially in M2. In particular,2351

looking at Fig. 3.4d, we see how q is driven upward by the presence of qT (M2 and2352

M4), especially during the loading ramp.2353

Comparing Fig. 3.2 with Fig. 3.4c and Fig. 3.4d, we notice that the behaviour of2354

q influences the way in which the tissue deforms. Indeed, the more the variation of2355

q is contained in time, the less the sample tends to deform radially. This behaviour2356

is model dependent and is more evident for M3 end M4 than it is for M1 and M2.2357

The analysis of the target angle is worth of a separate discussion. Once again,2358
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Figure 3.4: Fibre mean angle. In panels a and b, 10 seconds time-laps recording
the evolution of the fibre mean angle along the vertical axis, for M2 (a) and M4
(b); arrows indicate the increase of time. In panels c and d, the temporal evolution
of both the fibre mean angle and the target angle, observed in X3L/4 (c) and XL/4
(d), for all the presented models. The target angle is implemented in M2 and M4
only.

by making reference to Fig. 3.4c and Fig. 3.4d there are appreciable differences2359

among the elastic and the plastic case studies, concerning both the evolution and2360

the stationary limit of qT . The most relevant variations of qT can be appreciated in2361

M2, in which the relatively high values of the target angle, reached at the end of the2362

loading ramp, seem to affect the stationary limit. In this case, different values of2363

q∞T are recovered at a different depth. On the other hand, in M4 elastic distortions2364

fade after the loading ramp, practically leading to the recovery of the stationary2365

value π/4 throughout the whole tissue.2366

To complete the analysis, Fig. 3.5 depicts the norm of the deviatoric part of2367

the effective stress tensor, i.e. ∥devσeff∥g. With the exception of the bottom of2368

the sample (see Fig. 3.5d), where the specimen is tied to the tidemark, ∥devσeff∥g2369

reaches its maximum at the end of the loading ramp. The consequent decrease2370

towards a stationary value is monotonic for the elastic cases M1 and M2, while it2371

is not for the plastic models M3 and M4 (see Figs. 3.5a and 3.5c). In the insert2372

of Figs. 3.5a and 3.5b,
√︂

2/3σy is reported to highlight when and where plastic-like2373

distortions are de-activated. In Fig. 3.5a we note that, after approximately 70 s,2374

the effective stress is below the threshold
√︂

2/3σy, thereby implying a temporary2375
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Figure 3.5: Effective stress tensor. For all the presented models, the norm of the
effective stress tensor is evaluated in the measuring points XL (a), X3L/4 (b), XL/4
(c) and X0 (d).

switch-off of the plastic-like distortions. Figure 3.5 also reports ∥devσ∥g, evaluated2376

for model M4. Although not visible at the length scale selected for our figures, we2377

do measure differences between the effective stress, σeff , and the “standard” Cauchy2378

stress σ, which does not take into account ΣGrad. In turn, ΣGrad is influenced by2379

Φ1sν and Bp, and it vanishes gradually on the way to XL, because of the Neumann2380

zero boundary condition on q on ∂BU.2381

3.6 Discussion2382

The key aspect of our work is the mutual interaction among the motion, χ, the2383

tensor of plastic-like distortions, Fp, and the fibre mean angle, q. Firstly, we notice2384

that Fp and q interact with χ through the constitutive law expressing Psc in (3.51b).2385

Secondly, χ and q interact with Fp through the term between parentheses in (3.51d).2386

Such interaction manifests itself through C and Σeff . Thirdly, the interaction of χ2387

and Fp with q finds its expression in the generalised forces Φ1sν [∂(Ŵ 1a +Ŵ str)/∂q].2388

Finally, Fp and q interact with each other through Φ1sνD0BpGrad q, i.e., in such a2389

way that only two players out of three interact.2390
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Role played by the free energy density WGrad In the form given in (3.17),2391

WGrad constitutes the lowest-order approximation of the self-interaction of the scalar2392

field q. The strength of such self-interaction is measured by D0. As in [108], we2393

consider the particular case in which ŴGrad is independent of deformation, but we2394

do allow it to depend on the plastic-like distortions through Bp, whose presence2395

generates ΣGrad. This tensor is purely configurational, and has no direct geometric2396

counterpart, since it emerges as a consequence of the coupling between the struc-2397

tural degrees of freedom q and Fp. More importantly, ΣGrad features as a summand2398

of Σeff among the configurational forces that drive the evolution law of the plastic-2399

like distortions in (3.50). Hence, differently from other models on the subject (see2400

e.g. [183]), in which the configurational stress that triggers remodelling can be2401

obtained from Cauchy stress, in our theory we have the configurational force ΣGrad2402

that exists on its own, and participates to activate the structural reorganisations of2403

the tissue. In fact, it might be interpreted as the contribution to the structural re-2404

organisation given by the reorientation of the fibres, i.e., the output of the interplay2405

between Fp and q alone.2406

2407

Role played by the free energy density Wstr The energy density Wstr defined2408

in our model is such that the “structural” contribution to the overall second Piola-2409

Kirchhoff stress tensor, Sstr = 2Φ1sν(∂Ŵ str/∂Ce), and the “structural” contribution2410

to the overall elasticity tensor, Cstr = 4(∂2Ŵ str/∂C2
e) vanishes in the natural state.2411

The function A0P(q) coincides with the structural energy in the natural state,2412

i.e., Ŵ (0)
str (q) = A0P(q). We notice that such functional form is adequate for2413

describing large fluctuations of the order parameter q from the two reference values2414

q0 = 0 and q1 = π/2, each of which returns the global minimum of Ŵ (0)
str , i.e.,2415

Ŵ
(0)
str (0) = Ŵ

(0)
str (π/2) = 0. As discussed in [108], an example of this behaviour is2416

provided by the articular cartilage used for mechanical tests [85] in which, prior to2417

the application of any loading history, a “histological profile” of the fibre mean angle2418

can be defined [108, 85], which varies throughout the tissue, taking on the values2419

q0 and q1 at the interface with the bone and at the articular surface, respectively2420

[31].2421

One may wonder whether the introduction of Wstr is really necessary and, if it2422

is, why it should have the functional form suggested in this work. To answer these2423

questions, let us first notice that there are studies in which the structural energy is2424

tacitly used. Baaijens et al. [21], for example, prescribe that the fibre mean angle2425

evolves according to the law2426

q̇ = − 1
τ
[q − qT ], (3.58)

where τ is a model parameter describing the system’s relaxation coefficient, q is the2427

angle that the fibres in a blood vessel form with the symmetry axis, and the target2428
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angle, qT , determines the preferred alignment of the fibres (in the case of a blood2429

vessel, 2q is the angle between the two families of fibres coiled helically around the2430

vessel). Looking at (3.58), and comparing it with our (3.44), which is obtained in2431

the limit of vanishing D0, we notice that (3.58) can be recovered from (3.44) by2432

neglecting the force Φ1sν(∂Ŵ 1a/∂q), and retaining only Φ1sν(∂Ŵ str/∂q), with the2433

constitutive choice2434

Ŵ str(q) ≡ Ŵ
quad
str (q) = 1

2κ[q − qref ]2, (3.59)

where the superscript “quad” stands for “quadratic”, κ is an angular stiffness den-2435

sity (thus, having units of force per unit area), and qref is a reference angle. Indeed,2436

computing the derivative of Ŵ quad
str with respect to q, and substituting the result2437

into (3.44) yield2438

Γq̇ = −Φ1sνκ[q − qT ], (3.60)

and (3.58) is re-obtained upon identifying 1/τ = Φ1sνκ/Γ.2439

In the absence of deformation and plastic-like distortions, Wstd vanishes identi-2440

cally, regardless of the value taken by q, and the energetic content of the tissue is2441

the integral over B of the remodelling energy density2442

Ŵ
(0)
rem(q,Gradq) = 1

2Φ1sνD0∥Gradq∥2 + Φ1sνŴ
(0)
str (q), (3.61)

which is nonzero for q other than the constant values q = q0 and q = q1 [108].2443

Hence, as reported in [108], the “natural state” of the tissue, which corresponds2444

to the state of zero mechanical stress, is not necessarily its ground state, which is2445

attained when the residual energy density Ŵ (0)
rem reaches its global minimum. The2446

ground state, in fact, is individuated by either q = q0 or q = q1, for which each2447

term on the right-hand-side of (3.61) is identically null. In our case, the probability2448

density, Ψ̌(ϑ, q0), depicts the situation in which the fibres are most likely oriented2449

along the tissue’s symmetry axis, whereas Ψ̌(ϑ, q1) describes the case in which the2450

fibres tend to align themselves perpendicularly to the symmetry axis. Any other2451

distribution of the fibre mean angle corresponds to a deviation from the ground2452

state, and is associated with nontrivial energies. The coefficient A0 defines the2453

height of the energy barrier that has to be overcome to pass from one ground state2454

configuration, e.g. q0, to the other one, q1, or vice versa. In our model, such height2455

is assumed to depend only on Φ1sν , which is point-dependent. However, when2456

deformation and plastic-like distortions are active, we allow for a modulation of A02457

by means of the terms between brackets in (3.15). Note that, since the directional2458

average in (3.15) depends on q, the modulation also represents a self-interaction of2459

the fibre-mean angle.2460
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3.7 Conclusions2461

We proposed two conceptual results that, to the best of our knowledge, might2462

be regarded as novelties: First, our calculations naturally lead to a Mandel-like2463

stress tensor, denoted by ΣGrad, which contributes to the onset and evolution of2464

the plastic-like distortions. These, in turn, contribute to the evolution of the fibre2465

mean angle through the term Φ1sνD0BpGradq. Secondly, we define a structural2466

energy that generalises some other choices available in the literature (see e.g. [21]).2467

These results characterise the interplay between the reorientation of fibres and2468

plastic-like distortions.2469

As anticipated above, our model can be used, with some modifications, for a2470

generic tissue with fibre-reinforcement and evolving internal structure. The major2471

strength of our model is its flexibility, since it establishes the “mathematical in-2472

frastructure” for describing transverse isotropy and for resolving interactions that2473

are usually not resolved in more “classical” theories (see e.g. [21, 183, 116]). In2474

turn, its major weakness is that it does not account for growth, which is crucial for2475

tissues like cellular aggregates and tumours.2476

Describing growth requires to reformulate the present setting to consider dif-2477

ferent cell populations, include chemical substances, and account for the coupling2478

among stress, structural reorganisation, and variation of mass. These modifications2479

result in the introduction of an evolution equation for the inelastic distortions re-2480

lated to growth, and in one mass balance law for each chemical species and cell2481

population considered in the model. All these equations should be combined with2482

(3.51a)–(3.51d), and new interactions should be resolved. These also call for a2483

review of the constitutive framework.2484

Another possible specific problem for which our theory could be useful is “inverse2485

poroelasticity” [65]. Finally, the theory presented in this work could be compared2486

with that developed by Capriz in [39], and this is subject of our current investiga-2487

tions.2488

By summarising the results obtained in this chapter, we answer the research2489

questions 3.1—3.3 in the following way:2490

• Also in this case, the “syringe effect” is observed, thereby leading to a macro-2491

scopic change of the hydraulic properties of the tissue. The evolution of2492

the fibre mean angle produces a contribution in the “effective Cauchy stress2493

tensor”, which, in turns, is no longer monotonic. As a consequence of this2494

behaviour, there exists an instant of time for which the effective stress is be-2495

low its threshold value, which causes a temporary switch-off of the evolution2496

of the plastic-like distortions.2497

• The visible deformation of the sample of the tissue is affected by the time2498

and space evolution of the fibre mean angle. Indeed, the magnitude of the2499
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radial deformation of the tissue decreases with decreasing amplitude the time2500

variation of q.2501

• In the model M2, the stationary limit of the target angle is influenced by2502

the high values attained by the target angle itself when the loading ramp2503

reaches the target displacement. In the model M4, the target angle is capable2504

of recovering the stationary value π/4 throughout the whole tissue station-2505

ary value π/4 throughout the whole tissue, since the the elastic distortions2506

diminish.2507

• An effective Mandel stress tensor arises from the chosen constitutive frame-2508

work. In fact, the latter involves the coupling between the variables associated2509

with the anelastic distortions and the gradient of the fibre mean angle (see2510

Eqs. (3.21a), (3.21b) and (3.21c)).2511

2512
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Chapter 42513

An Asymptotic Homogenisation2514

Approach to the micro-structural2515

evolution of heterogeneous media2516

The work reported in this chapter has been previously published in [205].2517

Note that in this Chapter, and only in this Chapter, we employ the symbol H to2518

denote the “material gradient of the displacement”.2519

4.1 Asymptotic Homogenisation and remodelling2520

In the present work, we apply the asymptotic homogenisation technique to the2521

equations describing the dynamics of a heterogeneous material with evolving micro-2522

structure, thereby obtaining a set of upscaled, effective equations. We consider the2523

case in which the heterogeneous body comprises two hyperelastic materials and we2524

assume that the evolution of their micro-structure occurs through the development2525

of plastic-like distortions, the latter ones being accounted for by means of the Bilby-2526

Kröner-Lee (BKL) decomposition. The asymptotic homogenisation approach is2527

applied simultaneously to the linear momentum balance law of the body and to2528

the evolution law for the plastic-like distortions. Such evolution law models a2529

stress-driven production of inelastic distortions, and stems from phenomenological2530

observations done on cellular aggregates. The whole study is also framed within2531

the limit of small elastic distortions, and provide a robust framework that can be2532

readily generalized to growth and remodelling of nonlinear composites. Finally, we2533

complete our theoretical model by performing numerical simulations.2534

The study of material growth, remodelling and ageing is of great importance in2535

Biomechanics, specially when the tissue, in which these processes occur, features a2536

very complex structure, with different scales of observation and various constituents.2537
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In the literature, the study of heterogeneous materials follows several approaches.2538

In this work we focus on the multi-scale asymptotic homogenisation technique [20,2539

23, 28, 52, 214], which exploits the information available at the smallest scale char-2540

acterizing the considered medium or phenomenon to obtain an effective description2541

of the medium or phenomenon itself valid at its largest scale. This is achieved by2542

expanding in asymptotic series the equations constituting the mathematical model2543

formulated at the lowest scale. As a result, the coefficients of the effective governing2544

equations encode the information on the other hierarchical levels, as they are to be2545

computed solving micro structural problems at the smaller scales. The multi-scale2546

asymptotic homogenisation approach has been successfully applied to investigate2547

various physical systems due to its potentiality in decreasing the complexity of the2548

problem at hand. Biomechanical applications of asymptotic homogenisation may2549

be found mainly in nanomedicine [223], biomaterials modelling, such as the bone2550

[185, 186], tissue engineering [75], poroelasticity [190], and active elastomers [191].2551

Most of the literature concerning applications of the asymptotic homogenisation2552

technique focuses on linearised governing equations, as in this case it is possible2553

to obtain, under a number of simplifying assumptions, a full decoupling between2554

scales, which leads to a dramatic reduction in the computational complexity, as also2555

noted for example in [191]. In fact, homogenisation in nonlinear mechanics is usu-2556

ally tackled via average field approaches based on representative volume elements2557

or Eshelby-based techniques (see e.g. [141] for a comparison between the latter2558

and asymptotic homogenisation), as done for example in [43]. These homogenisa-2559

tion approaches are typically well-suited when seeking for suitable bounds for the2560

coefficients of the model, such as the elastic moduli, while asymptotic homogeni-2561

sation can provide a precise characterization of the coefficients under appropriate2562

regularity assumptions (namely, local periodicity).2563

However, to the best of our knowledge and understanding, there exists only a2564

few examples, e.g. [54, 201, 211, 162], dealing with the asymptotic homogenisation2565

in the case of media undergoing large deformations. In [201], the static micro-2566

structural effects of periodic hyperelastic composites at finite strain are investi-2567

gated. In [211], the interactions between large deforming solid and fluid media at2568

the microscopic level are described by using the two-scale homogenisation technique2569

and the updated Lagrangian formulation. In [54], the effective equations describing2570

the flow, elastic deformation and transport in an active poroelastic medium were2571

obtained. Therein, the authors considered the spatial homogenisation of a coupled2572

transport and fluid-structure interaction model, incorporating details of the micro-2573

scopic system and admitting finite growth and deformation at the pore scale. Some2574

works can be also found dealing with homogenisation in the case of elastic perfectly2575

plastic constituents [221, 226].2576

Here we embrace the asymptotic homogenisation approach and consider a het-2577

erogeneous body composed of two hyperelastic solid constituents subjected to the2578

evolution of their internal structure. We refer to this phenomenon as to material2579
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remodelling and we interpret it with the production of plastic-like distortions. The2580

wording “material remodelling” is used as a synonym of “evolution of the internal2581

structure” of a tissue, and is intended in the sense of [55], who states that “biolog-2582

ical systems can adapt their structure [...] to accommodate a changed mechanical2583

load environment”. In this case, always in the terminology of [55] and [222], one2584

speaks of epigenetic adaptation (or material remodelling). In the framework of the2585

manuscript, such adaptation is assumed to occur through plastic-like distortions2586

that represent processes like the redistribution of the adhesion bonds among the2587

tissue cells.2588

It is worth to recall in which sense the concept of “plastic distortions”, conceived2589

in the context of the Theory of Plasticity (cf. e.g. [161, 176]), and originally referred2590

to non-living materials such as metals or soils, can be imported to describe the2591

structural evolution of biological tissues. To this end, it is important to emphasize2592

that the wording “plastic distortions” is understood as the result of a complex of2593

transformations that conducts to the reorganization of the internal structure of a2594

material, and that —as anticipated in the Introduction— such reorganization is2595

referred to as “remodelling” in the biomechanical context.2596

The ways in which the structural transformations may take place in a given2597

material depend on the structural properties of the material itself. For this reason,2598

the plasticity in metals is markedly different from that occurring in amorphic ma-2599

terials. In the case of metals, indeed, for which the internal structure is granular2600

and characterized by the arrangement of the atomic lattice within each grain, plas-2601

tic distortions are the macroscopic manifestation of the formation and evolution2602

of lattice defects. As reported in [176], such defects can be due, for example, to2603

edge dislocations, wedge disclinations, missing atoms at some lattice sites, or to2604

the presence of atoms in the lattice interstices. To describe how the defects evolve,2605

thereby giving rise to the plastic distortions, one should compare the real lattice2606

at the current instant of time with an ideal lattice, and decompose the overall de-2607

formation (i.e., shape change and structural transformation) into an elastic and2608

an inelastic contribution [176]. The elastic contribution describes the part of defor-2609

mation that is recoverable by completely relaxing mechanical stress, whereas the2610

inelastic contribution represents the structural variation, which, in general, is of2611

irreversible nature.2612

Clearly, metals have structural features markedly different from those of living2613

matter. Still, some of the fundamental mechanisms that trigger the reorganization2614

of their internal structure can be adapted to describe the remodelling of biological2615

tissues.2616

For instance, in the case of bones, plastic-like phenomena are due to the for-2617

mation of micro cracks that, in turn, favours the gliding of the material along the2618

direction of the opening of the cracks [57]. Lastly, as anticipated above, in the case2619

of biological tissues such as cellular aggregates, the phenomenon analogous to the2620

generation of dislocations is the rearrangement of the adhesion bonds among the2621
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cells or the reorganization of the extracellular matrix due to the reorientation of2622

the collagen fibres or their deposition and resorption, as is the case for blood vessels2623

[154]. Also in all these situations, the comparison of the real configuration of the2624

tissue with an “ideal” one, taken as reference, permits the separation of the overall2625

deformation into an elastic part and a structure-related, “plastic-like” part.2626

Here, taking inspiration from the theory of finite Elastoplasticity [176, 218,2627

112], we describe the plastic-like distortions by invoking the Bilby-Kröner-Lee2628

(BKL) decomposition of the deformation gradient tensor, and rephrasing it in a2629

scale-dependent fashion. We remark that, at each of the medium’s characteristic2630

scales, a tensor of plastic distortions is introduced, which accounts for the fact that2631

the structural variations of the medium cannot be expressed, in general, in terms2632

of compatible deformations. Our study is conducted within a purely mechanical2633

framework and under the assumption of negligible inertial forces. These hypothe-2634

ses imply that the model equations reduce to a set comprising a scale-dependent,2635

quasi-static law of balance of linear momentum and an evolution law for the tensor2636

of plastic-like distortions. The latter one is assumed to obey a phenomenological2637

flow rule driven by stress.2638

4.2 Theoretical background2639

4.2.1 Separation of scales2640

The homogenisation of a highly heterogeneous medium is only possible when2641

the characteristic length of the the local structure (ℓ0) and the characteristic length2642

of the material, or of the phenomenon, of interest (L0) are well separated. This2643

condition of separation of scales can be expressed as2644

ε0 := ℓ0

L0
≪ 1. (4.1)

There may exist more than two coexisting scales and, if they are well separated2645

from each other, a homogenisation approach is possible. In this case, we then move2646

from the smallest scale to the largest one by homogenisation [4, 28, 163, 224, 207].2647

Condition (4.1) is taken as a base assumption for all homogenisation processes.2648

The two characteristic length scales ℓ0 and L0 introduce two dimensionless spatial2649

variables in the reference configuration, Ỹ = X/ℓ0 and X̃ = X/L0, where X is said2650

to be the physical spatial variable, whereas Ỹ and X̃ represent the microscopic and2651

the macroscopic non-dimensional spatial variables, respectively. By using (4.1), Ỹ2652

and X̃ can be related through the expression2653

Ỹ = ε−1
0 X̃. (4.2)

Given a field Φ defined over the region of interest of the heterogeneous medium,2654

the separation of scales allows to rephrase the space dependence of Φ as Φ(X) =2655
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Φ̌(X̃(X), Ỹ (X)), and the spatial derivative of Φ takes thus the form2656

GradXΦ = L−1
0

(︂
GradX̃Φ̌ + ε−1

0 GradỸ Φ̌
)︂
. (4.3)

By following this approach, all equations should be written in non-dimensional form.2657

In the literature, the switch to the auxiliary variables X̃ and Ỹ is often omitted.2658

However, as shown for example in [20], both paths are equivalent, provided that the2659

dimensional formulation of the problem consistently accounts for any asymptotic2660

behaviour of the involved fields and parameters (see e.g. [188] and the discussion2661

therein concerning problems where such a behaviour is actually deduced via a non-2662

dimensional analysis). By exploiting this result, in what follows, our analysis is car-2663

ried out directly in a system of physical variables X and Y . Moreover, by adopting2664

the approach usually followed in asymptotic multi scale analysis, we assume that2665

each field and each material property characterizing the considered medium are2666

functions of both X and Y , with Y = ε−1
0 X. Roughly speaking, the dependence on2667

X captures the behaviour of a given physical quantity over the largest length-scale,2668

while the dependence on Y captures the behaviour over the smallest one. We ex-2669

press this property by introducing the notation Φε(X) = Φ(X, ε−1
0 X) = Φ(X, Y )2670

[192]. Moreover, for a fixed X, we assume that Φ(X, Y ) is periodic with respect to2671

Y .2672

In the classical theory of two-scale asymptotic homogenisation [23, 28, 52], the2673

small scaling dimensionless parameter ε0 is constant. However, in the case of a2674

composite material subjected to deformation and change of internal structure (as2675

is the case, for instance, when plastic-like distortions occur), the characteristic2676

macroscopic and microscopic lengths, which refer to the body and to its hetero-2677

geneities, respectively, depend on X and t, and should thus be denoted by ℓ(X, t)2678

and L(X, t). Therefore, the corresponding scaling parameter, obtained as the ratio2679

ε(X, t) = ℓ(X, t)/L(X, t), is also a function of X and t, which need not be equal2680

to ε0 in general. This variability notwithstanding, if ε(X, t) is bounded from above2681

for all X and for all t, and if the upper bound is much smaller than unity, we can2682

indicate such upper bound with ε, and use this constant as a scaling parameter for2683

our asymptotic analysis.2684

4.2.2 Kinematics2685

Let us denote by Bε a continuum body with periodic micro structure, and by2686

S the three-dimensional Euclidean space. Furthermore, we denote by Bε
0 the ref-2687

erence, unloaded configuration of Bε, in which the body’s periodic micro-structure2688

is reproduced. Now, let us assume that χε : Bε
0 × T → S describes the motion of2689

the heterogeneous body, where T = [t0, tf [ is an interval of time. Then, the region2690

occupied by the body at time t ∈ T is Bε
t := χε(Bε

0, t) ⊂ S and is said to be its cur-2691

rent configuration. Each point x ∈ Bε
t is such that x = χε(X, t), with X ∈ Bε

0 being2692

the point’s reference placement. The deformation from Bε
0 to Bε

t is characterized2693
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by the deformation gradient, F ε(X, t), which is defined as F ε(X, t) = Tχε(X, t)2694

[165], with Tχε being the tangent map of the motion χε, defined from the tangent2695

space TXBε
0 into TxS. In the sequel, however, since our focus is on Homogenisation2696

Theory, we find it convenient to use the less formal definition2697

F ε = I + Graduε, (4.4)

where I is the second-order identity tensor and Graduε denotes the gradient op-2698

erator of the displacement uε. The condition Jε = detF ε > 0 must be satisfied2699

in order for χε to be admissible. The symmetric, positive definite, second-order2700

tensor Cε = (F ε)T F ε is the right Cauchy-Green deformation tensor induced by2701

F ε. For our purposes, we partition Bε
0 into two sub-domains B1

0 and B2
0, such that2702

B̄1
0 ∪ B̄2

0 = B̄ε

0 and B̄1
0 ∩ B2

0 = B1
0 ∩ B̄2

0 = ∅, where the bar over a set denotes its clo-2703

sure. We let Γε
0 stand for the interface between B1

0 and B2
0. Particularly, B1

0 denotes2704

the matrix of Bε (also referred to as host phase) and B2
0 a collection of N disjoint2705

inclusions. The periodic cell in the reference configuration is denoted by Y0. The2706

portion of matrix contained in Y0 is indicated by Y1
0 , while Y2

0 is the inclusion in2707

Y0. In each cell, Y1
0 and Y2

0 are such that Ȳ1
0 ∪Ȳ2

0 = Ȳ0 and Ȳ1
0 ∩Y2

0 = Y1
0 ∩Ȳ2

0 = ∅.2708

The symbol Γ0 indicates the interface between Y1
0 and Y2

0 . In the present work, we2709

assume that the periodicity of the body’s micro-structure is preserved even though2710

the body evolves by both changing its shape and varying its internal structure.2711

In general, however, this is not the case. Clearly, our hypothesis is unrealistic in2712

several circumstances, but it might be helpful to describe those situations in which2713

the breaking of the material symmetries occurs at a scale different from those of2714

interest, as is the case, for instance, when the plastic distortions occur in a tissue2715

with evolving material properties [159], that are not directly related to the change2716

of the tissue’s micro-geometry. On the other hand, for nonperiodic media, the2717

macro model is still valid when one assumes local boundedness. In that case, the2718

coefficients are simply to be retrieved experimentally, as the “cell” problem is no2719

longer to be computed on the cell but on the whole micro domain, which would be2720

more complex than the original problem.2721

Moreover, we define χε
1 := χε|B1

0
: B1

0 × T → S such that B1
t := χε

1(B1
0, t)2722

denotes the host phase at the current configuration and χε
2 := χε|B2

0
: B2

0 × T → S,2723

with B2
t := χε

2(B2
0, t) denoting the inclusions. Specifically, we enforce the condition2724

B̄1
t ∪B̄2

t = B̄ε

t , with B̄1
t ∩B2

t = B1
t ∩B̄2

t = ∅, and denote by Γε
t the interface between B1

t2725

and B2
t . In addition, we let Yt indicate the periodic cell in the current configuration,2726

with Ȳ1
t ∪Ȳ2

t = Ȳ t, Ȳ1
t ∩Y2

t = Y1
t ∩Ȳ2

t = ∅, and with Γt being the interface between2727

Y1
t and Y2

t (see Fig. 4.1). We emphasize that Y1
t is the portion of matrix and Y2

t2728

is the inclusion in Yt. We note that inside a single cell it can be present also a2729

collection of inclusions and, in such a case, we should consider multiple interface2730

conditions [189].2731
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4.2.3 “Multi scale” BKL decomposition2732

When the body Bε is subjected to a system of external loads, the change of2733

its shape could be accompanied by a rearrangement of its intrinsic structure. This2734

process is generally inelastic and may not be described just in terms of deformation.2735

Moreover, when mechanical agencies are removed, the body is generally unable to2736

recover the unloaded configuration Bε
0, and may occupy a configuration character-2737

ized by the presence of residual stresses and strains. To bring the body into a fully2738

relaxed state, an ideal tearing process has to be introduced [176]. More specifi-2739

cally, for each material point X ∈ Bε, we individuate a small neighbourhood of2740

X, referred to as body element, we ideally cut it out from the body, and we let2741

it relax until it reaches a stress-free state. Such state is the ground state of the2742

relaxed body element and is called natural state. This concept, originally used in2743

the theory of elasto-plasticity (see [161, 176]), has been used in the biomechanical2744

context by various authors like, for instance,[72, 210, 106, 96, 95, 145, 183, 60, 176,2745

112, 61]. Before going further with the use of the BKL decomposition, we mention2746

that, in the literature, there exist other approaches to the issue of residual stresses2747

in biological tissues, which call neither for the multiplicative decomposition of the2748

deformation gradient tensor, nor for the introduction of an “intermediate, relaxed2749

configuration”. One recent publication adhering to this philosophy is for example2750

[49], in which the authors warn that the intermediate configuration may “not exist2751

in physical reality and must be postulated a priori”. Although we are aware of the2752

fact that a framework based on the BKL-decomposition may lead in some cases to2753

assume unrealistic results —as any other framework would do—, we prefer here to2754

adhere to the BKL approach for consistency with previous works of ours.2755

By performing the ideal process described above for all the body points, a2756

collection of relaxed body pieces is obtained, in which each piece finds itself in2757

its natural state. We denote such collection by Bε
ν . In the language of continuum2758

mechanics, these physical considerations lead to the BKL decomposition [176, 112].2759

Although summarizing these theoretical results is useful for sake of completeness,2760

the consequences of the BKL decomposition are well-known, as it is one the pillars of2761

Elastoplasticity. For this reason, we do not fuss over its theoretical justification, and2762

we highlight, rather, the fact that one of the purposes of this work is to investigate2763

the use of a scale-dependent BKL decomposition. In detail, by referring to Figure2764

4.1, we invoke a multiplicative decomposition of the deformation gradient F ε that2765

is parametrized by the scaling ratio ε, i.e.,2766

F ε = F ε
e F ε

p , (4.5)

where the tensors F ε
e and F ε

p describe, respectively, the elastic and the inelastic2767

distortions contributing to F ε Along with (4.5), we also define the determinants2768

Jε
e = det F ε

e and Jε
p = det F ε

p, which are both strictly positive. Consistently with2769

the notation introduced above, it holds true that F ε
e (X) = Fe(X, Y ), F ε

p(X) =2770
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Fp(X, Y ), and F ε(X) = F (X, Y ) as well as Jε
e (X) = Je(X, Y ) and Jε

p(X) =2771

Jp(X, Y ).2772

In this work, we focus on remodelling, i.e., plastic-like distortions that occur to2773

modify the internal structure of Bε. Although this phenomenon is not visible, it2774

could lead to the alteration of the mechanical properties of Bε.2775

Figure 4.1: Schematic of a composite material with periodic internal micro-
structure and subjected to inelastic remodelling distortions. From left to right:
Magnification of an excerpt of material and description of its nested, periodic micro-
structure. Change of shape of the body from the reference to the current configura-
tion, and definition of the conglomerate of relaxed body pieces, each in its natural
state. Magnification of an excerpt of material, taken from the body’s current con-
figuration, and description of its deformed, and remodelled, micro-structure.

4.3 Formulation of the problem2776

We consider a composite material comprising two solid constituents, whose2777

point-wise constitutive response is hyperelastic. Therefore, to model its mechanical2778

behaviour, we introduce the scale-dependent strain energy function, defined per2779

unit volume of the natural state,2780

ψ̌ν(X, t) = ψε
ν(F ε

e (X, t), iε(X, t)) = ψν(Fe(X, Y, t), i(X, Y, t)), (4.6)

where i is defined by the expression i(X, Y, t) = (X, Y ), i.e., i extracts the spatial2781

pair (X, Y ) from the triplet (X, Y, t). From (4.6) we can derive the first Piola-2782

Kirchhoff stress tensor,2783

P ε = Jε
p
∂ψε

ν

∂F ε
e

(︂
F ε

p

)︂−T
, (4.7)
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where Jε
p = detF ε

p . In particular, if we neglect body forces and inertial terms, the2784

balance of linear momentum reads,2785 ⎧⎪⎪⎨⎪⎪⎩
Div P ε = 0, in Bε

0 \ Γε
0 × T ,

P ε · N = P̄ , on ∂T Bε
0 × T ,

uε = ū, on ∂uBε
0 × T ,

(4.8)

where P̄ and ū are, respectively, the prescribed traction and displacement on the2786

boundary ∂Bε
0 = ∂T Bε

0 ∪ ∂uBε
0 with ∂T Bε

0 ∩ ∂uBε
0 = ∂T Bε

0 ∩ ∂uBε
0 = ∅ and N2787

is the outward unit vector normal to the surface ∂Bε
0. Continuity conditions for2788

displacement and traction are imposed,2789

JuεK = 0 and JP ε · NYK = 0, on Γ0 × T , (4.9)

where J•K denotes the jump across the interface between the two constituents and2790

NY defines the unit outward normal to Γ0. Moreover, problem (4.8) must be2791

supplemented with an appropriate evolution law for F ε
p . It is worth mentioning that2792

the homogenisation process can be performed regardless of the particular choice2793

of external boundary conditions (Dirichlet-Neumann in this case). This means2794

that the formulation presented in this work is potentially applicable also to other2795

external boundary conditions, such as e.g. those of Robin-type. This is due to the2796

fact that, as pointed out in [207], also in the present study the homogenisation is2797

applied in regions sufficiently far away from the outer boundary of the considered2798

medium. For problems in which it is necessary to homogenize also close to the2799

outer heterogeneous boundaries, we refer to [28, 184, 152].2800

Remark 4.3.1. In the present work, we impose conditions (4.9) for displacements2801

and tractions just to exemplify the homogenisation technique applied to heteroge-2802

neous media with evolving micro structure. In other words, we assume that the2803

contact interface between the constituents is ideal. This means that the displace-2804

ments are congruent, and thus continuous, and that linear momentum is conserved2805

across the interface, which in our context, implies the continuity of the tractions.2806

However, the hypothesis of the ideal interface can be relaxed in some biological sit-2807

uations. For instance, in cancerous tissues, there exist cross-links between normal2808

and malignant cells, whose density and strength determine a spring constant that2809

relates the normal stresses on each cell surface, thereby making it non-ideal [153,2810

125]. Another example of non-ideal interface is the periodontal ligament, which2811

represents the thin layer between the cementum of the tooth to the adjacent alve-2812

olar bone [101]. In the context of composite materials, when non-ideal interfaces2813

are accounted for, the interface conditions are suitably reformulated [128, 129, 30,2814

29]. In particular, the asymptotic homogenisation technique has been applied for2815

linear elastic periodic fibre reinforced composites with imperfect contact between2816

matrix and fibres (see e.g. [121]).2817
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4.4 Asymptotic homogenisation of the balance of2818

linear momentum2819

A formal two-scale asymptotic expansion is performed for the displacement uε,2820

which thus reads2821

uε(X, t) = u(0)(X, t) +
+∞∑︂
k=1

u(k)(X, Y, t)εk, (4.10)

where, for all k ≥ 1, u(k) is periodic with respect to Y . Following [201] we consider2822

the leading order term of the expansion (4.10) to be independent of the fast variable2823

Y . From formula (4.4), the expansion (4.10), and taking into account the property2824

of scale separation, it follows that the deformation gradient tensor can be written2825

as2826

F ε(X, t) =
+∞∑︂
k=0

F (k)(X, Y, t)εk, (4.11)

with the notation2827

F (0) := I + GradXu(0) + GradY u(1), (4.12a)
F (k) := GradXu(k) + GradY u(k+1), ∀ k ≥ 1, (4.12b)

where GradX and GradY are the gradient operators with respect to X and Y ,2828

respectively. Now, the following two-scale asymptotic expansion is proposed for2829

the first Piola-Kirchhoff stress tensor P ε,2830

P ε(X, t) =
+∞∑︂
k=0

P (k)(X, Y, t)εk, (4.13)

where the fields P (k) are periodic with respect to Y . By substituting the power2831

series representation (4.13) into (4.8), using the scale separation condition, and2832

multiplying the result by ε, the following multi-scale system is obtained2833

Div P ε =
+∞∑︂
k=0

D(k)εk = 0, (4.14)

with2834

D(0) := DivY P (0), (4.15a)
D(k) := DivXP (k−1) + DivY P (k), ∀ k ≥ 1. (4.15b)

We require that the equilibrium equation (4.14) is satisfied at every ε, which2835

amounts to impose the conditions2836

DivY P (0) = 0, (4.16a)
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4.4 – Asymptotic homogenisation of the balance of linear momentum

DivXP (k−1) + DivY P (k) = 0, ∀ k ≥ 1. (4.16b)

At this point we introduce the average operator over the microscopic cell, i.e.2837

⟨•⟩ = 1
|Yt|

∫︂
Yt

• dY, (4.17)

where |Yt| represents the volume of the periodic cell Yt at time t. Indeed, because2838

of the deformations and distortions to which the microscopic, reference periodic2839

cell is subjected, Yt is different at every time instant. Averaging (4.16b) over the2840

microscopic cell yields, for k = 1,2841

⟨DivXP (0)⟩ + 1
|Yt|

∫︂
∂Yt

P (1) · NdY = 0, (4.18)

where, on the left-hand side, we have applied the divergence theorem. Since the2842

contributions on the periodic cell boundary ∂Yt cancel due to the Y -periodicity,2843

the integral over Yt is equal to zero, and (4.18) becomes2844

⟨DivXP (0)⟩ = 0. (4.19)

Here, we restrict our analysis to the particular case in which the periodic cell can2845

be uniquely chosen independently of X, which implies that the integration over Yt2846

and the computation of the divergence commute. This assumption is also referred2847

to as macroscopic uniformity, see also [35, 137, 187] for examples dealing with2848

non-macroscopically uniform media in the context of poroelasticity and diffusion.2849

Therefore, Equation (4.19) can be recast as2850

DivX⟨P (0)⟩ = 0. (4.20)

Equations (4.16a) and (4.20) represent, respectively, the local and the homogenised2851

equation associated with the original one, stated in (4.8). Both equations still2852

need to be supplemented with the corresponding interface, boundary, and initial2853

conditions. Note that, although both problems feature no time derivative, initial2854

conditions are required because P (0) depends on the variable F (0)
p , which satisfies2855

an evolution equation in time.2856

We remark that the leading term P (0) = P (0)(X, Y, t) of the multi-scale expan-2857

sion (4.13) is the unknown, both in (4.16a) and in (4.20). To identify P (0), we2858

propose here to expand F ε
p and ψε

ν as2859

F ε
p(X, t) =

+∞∑︂
k=0

F (k)
p (X, Y, t)εk, (4.21a)

ψε
ν(X, t) =

+∞∑︂
k=0

ψ(k)
ν (Fe(X, Y, t), X, Y )εk, (4.21b)
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where F (k)
p and ψ(k)

ν are periodic in Y . By using (4.5), (4.11) and (4.21a), we can2860

deduce a series expansion for F ε
e in powers of ε, where the leading order term F (0)

e2861

is given by2862

F (0)
e = F (0)(F (0)

p )−1. (4.22)

Following [54] and [201], P (0) is therefore supplied constitutively as2863

P (0) = J (0)
p
∂ψ(0)

ν

∂F (0)
e

(F (0)
p )−T, (4.23)

with ψ(0)
ν = ψ(0)

ν (F (0)
e (X, Y, t), X, Y ) and J (0)

p = detF (0)
p . To obtain the cell problem,2864

equation (4.14) must be supplemented with the corresponding interface conditions.2865

This is done by substituting the asymptotic expansions of uε and of P ε into the2866

interface conditions JuεK = 0 and JP ε · NYK = 0. Both conditions are satisfied at2867

any order of ε. At the order ε0, we simply obtain JP (0) · NYK = 0 for the stresses,2868

and that the condition Ju(0)K = 0 is trivially satisfied, because u(0) depends solely2869

on X and t. Thus, the interface condition on the displacements is written only for2870

u(1) and reads, Ju(1)K = 0. By summarizing these results, the cell problem at zero2871

order of the epsilon parameter can be stated as2872 ⎧⎪⎪⎨⎪⎪⎩
DivY P (0) = 0, in Y0 \ Γ0 × T ,
Ju(1)K = 0, on Γ0 × T ,
JP (0) · NYK = 0, on Γ0 × T .

(4.24)

Together with the cell problem, we also need to formulate the macro-scopic ho-2873

mogenised problem. To this end, we take equation (4.20) and complete it with a2874

set of boundary conditions. This is done by substituting the asymptotic expansions2875

of P ε and uε into the boundary conditions P ε · N = P̄ and uε = ū, respectively.2876

Thus, equating the coefficients at order ε0, and averaging the results over the unit2877

cell, we find the homogenised problem,2878 ⎧⎪⎪⎨⎪⎪⎩
DivX⟨P (0)⟩ = 0, in Bh × T ,
⟨P (0)⟩ · N = P̄ , on ∂T Bh × T ,
u(0) = ū, on ∂uBh × T ,

(4.25)

where Bh denotes the homogeneous macro-scale domain in which the homogenised2879

equations are defined.2880

The problem (4.25) has to be solved along with a homogenised evolution equa-2881

tion for F (0)
p and the initial condition associated with it. In addition, we remark2882

that, according to (4.25), the boundary tractions acting on ∂T Bh are balanced only2883

by the normal component of the average of the leading order stress, P (0), and2884

only the leading order displacement, u(0), has to be equal to the displacement ū,2885

imposed on ∂uBh.2886
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Remark 4.4.1. In the medical scientific literature, there exist studies that identify2887

the existence of anatomical boundary layers interposed between the brain surface2888

and tumours (see e.g. [208]). Here we do not address boundary layer phenom-2889

ena, which are usually neglected in the asymptotic homogenisation literature. The2890

homogenisation process described in this work is fine for regions far enough away2891

from the boundary so that its effect is not felt because, close to the boundaries,2892

the material will not behave as an effective material with homogenised coefficients.2893

To properly account for boundary effects, the so-called boundary-layer technique2894

could be used [28, 184].2895

4.5 Constitutive framework and evolution law2896

In this section, we prescribe a constitutive equation for the response of the2897

material and, independently, an evolution equation for the tensor of plastic-like2898

distortions.2899

4.5.1 Constitutive law2900

In the following, we formulate the local and homogenised problems for a specific2901

constitutive law. In general, this process can be rather cumbersome for complicated2902

strain energy densities, and it becomes even more involved when plastic-like distor-2903

tions are accounted for. To reduce complexity, we choose a very simple constitutive2904

law for ψε
ν , such as the De Saint-Venant strain energy density,2905

ψε
ν = 1

2Eε
e : C ε : Eε

e, (4.26)

where Eε
e = 1

2

(︂
(F ε

e)T F ε
e − I

)︂
is the elastic Green-Lagrange strain tensor and2906

C ε(X) = C (X, Y ) is the positive definite fourth-order elasticity tensor, which2907

satisfies both major and minor symmetries, i.e. Cijkl = Cjikl = Cijlk = Cklij.2908

Particularly, we consider that the constituents of the heterogeneous material are2909

isotropic, and thus2910

C ε = 3κεK + 2µεM , (4.27)

where κε(X) = κ(X, Y ) is the bulk modulus, µε(X) = µ(X, Y ) is the shear mod-2911

ulus, and the fourth-order tensors K = 1
3(I ⊗ I) and M = I − K extract the2912

spherical and the deviatoric part, respectively, of a symmetric second-order tensor2913

A, i.e., K : A = 1
3tr(A)I and M : A = A − 1

3tr(A)I := dev(A) [231, 232]. We2914

remark that the fourth-order identity tensor I is the identity operator over the2915

linear subspace of symmetric second-order tensors. Indeed, for every A such that2916

A = AT, it holds that I : A = A. In terms of I, an explicit expression of I is2917

given by I = 1
2 [I⊗I + I⊗I] (in components: Iijkl = 1

2 [IikIjl + IilIjk] [57]).2918
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We can identify the leading order term in the expansion of the constitutive law2919

(4.26), which reads2920

ψ(0)
ν = 1

2E(0)
e : C : E(0)

e , (4.28)

with E(0)
e = 1

2

(︂
(F (0)

e )TF (0)
e − I

)︂
. We recall that, although the expression of ψ(0)

ν2921

in (4.28) depends only on E(0)
e , the material coefficient C is still a two-scale func-2922

tion and should be thus interpreted as C (X, Y ). As a consequence, ψ(0)
ν is not2923

homogenised yet.2924

By taking into account the major and minor symmetries of C , we obtain2925

S(0)
ν = ∂ψ(0)

ν

∂E(0)
e

= C : E(0)
e = λtr(E(0)

e )I + 2µE(0)
e , (4.29)

where S(0)
ν is the leading order term of the second Piola-Kirchhoff stress tensor2926

written with respect to the natural state, λ = κ− 2
3µ is Lamé’s constant, and E(0)

e2927

is given by2928

E(0)
e = (F (0)

p )−T
(︂
E(0) − E(0)

p

)︂
(F (0)

p )−1, (4.30)

with E(0) = 1
2

(︂
(F (0))TF (0) − I

)︂
and E(0)

p = 1
2

(︂
(F (0)

p )TF (0)
p − I

)︂
.2929

By pulling S(0)
ν back to the reference configuration, and recalling that the2930

plastic-like distortions are assumed to be isochoric in our framework, (i.e. Jε
p = 1),2931

we obtain the second Piola-Kirchhoff stress tensor2932

S(0) = CR : (E(0) − E(0)
p ), (4.31)

where2933

CR = (F (0)
p )−1 ⊗ (F (0)

p )−1 : C : (F (0)
p )−T ⊗ (F (0)

p )−T

= 3λK (0)
p + 2µI (0)

p , (4.32)

is the elasticity tensor pulled-back to the reference configuration through F (0)
p , and,2934

upon setting B(0)
p = (F (0)

p )−1(F (0)
p )−T, we employed the notation2935

K (0)
p = 1

3B(0)
p ⊗ B(0)

p , (4.33a)
I (0)

p = 1
2

[︂
B(0)

p ⊗B(0)
p + B(0)

p ⊗B(0)
p

]︂
. (4.33b)

We remark that K (0)
p extracts the “volumetric part” of a generic second-order2936

tensor, taken with respect to the inverse plastic metric tensor B(0)
p i.e. for all2937

A = AT , it holds that K (0)
p : A = 1

3tr(B(0)
p A)B(0)

p . Furthermore, I (0)
p transforms2938
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A into I (0)
p : A = B(0)

p AB(0)
p and M (0)

p = I (0)
p − K (0)

p extracts the “deviatoric2939

part” of A with respect to the metric tensor B(0)
p , i.e. M (0)

p : A = B(0)
p AB(0)

p −2940

1
3tr(B(0)

p A)B(0)
p . We note that similar results have been obtained in the case of2941

non-linear elasticity in [77].2942

Next, we notice that F (0) can be written as2943

F (0) = I + H , (4.34)

with H = GradXu(0) + GradY u(1). Thus, by substituting (4.34) in E(0)
e , the result2944

into (4.31), and retaining only the terms linear in H , S(0) can be linearised as2945

S
(0)
lin = CR : (symH − E(0)

p ). (4.35)

We recall now that, at the leading order, the first Piola-Kirchhoff stress tensor reads2946

P (0) = F (0)S(0). Hence, its linearised form is given by2947

P
(0)
lin = CR : symH − (I + H)(CR : E(0)

p ). (4.36)

Looking at the definition of CR in (4.32), it can be noticed that our model resolves2948

at the macro-scale the structural evolution of the considered medium through the2949

dependence of CR on F (0)
p , which indeed describes the production of material inho-2950

mogeneities [69, 70, 72]. Additionally, our model is also capable of simultaneously2951

resolving the material heterogeneities at both the micro- and macro-scale through2952

the dependence of CR on X and Y . The latter dependence in fact, keeps track of2953

the variability of the elastic coefficient at both scales.2954

Because of Equations (4.33a) and (4.33b), CR possesses the same symmetry2955

properties of C , i.e.2956

(CR)IJKL = (CR)JIKL = (CR)IJLK = (CR)KLIJ , (4.37)

and therefore, P
(0)
lin can be written as2957

P
(0)
lin = CR : H − (I + H)(CR : E(0)

p ). (4.38)

Local problem Substituting (4.38) in the equation of the local problem (4.24),2958

the linear momentum balance law is rephrased as2959

DivY

[︂
CR : H − (I + H)(CR : E(0)

p )
]︂

= 0, (4.39)

or, equivalently,2960

DivY

[︂
CR : GradY u(1) − GradY u(1)(CR : E(0)

p )
]︂

=

− DivY

[︂
CR : GradXu(0) − (I + GradXu(0))(CR : E(0)

p )
]︂
. (4.40)
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In the absence of plastic distortions, i.e., when F ε
p = I, Equation (4.40) coincides2961

with the equation of the classical cell problem encountered in the homogenisation2962

of linear elasticity, which is known to admit a unique solution, up to a Y -constant2963

function, if the average over the cell of the right-hand-side vanishes identically (in2964

the jargon of Homogenisation Theory, this condition is referred to as solvability con-2965

dition or compatibility condition) [23]. In our case, since the pulled-back elasticity2966

tensor CR is periodic in Y , while u(0) is independent of Y , the solvability condition2967

is satisfied, i.e.,2968 ⟨︂
DivY

[︂
CR : GradXu(0) − (I + GradXu(0))(CR : E(0)

p )
]︂⟩︂

= 0. (4.41)

Exploiting the linearity of equation (4.40) in u(1), we make the ansatz2969

u(1)(X, Y, t) = ξ(X, Y, t) : GradXu(0)(X, t) + ω(X, Y, t), (4.42)

where ξ and ω are a third-order tensor field and a vector field, both periodic in Y .2970

We now require that ξ and ω satisfy two independent cell problems. The cell2971

problem for ξ reads2972 ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

DivY

[︂
CR : TGradY ξ − TGradY ξ(CR : E(0)

p )
]︂

= DivY

[︂
− CR + I⊗(CR : E(0)

p )
]︂
, in Y0 \ Γ0 × T ,

JξK = 0, on Γ0 × T ,
q[︂

CR : TGradY ξ − TGradY ξ(CR : E(0)
p )

+CR − I⊗(CR : E(0)
p )

]︂
· NY

y
= 0, on Γ0 × T .

(4.43)

Before going further, some words of explanation on the notation are necessary.2973

First, we notice that GradY ξ is a fourth-order tensor function, which admits the2974

representation GradY ξ = (∂ξABC)/(∂YD)eA ⊗ eB ⊗ eC ⊗ eD. Then, TGradY ξ is2975

a fourth-order tensor function obtained by ordering the indices of GradY ξ in the2976

following fashion2977

TGradY ξ = (TGradY ξ)ABCDeA ⊗ eB ⊗ eC ⊗ eD

= (GradY ξ)ACDBeA ⊗ eB ⊗ eC ⊗ eD

= ∂ξACD

∂YB

eA ⊗ eB ⊗ eC ⊗ eD. (4.44)

The cell problem for ω is given by2978 ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

DivY

[︂
CR : GradY ω − GradY ω(CR : E(0)

p )
]︂

= DivY

[︂
CR : E(0)

p

]︂
, in Y0 \ Γ0 × T ,

JωK = 0, on Γ0 × T ,
q(︂

CR : GradY ω − GradY ω(CR : E(0)
p )

−CR : E(0)
p

)︂
· NY

y
= 0, on Γ0 × T .

(4.45)
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By virtue of the linearisation process, we obtain two auxiliary cell problems where2979

the macroscopic term GradXu(0) is not explicitly present. Indeed, this is in general2980

possible only when accounting for the linearised deformations’ regime, see also [54].2981

Then, the dependence of the macro-scale variable is given through the tensor F (0)
p ,2982

which describes the plastic-like distortions. Moreover, if F (0)
p only depends on time,2983

as is the case in [10], the cell problems are also decoupled in the spatial micro- and2984

macro-variables provided that the elasticity tensor solely depends on the micro2985

scale variable. The cell problems are in any case time-dependent, as they encode2986

the evolution of the material response and its link with the plastic-like distortions.2987

This section answers to the research question 4.1.2988

Homogenized problem From (4.36) and (4.42), the homogenised problem rewrites2989 ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
DivX

[︂
Ĉ R : GradXu(0)

]︂
= −DivX

[︂
D̂R

]︂
, in Bh × T ,

(Ĉ R : GradXu(0)) · N + D̂R · N = P̄ , on ∂T Bh × T ,

u(0) = ū, on ∂uBh × T ,

(4.46)

where2990

Ĉ R =
⟨︂
CR + CR : TGradY ξ − TGradY ξ(CR : E(0)

p ) − I⊗(CR : E(0)
p )

⟩︂
, (4.47a)

D̂R =
⟨︂
CR : GradY ω − GradY ω(CR : E(0)

p ) − CR : E(0)
p

⟩︂
. (4.47b)

Remark 4.5.1. In the absence of distortions, that is for F ε
p = I, the cell problems2991

(4.43) and (4.45) reduce to one single cell problem,2992 ⎧⎪⎪⎨⎪⎪⎩
DivY [C + C : TGradY ξ] = 0, in Y0 \ Γ0 × T ,
JξK = 0, on Γ0 × T ,
J(C + C : TGradY ξ) · NYK = 0, on Γ0 × T .

(4.48)

This is due to the fact that the symmetric tensor E(0)
p appearing in (4.40) is equal2993

to zero. On the other hand, the homogenised problem is rewritten as follows,2994 ⎧⎪⎪⎨⎪⎪⎩
DivX [Ĉ : GradXu(0)] = 0, in Bh × T ,
(Ĉ : GradXu(0)) · N = P̄ , on ∂T Bh × T ,
u(0) = ū, on ∂uBh × T ,

(4.49)

where Ĉ = ⟨C +C : TGradY ξ⟩ is the effective elasticity tensor. Formulations (4.48)2995

and (4.49) are the counterparts of (4.24) and (4.25), respectively, when plastic-2996

like distortions are neglected and a linearised approach for the deformations is2997

considered. Particularly, (4.48) and (4.49) identify identically with classical results2998

in the asymptotic homogenisation literature [23, 214].2999
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4.5.2 Evolution law3000

Several procedures can be adopted to establish a proper evolution law for the3001

inelastic distortions. One choice is to follow a phenomenological approach, which3002

should be based on experimental evidences and comply with suitable constitutive3003

requirements [104]. On the other hand, one could invoke some general principles,3004

such as the invariance of the evolution law with respect to a class of transforma-3005

tions and thermodynamic constraints [69, 70, 72]. Within the latter approach, and3006

adapting the theoretical framework explored in [69, 70, 72, 104], an evolution equa-3007

tion for the inelastic distortions has been studied in [61]. Therein, the plastic-like3008

distortions describe a remodelling process with the following assumptions: (i) Fp3009

is restricted by the constraint Jp = 1, (ii) the solid phase exhibits hyperelastic3010

behaviour, and (iii) the considered system remodels when the stress induced by3011

external loading exceeds a characteristic threshold. An evolution law for Fp sat-3012

isfying these conditions, and compatible with the Dissipation inequality [44, 107,3013

110, 112], is given by3014

sym
(︂
CF−1

p Fṗ
)︂

= γ
[︃
∥devσ∥ −

√︂
2
3σy

]︃
+

dev(Σ)C
∥devσ∥

, (4.50)

where σ is the Cauchy stress tensor, dev(Σ) = Σ− 1
3tr(Σ)I, is the deviatoric part of3015

the Mandel stress tensor Σ = CS being the Mandel stress tensor, and S = F−1P3016

the second Piola-Kirchhoff stress tensor. Moreover, γ is a strictly positive model3017

parameter, σy > 0 is the yield, or threshold, stress, and the operator [A]+ is such3018

that, for any real number A, [A]+ = A, if A > 0, and [A]+ = 0 otherwise. As3019

anticipated in the Introduction, in the present context the physical meaning of the3020

plastic-like distortions, represented by Fp, is that of structural reorganization, i.e.3021

remodelling, as is the case in biological tissues when the adhesion bonds among3022

cells or the structure of the ECM reorganize themselves.3023

Although Equation (4.50) has been successfully used to describe some biological3024

situations in which the onset of remodelling is subordinated to the excess of the3025

yield stress σy, the homogenisation of the evolution law (4.50) is too complicated.3026

For this reason, in this work, we replace (4.50) with a much easier law of the type3027

sym
(︂
C(Fp)−1Fṗ

)︂
= γ dev(Σ)C, (4.51)

according to which no stress-activation criterion is supplied. Clearly, this choice3028

may turn out to be unrealistic in many circumstances, but it can still be useful to3029

understand the essence of some stress-driven remodelling processes.3030

We need to clarify that, although in some sentences of this work we mentioned3031

growth, our model focuses on pure remodelling. This is reflected by the condition3032

detF p = 1, and, more importantly, by the fact that the evolution laws (4.50)3033

and (4.51) are triggered and controlled exclusively by mechanical factors. On the3034
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one hand, the requirement detF p = 1 means that the plastic-like distortions are3035

isochoric and, thus, unable to describe volumetric growth. On the other hand, the3036

evolution laws for F p, i.e., Eqs. (4.50) or (4.51), imply that remodelling is viewed as3037

a consequence of the mechanical environment only: When mechanical stress exceeds3038

a given threshold (see also [104, 112]), the internal structure of the tissue starts to3039

vary. In other words, in the present framework, no biochemical phenomena are3040

accounted for as possible activators of remodelling. This is a remarkable difference3041

with growth, which, in contrast, occurs only when the concentration of nutrients3042

is above a certain threshold value [10, 38, 5, 96, 166]. Our results do not apply3043

to growth as they stand, nonetheless, the theory can be adapted to model growth3044

by doing some necessary modifications. This is the reason why in the abstract we3045

stated that our study offers “a robust framework that can be readily generalized to3046

growth and remodelling of nonlinear composites”.3047

To homogenize (4.51), the first step is to rewrite it as3048

sym
(︂
Cε(F ε

p)−1F ε
p
̇ )︂ = γεdev(Σε)Cε, (4.52)

by admitting that γε(X) = γ(X, Y ) is a rapidly oscillating strictly positive function.3049

Moreover, by performing the power expansion for Σε,3050

Σε(X, t) =
+∞∑︂
k=0

Σ(k)(X, Y, t)εk , (4.53)

and using (4.31), the leading order term of Σε is3051

Σ(0) = C(0)
[︂
CR : (E(0) − E(0)

p )
]︂
. (4.54)

In the limit of small elastic deformations, in (4.54) we must neglect non-linear terms3052

in H . Therefore, Σ(0) is approximated with3053

Σ(0)
lin = CR : symH −

(︂
I + 2symH

)︂(︂
CR : E(0)

p

)︂
.

By virtue of (4.12a), symH splits additively as the sum of3054

symH = E
(0)
X + E

(1)
Y , (4.55)

where, for k = 0,1, and jk = X, Y ,3055

E
(k)
jk

= 1
2

[︂
Gradjk

u(k) + (Gradjk
u(k))T

]︂
. (4.56)

By using (4.55) and (4.42), we can now rewrite Σ(0)
lin as3056

Σ(0)
lin = AR : GradXu(0) + BR : GradY ω − CR : E(0)

p , (4.57)
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with3057

AR = CR + CR : TGradY ξ − I⊗(CR : E(0)
p )

+
[︂
I⊗(CR : E(0)

p )
]︂

:
[︂
TGradY ξ + t(TGradY ξ)

]︂
, (4.58a)

BR = CR + I⊗(CR : E(0)
p ). (4.58b)

In Equation (4.58a), the symbol t(•) transposes the fourth-order tensor to which3058

it is applied by exchanging the order of its first pair of indices only, i.e., given an3059

arbitrary fourth-order tensor T = TABCDeA ⊗ eB ⊗ eC ⊗ eD, tT reads3060

tT = TBACDeA ⊗ eB ⊗ eC ⊗ eD. (4.59)

Note that in the calculations performed to obtain AR and BR in (4.57), we employed3061

the following properties: given two second-order tensors A and U , with A being3062

symmetric, it holds that3063

UA = (I⊗A) : U , (4.60a)
UT A = (I⊗A) : U . (4.60b)

Finally, by substituting the expansions of Σε and F ε
p in (4.52), equating the lead-3064

ing order terms, excluding non-linear terms of H and averaging, the homogenised3065

evolution law for the plastic-like distortions is3066

sym
[︂
⟨C(0)

lin (F (0)
p )−1F (0)

p
̇ ⟩

]︂
= −

⟨︂
γdev(Σ(0)

lin )
⟩︂

−
⟨︂
γ(CR : E(0)

p )(C(0)
lin − I)

⟩︂
, (4.61)

where Σ(0)
lin is given in (4.57) and3067

C
(0)
lin = I + 2symH

= I + 2(I + I : TGradY ξ) : GradXu(0) + 2I : GradY ω. (4.62)

We note that, to compute C
(0)
lin , we must first determine ξ and ω, which is done by3068

solving the local problems (4.43) and (4.45). Furthermore, Equation (4.61) needs3069

to be supplemented with an initial condition for F (0)
p . We highlight that, with the3070

formulation of Eq. (4.61), we answer the research question 4.2.3071

Remark 4.5.2. In the linearised theory of elasticity, even when the individual con-3072

stituents of a given composite material are isotropic, the effective elastic coefficients3073

may turn out to be anisotropic, depending on the geometric properties of the micro-3074

structure. In fact, when the Homogenisation Theory is applied, the anisotropy3075

arises quite naturally due to the solution of the local cell problems [23, 28]. In3076

fact, the homogenised material is anisotropic also in the case of rather simple cells,3077

see for instance [190], where an explicit deviation-from- isotropy function is intro-3078

duced in the context of cubic symmetric elasticity tensors arising from asymptotic3079

98



4.5 – Constitutive framework and evolution law

homogenisation. This has noticeable repercussions also on the evolution law that3080

should be chosen for a correct description of remodelling. To see this, we first notice3081

that, for an isotropic medium, the evolution law of the plastic-like distortions can3082

be formulated in terms of tensor Bp, since the constitutive framework is such that3083

F p does not feature explicitly in any constitutive function (see e.g. [218]). In such3084

cases, a possible evolution law for Bp may be given in the form3085

Ḃp = γBpdev(Σ). (4.63)

Equation (4.63) is, in fact, in harmony with the symmetry properties of the material3086

Mandel stress tensor, Σ, i.e., BpΣ = (BpΣ)T [169]. However, if one writes an3087

equation of the same type as (4.63) at the scale of a cell problem (which seems3088

to be a justified choice, because the material is isotropic at that scale), and then3089

homogenizes, one ends up with a material for which the Mandel stress tensor Σ no3090

longer obeys the symmetry condition BpΣ = (BpΣ)T. This is because the material3091

is not isotropic at the macro scale and, thus, the description of remodelling based3092

on Bp becomes inadequate. Therefore, if one wants to homogenize, one should3093

start with evolution laws at the micro scale, which have to be suitable to account3094

for anisotropy, even though the single constituents are isotropic at that scale. These3095

considerations lead us to Equation (4.52), as suggested in [70, 72], and subsequently3096

employed in [61].3097

Remark 4.5.3. Equations (4.50) and (4.51) can be obtained by adhering to the3098

philosophy presented in [44, 60], and subsequently adopted, for example, in [5]3099

for growth, in [183] for growth and remodelling, and in [116, 107] for remodelling3100

only. Accordingly, F p is regarded as the kinematic descriptor of the structural3101

degrees of freedom of the medium, and Ḟ p as the generalized velocity with which3102

the structural changes occur. Within this setting, it can be proven that for growth3103

and remodelling problems, the dissipation inequality reads3104

D = Y ν : Lp + Dnc ≥ 0, (4.64)

where Dmech := Y ν : Lp is the mechanical contribution to dissipation, with Y ν3105

being the dissipative part of a generalized internal force, dual to Lp. In our work,3106

however, Y ν can be identified with the tensor Y ν ≡ J−1
p F−T

p ΣF T
p , so that Dmech3107

coincides with the mechanical dissipation encountered in the standard formulation3108

of Elastoplasticity, i.e., Dmech = J−1
p F−T

p ΣF T
p : Lp = J−1

p Σ : F−1
p Ḟ p.3109

In the terminology of [149, 106], Dnc is referred to as “non-compliant” contri-3110

bution to the overall dissipation. Physically, it summarizes a class of phenomena3111

that are not —or cannot be— resolved in terms of mechanical power at the scale3112

at which the dissipation inequality is written. For instance, in the case of growth,3113

Dnc may represent biochemical effects contributing to the overall dissipation.3114

The inequality (4.64) can be studied in several ways, depending on the problem3115

at hand. First, we consider a growth problem. To this end, we assume that Dnc can3116

99



An Asymptotic Homogenisation Approach to the micro-structural evolution of heterogeneous media

be written as Dnc = rA, where r is the rate at which mass is added or depleted3117

from the system (its units are given by the reciprocal of time), and A is the energy3118

density (per unit volume) associated with the introduction or uptake of mass. In3119

this setting, it is possible to conceive a particular state of the system in which the3120

mechanical stress is null, i.e., Σ = 0, while r and A are generally nonzero. When this3121

occurs, the system grows without mechanical dissipation, i.e., Dmech = 0, whereas3122

the overall dissipation of the system reduces to the non-compliant one:3123

D ≡ Dnc = rA ≥ 0. (4.65)

The second case addresses the situation of pure remodelling, for which we set3124

Dnc = 0, so that the dissipation inequality (4.64) becomes3125

D = Dmech = Y ν : Lp = J−1
p Σ : F−1

p Ḟ p ≥ 0. (4.66)

It is possible to show that the evolution laws (4.50) and (4.51) are in harmony with3126

(4.66).3127

4.6 A computational scheme for small deforma-3128

tions3129

The macro-scale model given by the problems (4.46) and (4.61), together with3130

the auxiliary cell problems (4.43) and (4.45), requires dedicated numerical schemes3131

which are subject of our current investigations. The main computational challenge3132

is due to the fact that the local problems depend on the macro-scale in a time-3133

dependent way. Therefore, at each time, there is a different cell problem at each3134

macroscopic point X ∈ Bh. Moreover, one has to transfer the information (repre-3135

sented by the geometry, material coefficients, and unknowns of the problem) from3136

the cell problems to the homogenised problem in the domain Bh, and vice versa.3137

Here, as a first step towards the numerical study of this kind of problems, we3138

propose an algorithm adapted from [116] that could be useful in our case. In [116] it3139

is introduced a computational algorithm, named Generalised Plasticity Algorithm3140

(GPA), to study the mechanical response of a biological tissue that undergoes large3141

deformations and remodelling of its internal structure. Following [116], the discrete3142

and linearised version of the problem constituted by Equations (4.43), (4.45), (4.46)3143

and (4.61) is formulated in three steps.3144

First step The weak form of the cell problems (4.43) and (4.45), and of the3145

homogenised problem (4.46) can be formally rewritten as3146

Lw
1 (ξ,F (0)

p , ξ̃) = 0, (4.67a)
Lw

2 (ω,F (0)
p , ω̃) = 0, (4.67b)
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Hw
1 (u(0),F (0)

p , ũ(0)) = 0, (4.67c)

where ξ̃, ω̃ and ũ(0) are test functions defined in certain Sobolev spaces, and Lw
1 , Lw

23147

and Hw
1 are suitable integral operators. Together with (4.67a)-(4.67c), we rewrite3148

in operatorial form also the homogenised problem (4.61) as3149

H2(ξ,ω,u(0),F (0)
p ) = 0. (4.68)

Note that (4.68) is not a weak form because the corresponding equation does not3150

involved spatial derivatives of F (0)
p .3151

Second step We perform a backward Euler method [218] for discretising the3152

evolution law for F (0)
p given by (4.68), thereby ending up with the following system3153

of time-discrete equations,3154

Lw
1[n](ξ[n],F

(0)
p[n], ξ̃) = 0, (4.69a)

Lw
2[n](ω[n],F

(0)
p[n], ω̃) = 0, (4.69b)

Hw
1[n](u

(0)
[n] ,F

(0)
p[n], ũ

(0)) = 0, (4.69c)

H2[n](ξ[n],ω[n],u
(0)
[n] ,F

(0)
p[n]) = 0, (4.69d)

where n = 1, . . . , N enumerates the nodes of a suitable time grid. We notice that3155

an explicit time discrete method could be also used. However, when dealing with3156

problems in Elastoplasticity, this election could lead to a less accurate solution.3157

Third step The operators Lw
1[n], Lw

2[n], Hw
1[n] and H2[n], are linear in ξ[n], ω[n] and3158

u
(0)
[n] , respectively, but they are nonlinear in F

(0)
p[n]. Thus, to search the solution to3159

(4.69a)-(4.69d), we linearise at each time step according to Newton’s method (with3160

a linesearch). Therefore, at the kth iteration, k ∈ N, k ≥ 1, F
(0)
p[n,k] is written as3161

F
(0)
p[n,k] = F

(0)
p[n,k−1] + Ψ[n,k], (4.70)

where F
(0)
p[n,k−1] is known and Ψ[n,k] represents the unknown increment. We intro-3162

duce the notation3163

Lw
1[n,k−1](ξ[n], ξ̃) = Lw

1[n](ξ[n],F
(0)
p[n,k−1], ξ̃), (4.71a)

Lw
2[n,k−1](ω[n], ω̃) = Lw

2[n](ω[n],F
(0)
p[n,k−1], ω̃), (4.71b)

Hw
1[n,k−1](u

(0)
[n] , ũ

(0)
[n] ) = Hw

1[n](u
(0)
[n] ,F

(0)
p[n,k−1], ũ

(0)
[n] ). (4.71c)

Now, for each time step, and at the kth iteration, we solve3164

Lw
1[n,k−1](ξ[n], ξ̃) = 0, (4.72a)
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Lw
2[n,k−1](ω[n], ω̃) = 0, (4.72b)

Hw
1[n,k−1](u

(0)
[n] , ũ

(0)) = 0, (4.72c)

and obtain the “temporary” solutions ξ[n,k−1], ω[n,k−1], and u
(0)
[n,k−1], respectively.3165

Then, upon setting3166

H2[n,k−1] = H2[n](ξ[n,k−1],ω[n,k−1],u
(0)
[n,k−1],F

(0)
p[n,k−1]), (4.73a)

H[n,k−1] = H[n](ξ[n,k−1],ω[n,k−1],u
(0)
[n,k−1],F

(0)
p[n,k−1]), (4.73b)

we linearise (4.69d), i.e.,3167

H2[n,k−1] + H[n,k−1] : Ψ[n,k] = 0, (4.74)

where H[n,k−1] is a fourth-order tensor given by the Gâteaux derivative of H2[n],3168

computed with respect to its fourth argument, and evaluated in F
(0)
p[n,k−1].3169

If the residuum F
(0)
p[n,k] for k greater than, or equal to, a certain k∗ is less than3170

a tolerance δ > 0, then we set F
(0)
p[n] ≡ F

(0)
p[n,k∗] = F

(0)
p[n,k∗−1] + Ψ[n,k∗] and we regard3171

it as the solution of Newton’s method. Thus, we compute ξ[n], ω[n] and u
(0)
[n] .3172

These three steps are summarized in the algorithm 1.3173

Algorithm 1
1: procedure
2: for n = 1, . . . , N do
3: State k = 1
4: while e > δ do (Known F

(0)
p[n,k−1])

5: Solve Lw
1[n,k−1] and Lw

2[n,k−1] (To find ξ[n,k−1] and ω[n,k−1])

6: Solve Hw
1[n,k−1] (To find u

(0)
[n,k−1])

7: Solve Hw
1[n,k−1] (To find Ψ[n,k])

8: F
(0)
p[n,k−1] ← F

(0)
p[n,k−1] + Ψ[n,k]

9: Compute e
10: k = k + 1
11: end while
12: F

(0)
p[n] = F

(0)
p[n,k−1] + Ψ[n,k]

13: Solve Lw
1[n] and Lw

2[n] (To find ξ[n] and ω[n])

14: Solve Hw
1[n] (To find u

(0)
[n] )

15: Update micro and macro geometries
16: end for
17: end procedure

We highlight that this section answers the research question 4.3.3174

4.7 Numerical results3175

In this section, the potentiality of our model, which is given by Equations (4.43),3176

(4.45), (4.46) and (4.61), is shown by performing numerical simulations. In partic-3177

ular, we make the following considerations.3178

102



4.7 – Numerical results

(i) Geometry We consider the composite body Bε to have a layered three-3179

dimensional structure, and we assume that the layers are orthogonal to the direction3180

E3, where {EA}3
A=1 is an orthonormal basis of a system of Cartesian coordinates3181

{XA}3
A=1. In this particular case, the material properties of the heterogeneous body3182

only change along the E3 direction and, thus, they depend solely on the coordinate3183

X3. Consequently, the benchmark test at hand can be recast into a one dimensional3184

problem, that is, the reference configuration of the periodic cell and the body are3185

considered to be the unidimensional domains Y0 = [0, ℓ] and Bh = [0, L], respec-3186

tively. We denote with ℓ and L, respectively, the dimension of the periodic cell and3187

the body along the direction E3. Moreover, we suppose that the interface Γ0 is the3188

middle point ℓ/2, so that, each material under consideration has the same volume3189

in the microscopic cell Y0.3190

(ii) Material properties We prescribe the elasticity tensor C ε to be independent3191

on the macro scale variable X3, i.e. C ε(X3) = C (X3, Y3) ≡ C (Y3), where {YA}3
A=13192

is a system of micro scale Cartesian coordinates. In addition, as stated above, we3193

consider that the constituents of the heterogeneous material are isotropic, which3194

implies that the non zero components of the 6×6 symmetric matrix representation3195

of C are given by3196

[C ]11 = [C ]22 = [C ]33 = λ+ 2µ, (4.75a)
[C ]12 = [C ]13 = [C ]23 = λ, (4.75b)
[C ]44 = [C ]55 = [C ]66 = 1

2([C ]11 − [C ]12) = µ, (4.75c)

where λ and µ are Lamé’s parameters. We suppose that C is piece-wise constant,3197

which means that λ and µ are defined as3198

λ(Y3) =
⎧⎨⎩λ1, in Y1

0

λ2, in Y2
0

and µ(Y3) =
⎧⎨⎩µ1, in Y1

0

µ2, in Y2
0
. (4.76)

Furthermore, we consider that γ has the same value in both constituents, which3199

means that it is already averaged.3200

(iii) Plastic-like distortions We assume that the matrix representation of the3201

tensor F (0)
p is diagonal with non-zero components [F (0)

p ]11 = 1√
p
, [F (0)

p ]22 = 1√
p

and3202

[F (0)
p ]33 = p, where p is defined as the remodelling parameter. Furthermore, we3203

restrict our investigation to the simpler case of F (0)
p depending solely on X3. This3204

means that, the plastic-like distortions of order ε0 are, in a sense, already averaged,3205

and thus variable from one cell to the other, not inside them. In other words, we3206

are interested in the production of distortions in the tissue starting from the cell3207

scale, rather than from the cell’s micro structure. This, of course, does not mean3208

that the cell’s micro structure does not change.3209
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Together the with assumption (ii), we find that the 6 × 6 matrix representation3210

of the elasticity tensor, pulled-backed to the reference configuration, is symmetric,3211

and its non-zero components are given by3212

[CR]11 = [CR]22 = (λ+ 2µ)p2, [CR]33 = (λ+ 2µ)p−4, (4.77a)
[CR]12 = λp2, [CR]44 = [CR]55 = µp−1, (4.77b)
[CR]13 = [CR]23 = λp−1, [CR]66 = µp2. (4.77c)

We remark that CR depends on X3 and time through p, whereas it inherits the3213

dependence of C on the micro-scale variable, Y3.3214

(iv) Initial and boundary conditions In the present context, we impose3215

Dirichlet conditions for u(0) on the whole boundary ∂Bh, i.e. we do not consider3216

a Neumann condition and therefore, ∂uBh ≡ ∂Bh. We note that, although the3217

homogenisation process was developed for mixed boundary conditions, the whole3218

procedure stands, since the type of boundary conditions does not play a role in the3219

derivation of the homogenised model. In particular, we set [u(0)]3 = 0 at X3 = 0,3220

and [u(0)]3 = uLt
tf

at X3 = L, where uL is a target value for the displacement in the3221

direction E3. Moreover, we enforce an initial spatial distribution for the remod-3222

elling parameter p as p in(X3) = α+β cos( π
L
X3), where α and β are constants, such3223

that pin(X3) is always strictly positive.3224

4.7.1 Discussion of the numerical results3225

Given the above considerations, we solve the following homogenised equations3226

for u(0) and p,3227

− ∂

∂X3
([Ĉ R]i3n3

∂[u(0)]n
∂X3

) = ∂[D̂R]i3
∂X3

, for i = 1,2,3, (4.78a)

⟨[C(0)
lin ]33⟩

∂p

∂t
= γ

3 ⟨dev(Σ(0)
lin )⟩p− γ⟨[CR]33nn[Ep]nn([C(0)

lin ]33 − 1)⟩p, (4.78b)

The coefficients [Ĉ R]ijkl, [D̂R]ij and [C(0)
lin ]ij are given by Equations (4.47a), (4.47b)3228

and (4.62), respectively, and are to be found by solving the auxiliary cell problems3229

for ξ and ω, given by3230

− ∂

∂Y3
([Q]i3i3

∂[ξ]ik3

∂Y3
) = ∂[Q]i3i3

∂Y3
δik, for i, k = 1,2,3, (4.79a)

− ∂

∂Y3
([Q]i3i3

∂[ω]i
∂Y3

) = −∂[Q]33

∂Y3
δi3, for i = 1,2,3, (4.79b)

with3231

[Q]i3i3 = [CR]i3i3 − [Q]33, [Q]33 = [CR]33nn[Ep]nn. (4.80a)
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In this work, we are not interested to address a real world situation. Our3232

aim is, instead, to show how the present theoretical framework can be numerically3233

simulated. For this reason, the parameters used in our computations are arbitrarily3234

chosen (see Table 4.1).3235

Parameter Unit Value Parameter Unit Value

L [cm] 28.000 λ1 [Pa] 1.00
uL [cm] 1.0000 λ2 [Pa] 2.00
γ [1/s] 1.0000 µ1 [Pa] 0.10
α [−] 1.0035 µ2 [Pa] 0.06
β [−] −0.0035 t0 [s] 0.00
N [−] 4.0000 tf [s] 10.0

Table 4.1: Parameters used in the numerical simulations.

In Fig. 4.2, it is plotted the time evolution of the remodelling parameter p at two3236

different points of the macroscopic domain, that is at X3 = 7 cm and X3 = 21 cm.3237

We observe that the evolution of p is quite different at these two points. Indeed,3238

at X3 = 21 cm, p increases and it is always greater than one. On the contrary,3239

at X3 = 7 cm, it is monotonically decreasing and tends to be lower than one. In3240

Fig. 4.3, we show the spatial profile of the effective coefficients [Ĉ ]33, [Ĉ R]33 and3241

[D̂R]33. The effective coefficient [Ĉ ]33 (see Remark 4.5.1) can be computed by using3242

the analytical formula (see e.g. [177, 207]),3243

[Ĉ ]ijkl = ⟨[C ]ijkl − [C ]ijp3([C ]p3s3)−1[C ]s3kl⟩
+ ⟨[C ]ijp3([C ]p3s3)−1⟩⟨([C ]s3t3)−1⟩−1⟨([C ]t3m3)−1[C ]m3kl⟩. (4.81)

Figure 4.2: Evolution of the remodelling parameter p at two different points (X3 =
7 cm and X3 = 21 cm) of the macroscopic domain.

We observe that even if a loading ramp condition has been imposed on u(0) at3244

the border X3 = L, the effective coefficient [Ĉ ]33 does not vary on time. This is3245

105



An Asymptotic Homogenisation Approach to the micro-structural evolution of heterogeneous media

because, in contrast to the case in which the plastic-like distortions are accounted3246

for, the cell and homogenised problems (cf. (4.48) and (4.49)) are decoupled. On3247

the other hand, the pulled-back effective coefficients [Ĉ R]33 and [D̂R]33, given by3248

Equations (4.47a) and (4.47b), respectively, do change in time since their equations3249

are coupled with an evolution one and, as it can be observed, they are strongly3250

influenced by the initial distribution of p. In fact, at the spatial point X3 = 21 cm,3251

that is, when p > 1, [Ĉ R]33 decreases and [D̂R]33 increases with time. The contrary3252

occurs at X3 = 7 cm, i.e. when p < 1.3253

Figure 4.3: Spatial distribution of the effective coefficients [Ĉ ]33, [Ĉ R]33 and [D̂R]33
at different time instants.

Additionally, in Fig. 4.4 it is illustrated the third component of the macro-3254

scopic leading order term of the displacement uε at three different time instants.3255

Particularly, we plot the numerical solution of the homogenised problems (4.46)3256

and (4.49), represented with [u(0)
R ]3 and [u(0)]3, respectively. We note that, as ex-3257

pected from our election of the boundary condition, the displacement component3258

increases monotonically in time. However, we notice that the introduction of the3259

plastic-like distortions has a direct impact on the displacement distribution in the3260

interior macroscopic points. Specifically, in these points the displacement has a3261

higher magnitude.3262

The situation described in our numerical simulations, although simplified, could3263

be a good starting point in the study of the remodelling of biological tissues. For3264

example, the geometrical properties of bone’s osteons permit to model them as3265

layered composites (see e.g. [205]).3266

4.8 Concluding remarks3267

In the present work, we studied the dynamics of a heterogeneous material, con-3268

stituted by two hyperelastic media with evolving micro-structure, by the application3269

of the asymptotic homogenisation technique. The evolution of the micro-structure3270

of the composite media was characterized through the development of plastic-like3271

distortions, which were described by means of the BKL decomposition.3272
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Figure 4.4: Spatial distribution of the macroscopic leading order term of the dis-
placement with remodelling ([u(0)

R ]3) and without remodelling ([u(0)]3).

The asymptotic homogenisation method was applied to a set of problems com-3273

prising a scale-dependent, quasi-static law of balance of linear momentum and an3274

evolution law for the tensor of plastic-like distortions. After obtaining the local and3275

homogenised problems, we rewrote them by considering the De Saint-Venant strain3276

energy density within the limit of small deformations. Although the selection of3277

the strain energy density was due to its simplicity, it is helpful for the description3278

of remodelling processes undergoing small deformations. For instance, this could3279

be the case for describing bone ageing. Then, the theoretical setting developed3280

in the present work is applicable (Elastoplasticity is actually quite appropriate to3281

model the bone [209]). In such a case, appropriate constitutive laws describing the3282

progression of the material properties should be found based on experimental liter-3283

ature (e.g. [118]). Nevertheless, for studying a larger range of problems, we need to3284

select nonlinear constitutive laws and write the corresponding cell and homogenised3285

problems.3286

As a consequence of the introduction of the tensor of plastic distortions, two3287

independent cell problems were inferred, which reduce to the classical cell problems3288

encountered in the homogenisation of linear problems in Elastostatics. Moreover,3289

we proposed an evolution equation for the inelastic distortions describing a remod-3290

elling process. Such evolution law models a stress-driven production of inelastic3291

distortions, as the one that is often encountered in studies of inelastic processes3292

constructed on the decomposition given by (4.5) [218]. The evolution law is suit-3293

able for the case of finite strain Elastoplasticity, and for the case of remodelling3294

of biological tissues. Finally, we outlined a computational procedure in order to3295

solve the up-scaled problems and we performed numerical simulations for a par-3296

ticular case of a layered composite body. Besides, we assumed that the leading3297

order term of the asymptotic expansion of the tensor of plastic distortions, F (0)
p ,3298

depends only on the macro-scale variable X. This consideration, however, might be3299

relaxed by allowing F (0)
p to take into account the heterogeneities of the composite3300
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material through the microscopic spatial variable Y . The numerical results showed3301

the influence of the plastic-like distortions on both the effective coefficients and the3302

macroscopic leading order term of the displacement.3303

As future work, we intend to deal with the resolution of a particular problem,3304

like for instance the modelling of bones [159], tumour growth [200, 10, 144, 166,3305

204, 206], or tissue ageing [68]. A further step could be the study, with the aid3306

of the Homogenisation Theory, of the coupling between the results presented in3307

this work and the fluid flow in a hydrated tissue, or in the case of wavy laminar3308

structures.3309

In summary, we answer the research questions 4.1—4.3 in the following way3310

• The macro-scale model and the auxiliary cell problems derived in this chap-3311

ter require specific methods to be numerically solved. In particular an algo-3312

rithm taken from the literature proved to be useful of our scopes. Such a3313

computational algorithm, named Generalised Plasticity Algorithm (GPA) is3314

introduced in [116] to study the remodelling occurring biological tissues.3315

• We obtain two auxiliary cell problems and a homogenised problem, which are3316

coupled with each other, thereby establishing a major difference with the stan-3317

dard problems solve by means of the Asymptotic Homogenisation Technique.3318

Such a coupling is determined by the presence of the remodelling tensor and3319

its dependence on the macro-scale variable. Note that, in the simpler case3320

in which F (0)
p is a function of time only, it is possible to decouple the cell3321

problems from the homogenised one. Also in this situation, the problems at3322

hand are time dependent, because of the time evolution of F (0)
p , prescribed3323

by an evolution law.3324

• Even when the individual constituents of a given composite material are3325

isotropic, the effective elastic coefficients may turn out to be anisotropic,3326

depending on the geometric properties of the micro-structure. This has no-3327

ticeable repercussions also on the evolution law that should be chosen for a3328

correct description of remodelling. In this sense, the evolution law should3329

comply with such an effective anisotropy. An example of an evolution of this3330

kind is given in Eq. (4.52), whose homogenised version in given in Eq. (4.61).3331

3332
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Chapter 53333

Self-influenced growth through3334

evolving material inhomogeneities3335

The work reported in this chapter has been previously published in [62].3336

5.1 Growth-induced inhomogeneities3337

We reformulate a model of avascular tumour growth in which the tumour tissue3338

is studied as a biphasic medium featuring an interstitial fluid and a solid phase. The3339

description of growth relies on two fundamental features: One of those is given by3340

the mass transfer among the constituents of the phases, which is taken into account3341

through source and sink terms; the other one is the multiplicative decomposition3342

of the deformation gradient tensor of the solid phase, with the introduction of3343

a growth tensor, which represents the growth-induced structural changes of the3344

tumour.In general, such tensor is non-integrable, and it may allow to define a Levi-3345

Civita connection with non-trivial curvature.Moreover, its evolution is related to3346

the source and sink of mass of the solid phase through an evolution equation. Our3347

goal is to study how growth can be influenced by the inhomogeneity of the growth3348

tensor. To this end, we study the evolution of the latter, as predicted by two different3349

models. In the first one, the dependence of the growth tensor on the tumour’s3350

material points is not explicitly considered in the evolution equation. In the second3351

model, instead, the inhomogeneity of the growth tensor is resolved explicitly by3352

introducing the curvature associated with it into the evolution equation. Through3353

numerical simulations, we compare the results produced by these two models, and3354

we evaluate a possible role of the material inhomogeneities on growth.3355

Because of its repercussion on public health, the study of tumour growth is a3356

very active research field, to which mathematical modelling can give an important3357

contribution [16, 2, 94]. A rather standard approach is to answer specific questions3358

at each scale of interest by formulating dedicated models. These can be based on3359
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Statistical Mechanics [119], Kinetic Theories [26, 36, 37, 164, 212], and Continuum3360

Mechanics [13, 142] (and references therein), depending on whether the given prob-3361

lem involves the molecular, cellular, or the tissue scale. One of the main challenges,3362

however, is to understand the complexes of phenomena that contribute to initiate3363

the sprouting of a tumour, and to bridge across the physical scales at which they3364

occur. The difficulty arises, for instance, when different types of models, conceived3365

for different scales and disciplines, have to be combined efficiently, and solved si-3366

multaneously.3367

Within the framework of Continuum Mechanics, the search for the multi-scale3368

and interdisciplinary approach outlined above is put into action by formulating3369

multiphasic models of tumour growth (see e.g. [38, 200, 11, 110, 18, 182]). In such3370

models, growth is described as the mass variation of the solid phase of the tumour3371

at the expenses of its fluid constituents, and the mass variation is often viewed as3372

the result of the cooperation of both chemical ad mechanical factors [14].3373

As long as tumour growth is concerned, the hypothesis is often made that the3374

growth tensor is a pure dilatation [230, 180], thereby depending on one parameter3375

only, denoted by γ and referred to as “growth parameter” in the sequel. In such3376

cases, one has to supply an evolution law for γ (see e.g. (5.11b) below), which trans-3377

lates the mass balance law for the tissue’s solid phase into a kinematic constraint3378

on γ itself [166, 10, 8, 105]. When this line of thought is followed, the evolution of3379

the growth tensor is entirely dictated by the law describing the variation of mass3380

of the tissue, denoted by rs in our notation.3381

Since rs is related to the rate of change of γ, the problem arises to determine3382

a generalised force that is conjugate to the variation of γ and that, thus, triggers3383

growth. However, since rs is almost always assigned on the basis of biological obser-3384

vations (see e.g. [10, 8]), which may be phenomenological or “micro-mechanically3385

motivated” [13], it may not be possible to identify mechanical stress with the “driv-3386

ing force” that moves the growth-related distortions (i.e., the inhomogeneities, in3387

the jargon of [72, 66]). This is, in fact, a relevant difference with elastoplasticity,3388

in general, and with the models put forward in [72, 183], in which stress plays a3389

central role. Indeed, it should be emphasised that the growth of a tumour may3390

occur also in the absence of stress, whereas it strongly depends on the presence of3391

nutrients, and may result in a loss of mass when these are unavailable. Still, stress3392

may contribute to modulate the way in which the mass change takes place [166,3393

135]. Perhaps, we might say that, whereas stress is the “starring character” of pure3394

remodelling (be it growth-induced or not), as it can be the trigger of the changes3395

of the tissue’s structure, it is somehow “downgraded” to a modulating factor in the3396

case of pure growth.3397

A rather different approach is suggested in [66], where the concept of “self-3398

driven” inhomogeneities is introduced. The underlying idea, framed within the3399

theory of defects in solids, could be rephrased as follows. Assume to have an in-3400

homogeneous solid medium with a non-uniform distribution of defects, which can3401
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be modelled as incompatible distortions, and thus associated with Fγ. Assume, in3402

addition, that the defects interact with each other, and that the strength of their3403

mutual interaction is accounted for by the variability of Fγ (i.e., the more Fγ varies,3404

the stronger the interaction is). Then, to adhere to Epstein’s statement [66]:3405

“The evolution is intrinsic or self-driven if [...] the inhomogeneity3406

moves just by virtue of its being there, perhaps in its effort to relax3407

itself ”3408

we claim that the spatial variability of Fγ is sufficient to initiate a spontaneous3409

evolution of Fγ in time.3410

In our work, we formulate a model of tumour growth based on the theory3411

presented in [66, 166]. We are interested in quantifying how, and to what extent,3412

the inhomogeneities produced by growth influence the spatio-temporal evolution of3413

γ. For this purpose, we propose a model that merges the quasi-phenomenological3414

definition of rs supplied in [166] with the concept of “self-driven” distortions put3415

forward in [66]. The underlying idea is that the functional form of the source/sink of3416

mass rs should be modified by introducing a term that takes explicitly into account3417

the scalar curvature, κγ, associated with R. Our motivation for undertaking this3418

task, inspired by [66], is to give a possible answer to the following question:3419

Let us “prepare” the tissue in some grown configuration, with initial3420

distribution of γ, γin, corresponding to nonzero curvature, κγin. Then,3421

giving for granted that growth produces inhomogeneities [72, 66], what3422

is the impact of the initial inhomogeneities on the growth of the tissue3423

in the subsequent instants of time?3424

3425

5.2 A model of tumour growth3426

5.2.1 Growth and curvature3427

In this work, Fγ is assumed to induce the Riemannian metric tensor3428

Cγ = Fγ
T.Fγ, (5.1)

with is said to be the growth metric tensor. As pointed out in [197], Cγ induces a3429

Levi-Civita connection with non-trivial curvature [235, 236]. To see this, we first3430

construct the Christoffel symbols of the connection, which, for a given coordinate3431

system, are given by [165]3432

ΓA
MN = 1

2(C−1
γ )AB

[︄
∂(Cγ)BN

∂XM
+ ∂(Cγ)BM

∂XN
− ∂(Cγ)MN

∂XB

]︄
, (5.2)
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and are symmetric in the lower indices, thereby implying the vanishing of the torsion3433

[165], i.e.,3434

Tor = (ΓA
MN − ΓA

NM)EA ⊗ EM ⊗ EN = 0. (5.3)

Then, we compute the fourth-order curvature tensor generated by Cγ, i.e., R =3435

RA
BMNEA ⊗ EB ⊗ EM ⊗ EN , whose components read [235, 236, 165]3436

RA
BMN = ∂ΓA

BN

∂XM
− ∂ΓA

BM

∂XN
+ ΓA

MDΓD
BN − ΓA

NDΓD
BM . (5.4)

Moreover, by contracting the first and the third index of R, we obtain the Ricci3437

curvature tensor,3438

R = RBNEB ⊗ EN = RD
BDNEB ⊗ EN , (5.5)

and, by double-contracting R with C−1
γ , we determine the scalar curvature associ-3439

ated with growth, i.e.,3440

κγ = R : C−1
γ . (5.6)

5.3 A model of tumour growth3441

We report on a mathematical model of tumour growth that, in spite of two im-3442

portant differences, largely follows the path designated in [166]. The first difference3443

concerns the benchmark problem that we solve, whose geometry is much simpler3444

than the one used therein. This choice is due to the fact that we are interested3445

here in purely modelling issues The second difference concerns the definition of the3446

source/sink term rs.3447

5.3.1 Growth and balance laws3448

By adhering to the model of tumour growth developed in [166], we describe3449

a tumour in avascular stage as a biphasic medium comprising a solid and a fluid3450

phase. At each point of the tissue, the amount of solid is measured by means of the3451

apparent mass density φsϱs, where φs and ϱs are said to be solid volumetric fraction3452

and true mass density, respectively. Analogously, the amount of fluid is determined3453

by the apparent density φfϱf , with φf and ϱf being the volumetric fraction and true3454

mass density, respectively. We recall that the true mass density of one of the phases3455

constituting a mixture is the intrinsic mass density of the considered phase. In3456

other words, it is the density that the phase would have if it were present in the3457

mixture with unitary volumetric fraction. For this reason, the true mass density of3458

a phase expresses its mass per unit volume of the phase itself, whereas the apparent3459

mass density expresses the phase mass per unit volume of the mixture as a whole.3460
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Within our biphasic model, the tumour represents a saturated porous medium,3461

so that the condition φf = 1 −φs applies. Moreover, the fluid is assumed to feature3462

only two constituents: nutrients, with mass fraction ωN, and “water”, with mass3463

fraction ωw = 1 − ωN. We hypothesise that ωN is very small, so that the mass3464

density of the fluid, ϱf , can be regarded as constant, and approximately equal to3465

the mass density of water. What we call “water” here is, in fact, a fluid comprising3466

several substances, among which the constituents of the dead cells that return to3467

the fluid in order to be expelled.3468

For simplicity, we prescribe that the solid phase consists of two types of cells3469

only: the proliferating cells, with mass fraction ωp, and the necrotic cells, with mass3470

fraction ωn = 1 − ωp. The former ones describe the gain of mass of the tissue in3471

response to the consumption of the nutrients. However, they become necrotic when3472

the nutrients fall below a given threshold. The necrotic cells, in turn, are absorbed3473

by the fluid, thereby accounting for the tissue’s loss of mass due to cell death. In our3474

model, the transition of a cell from the proliferating to the necrotic stage preserves3475

the mass density of the cells. Hence, ϱs is independent of the composition of the3476

solid phase, and may be regarded as constant, in spite of the fact that the mass3477

fractions of the solid constituents may change in space and time [38, 166, 105].3478

To account for the gain and loss of mass pertaining to the proliferating and3479

necrotic cells, we introduce their mass balance laws, which we write under the3480

hypothesis that both types of cells move with the same velocity vs, i.e., the solid3481

phase velocity. By extending the model developed in [166], we write such balance3482

laws as3483

∂t(φsϱsωp) + div(φsϱsωpvs) = rpn + rfp + rpγ, (5.7a)
∂t(φsϱsωn) + div(φsϱsωnvs) = rnp + rnf + rnγ, (5.7b)

where rpn, rfp, rnp, rnf , rpγ, and rnγ denote the rates of mass uptake or depletion3484

for the solid constituents. In particular, rpn describes the portion of proliferating3485

cells that, per unit volume and unit time, is converted into necrotic cells. In turn,3486

rnp is the rate at which the necrotic cells are generated at the expenses of the3487

proliferating ones, so that the condition rpn + rnp = 0 is respected. Moreover, rfp3488

measures the growth of the proliferating cells due to the presence of nutrients, while3489

rnf represents the depletion of the necrotic cells in the fluid. We remark that rpn,3490

rfp, rnp, and rnf address processes that are at the basis of tumour evolution and, in3491

this respect, their physical interpretation is rather intuitive. On the contrary, rpγ3492

and rnγ are introduced to investigate possible consequences of the properties of F γ3493

on growth itself. In other words, their task is to establish a feed-back loop among3494

growth, the distortions that it generates, i.e., F γ, and the influence of those on the3495

mass exchange terms. To the best of our knowledge, the presence of rpγ and rnγ3496

in (5.7a) and (5.7b) is a novelty in the framework of mathematical modelling of3497

tumour growth.3498
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Since the mass fraction of the necrotic cells can be written as ωn = 1 − ωp,3499

Equation (5.7b) can be replaced by the mass balance law of the solid phase as a3500

whole. Indeed, by adding together (5.7a) and (5.7b), we obtain [166]3501

∂t(φsϱsωp) + div(φsϱsωpvs) = rpn + rfp + rpγ, (5.8a)
∂t(φsϱs) + div(φsϱsvs) = rs, (5.8b)

where rs = rfp +rnf +rpγ +rnγ is the overall source/sink of mass for the solid phase.3502

In general, this term can be diverted into changes either of density or of volume. In3503

this work, since ϱs is constant, rs is diverted into changes of volume. To show this,3504

we perform the backward Piola transformation of (5.8a) and (5.8b) by multiplying3505

both equations by J = det F . Then, by splitting J as J = JeJγ, with Je = det Fe3506

and Jγ = det Fγ, we obtain3507

JγΦsνϱsω̇p = J [rpn + rfp rpγ − ωprs], (5.9a)

(JγΦsνϱs)̇ = Jrs = J [rfp + rnf + rpγ + rnγ], (5.9b)

where Φsν := Jeφs is the volumetric fraction of the solid phase expressed per unit3508

volume of the intermediate, stress-free configuration. We require now that Φsν is3509

constant in time. Since ϱs is constant too, the left-hand-side of (5.9b) is proportional3510

to J̇γ = Jγtr[ḞγFγ
−1]. Hence, (5.9a) and (5.9b) become3511

ω̇p = J [rpn + rfp + rpγ − ωprs]
JγΦsνϱs

, (5.10a)

tr[ḞγFγ
−1] = J [rfp + rnf + rpγ + rnγ]

ΦsνϱsJγ

. (5.10b)

In general, besides varying the mass of a tissue, growth may also induce isochoric3512

distortions. Accordingly, Fγ can be written as Fγ = [det Fγ]1/3F̄γ, where [det Fγ]1/3
3513

measures the tissue’s volume changes, and F̄γ is a volume-preserving tensor field3514

that keeps track of the tissue’s remodelling at constant mass. Thus, by adopting3515

the notation γ ≡ [det Fγ]1/3, we obtain [166]3516

ω̇p = J [rpn + rfp + rpγ − ωprs]
JγΦsνϱs

, (5.11a)

γ̇

γ
= J [rfp + rnf + rpγ + rnγ]

3ΦsνϱsJγ

. (5.11b)

Remark 5.3.1. The hypothesis of constant true mass density of the solid phase is3517

due to the fact that such phase is considered to be a representation of the tissue’s3518

cells. These, in turn, are essentially made of water, whose mass density is constant3519

in the biophysical range relevant to our work. It follows, thus, that also ϱs can be3520
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safely assumed to be constant. However, if this assumption is relaxed, Eq. (5.8b)3521

can be recast in the form3522

φsϱṡ + φsϱsdivvs = rs, (5.12)

and, by exploiting the identity J̇ = J(divvs), one can write3523

Jφ̇sϱs + Jφsϱ̇s + J̇φsϱs = Jrs. (5.13)

Since it holds that J̇ = J̇eJg + JeJ̇γ = Jtr[Le] + Jtr[Lγ], with Le = Ḟ eF
−1
e and3524

Lγ = Ḟ γF−1
γ , one obtains3525

Jφ̇sϱs + Jφsϱ̇s + Jφsϱstr[Le] + Jφsϱstr[Lγ] = Jrs. (5.14)

Moreover, we require tr[Lγ] = rs/(φsϱs), so that (5.14) becomes3526

φ̇sϱs + φsϱ̇s + φsϱstr[Le] = 0, (5.15)

which can be equivalently rearranged as Jeφsϱs
̇ = 0. Thus, only the product φsϱs,3527

which individuates the mass density of the solid phase, is constant in time. Without3528

loss of generality, it can be expressed with respect to the natural state, i.e., for3529

Je = 1, as3530

Jeφsϱs = Φsνϱs0, (5.16)

where Φsν is the volumetric fraction in the natural state, and ϱs0 denotes a constant3531

reference value of the solid phase mass density. Equation (5.16) implies that φsϱs3532

is a function of the elastic part of the overall deformation gradient tensor through3533

Je. In this case, ϱs can be either treated as an independent variable of the theory or3534

specified through a state law. If the first option is chosen, the model necessitates an3535

additional equation determining the volumetric fraction (cf. e.g. [27, 215, 217]). If,3536

instead, the second choice is made, and one assumes that ϱs is a constitutive function3537

e.g. of the composition of the solid phase, one obtains3538

φs = Φsν ϱ̂s(ωp0)
Jeϱ̂s(ωp) = JγΦsν ϱ̂s(ωp0)

Jϱ̂s(ωp) . (5.17)

Here, ϱ̂s(ωp) is the constitutive representation of the true mass density of the solid3539

phase. As anticipated above, it is specified as a function of the composition of the3540

solid phase, which, within our model, is determined by the amount of proliferant3541

and necrotic cells. Since it holds that ωp + ωn = 1, it suffices to use only one of the3542

two mass fractions ωp and ωn to characterise the composition. Upon choosing ωp,3543

we let ϱ̂s depend on ωp only, and we take ωp0 as a reference value for ωp.3544
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In conjunction with (5.11a) and (5.11b), also the mass balance laws of the3545

nutrients and the fluid phase as a whole need to be studied3546

∂t(φfϱfωN) + div(φfϱfωNvf + yN) = rNp, (5.18a)
∂t(φfϱf) + div(φfϱfvf) = −rs. (5.18b)

In (5.18a) and (5.18b), vf is the velocity of the fluid, yN is the mass flux vector3547

associated with the motion of the nutrients relative to the fluid phase, and rNp is3548

the rate at which the nutrients are “eaten” by the proliferating cells. We remark3549

that, to ensure the conservation of the mass of the biphasic medium under study,3550

the right-hand-side of (5.18b) is taken equal to the negative of rs.3551

After some calculations, (5.18a) and (5.18b) can be rephrased as3552

φfϱf ω̇N + ϱfq gradωN + divyN = rNp + ωNrs, (5.19a)

div q + div vs =
(︄

1
ϱs

− 1
ϱf

)︄
rs, (5.19b)

where q = φf [vf − vs] is said to be filtration velocity. Finally, (5.19a) and (5.19b)3553

can be pulled-back to the reference configuration, thereby obtaining3554

(J − JgΦsν)ϱf ω̇N + ϱfQ GradωN + DivY N = J [rNp + ωNrs], (5.20a)

Div Q + J̇ =
(︄

1
ϱs

− 1
ϱf

)︄
Jrs, (5.20b)

where Q = JF−1q is the material filtration velocity, and Y N = JF−1yN is the ma-3555

terial mass flux vector of the nutrients. Under the hypothesis of validity of Darcy’s3556

law for the fluid, and of Fick’s law for the nutrients, Q and Y N read Q = −KGrad p3557

and Y N = −ϱfDGradωN, with K = JF−1kF−T being the material permeability,3558

p the pore pressure, and D = JF−1dF−T the material diffusivity tensor of the3559

nutrients in water. The tensors K and D are the backward Piola transforms of the3560

spatial permeability, k, and of the spatial diffusivity, d, respectively.3561

To conclude, we introduce the momentum balance law for the biphasic medium3562

as a whole, which we write directly in material form (see [166] for details), i.e.,3563

Div
(︂
−Jp g−1F−T + Psc

)︂
= 0, (5.21)

where Psc is referred to as the constitutive part of the first Piola-Kirchhoff stress3564

tensor of the solid phase.3565

5.3.2 Constitutive laws3566

In this work, the tumour tissue is assumed to be isotropic, and, for simplicity,3567

k and d are taken “unconditionally isotropic” [19], which means that they are3568
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both proportional to the inverse metric tensor g−1. Hence, we write k = k0g
−1 and3569

d = d0g
−1, where k0 is given in the form of the Holmes-Mow scalar permeability [19,3570

138], and d0 is defined as a function of J and Jγ through the fluid phase volumetric3571

fraction, i.e.,3572

k0 = k0R

[︄
Φsνφf

φf0φs

]︄m0

exp
(︄
m1

2

[︄
J2 − J2

γ

J2
γ

]︄)︄

= k0R

[︄
J − JγΦsν

Jγφf0

]︄m0

exp
(︄
m1

2

[︄
J2 − J2

γ

J2
γ

]︄)︄
, (5.22a)

d0 = φfd0R = J − JγΦsν

J
d0R. (5.22b)

In (5.22a), φf0 = 1 − Φsν is a reference value of the fluid phase volumetric fraction,3573

m0 and m1 are constant material coefficients, and k0R is said to be the reference3574

permeability of the medium. This quantity is assumed to be a constant in this work,3575

even though it should be defined as a function of material points in a more general3576

setting. The factor d0R in (5.22b) is the reference diffusivity, which, for simplicity,3577

is assumed here to be constant. This condition, in fact, may be violated when the3578

nutrient mass fraction, ωN, is sufficiently greater than zero, in which case d0R should3579

be defined as a function of ωN.3580

By substituting (5.22a) and (5.22b) into the definitions of k and d, and the cor-3581

responding results into the expressions of the material permeability and diffusivity,3582

we find3583

K = Jk0C
−1, (5.23a)

D = (J − JγΦsν)d0RC−1. (5.23b)

Besides being isotropic, the solid phase of the tissue is assumed to be hyperelas-3584

tic. Hence, its mechanical behaviour can be described by means of a strain energy3585

density function, W , which we express per unit volume of the reference configura-3586

tion. To account for the variation of internal structure induced by growth, W is3587

given in terms of a constitutive function, W̃ , of F , Fγ, and material points, X. The3588

purely elastic contribution of the material to the overall energy can be measured3589

by introducing the energy density Wν , defined per unit volume of the stress-free3590

configuration, whose associated constitutive representation, W̃ν , depends on F and3591

Fγ exclusively through Fe. Hence, we write [72] (see also [53] for details)3592

W = JγWν , W̃(F ,Fγ, X) = JγW̃ν(Fe). (5.24)

For W̃ν(F e), we choose a constitutive law of the Holmes-Mow type [138], i.e.,3593

W̃ν(Fe) = Ŵν(Ce) = W̌ν(Î1(Ce), Î2(Ce), Î3(Ce))
= α0

{︂
exp(Ψ̂(Ce)) − 1

}︂
, (5.25a)
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Ψ̂(Ce) = Ψ̌(Î1(Ce), Î2(Ce), Î3(Ce))
= α1[Î1(Ce) − 3] + α2[Î2(Ce) − 3] − α3 ln

(︂
Î3(Ce)

)︂
, (5.25b)

where Ce = Fe
T.Fe is the elastic Cauchy-Green deformation tensor, Ŵν(Ce) is3594

introduced to comply with objectivity, and, to account for isotropy, the dependence3595

of W̌ν on Ce is expressed through the principal invariants3596

I1 = Î1(Ce) = tr
(︂
η−1Ce

)︂
, (5.26a)

I2 = Î2(Ce) = 1
2{[Î1(Ce)]2 − tr[(η−1Ce)2]}, (5.26b)

I3 = Î3(Ce) = det Ce. (5.26c)

Here, η is the metric tensor of the “intermediate configuration” and, by using the3597

equality Ce = F−T
γ CF−1

γ , it can be eliminated from (5.26a)–(5.26c), so that the3598

invariants can be rephrased as functions of C and Cγ. Finally, in (5.25b), the3599

material coefficients α0, α1, α2, and α3 are functions of Lamé’s elastic parameters3600

[225] (in particular, as in [138], we set α3 = 1), i.e.,3601

α0 = 2µ+ λ

4α3
, α1 = α3

2µ− λ

2µ+ λ
, α2 = α3

λ

2µ+ λ
, α3 = α1 + 2α2. (5.27)

Equations (5.24), (5.25a), (5.25b), and (5.26a)–(5.26c) permit to calculate the con-3602

stitutive part of the second Piola-Kirchhoff stress tensor of the solid phase:3603

Ssc = Ŝsc(C,Cγ) =
[︄
JγF−1

γ

(︄
2∂Ŵν

∂Ce
(Ce)

)︄
F−T

γ

]︄
= 2Jγb1C

−1
γ + 2Jγb2[I1C

−1
γ − C−1

γ CC−1
γ ] + 2Jγb3I3C

−1, (5.28)

with bi = ∂W̌ν/∂Ii, i ∈ {1,2,3}. Consequently, the first Piola-Kirchhoff stress tensor3604

Psc can be expressed constitutively as3605

Psc = P̂sc(F ,Cγ) = F Ŝsc(C,Cγ), (5.29)

and, thus, the constitutive part of the Cauchy stress tensor reads3606

σsc = σ̂sc(F ,Cγ) = J−1P̂sc(F ,Cγ)F T

= Jγ

J

{︂
2b1be + 2b2[I1be − be.be] + 2b3I3g

−1
}︂
, (5.30)

where be = F C−1
γ F T is the elastic right Cauchy-Green deformation tensor.3607
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5.3.3 Sources and sinks of mass3608

To model growth, it is necessary to describe the mass exchanges among the3609

constituents of the system under study. In our framework, this requires to provide3610

mathematical expressions for rfp, rpn, rnf , and rNp, and to relate each of these3611

quantities with the appropriate set of chemo-mechanical variables. For rpn, rnf , rNp3612

and rfp, we adopt the phenomenological expressions suggested in [166], which we3613

report here with slight changes of notation, i.e.,3614

rpn = −ζpn

⟨︃
1 − ωN

ωNcr

⟩︃
+
φsωp = −ζpn

⟨︃
1 − ωN

ωNcr

⟩︃
+

JγΦsν

J
ωp, (5.31a)

rnf = −ζnfφs[1 − ωp] = −ζnf
JγΦsν

J
[1 − ωp], (5.31b)

rNp = −ζNp
ωN

ωN + ωN0
φsωp = −ζNp

ωN

ωN + ωN0

JγΦsν

J
ωp, (5.31c)

rfp = ζfp

⟨︃
ωN − ωNcr

ωNenv − ωNcr

⟩︃
+

[︄
1 − δ1⟨σ̄⟩+

δ2 + ⟨σ̄⟩+

]︄
φfφs

φf0
ωp

= ζfp

⟨︃
ωN − ωNcr

ωNenv − ωNcr

⟩︃
+

[︄
1 − δ1⟨σ̄⟩+

δ2 + ⟨σ̄⟩+

]︄
J − JγΦsν

Jφf0

JγΦsν

J
ωp. (5.31d)

The terms rpn, rnf , and rNp are sinks of mass for the constituents to which they re-3615

fer. In particular, rpn represents the loss of mass of the proliferant cells that become3616

necrotic. The term rfp, instead, is a source of mass for the proliferant cells, and rep-3617

resents the mass gained by this population of cells at the expenses of the fluid. We3618

need to emphasise that both rpn and rfp represent processes whose occurrence is3619

strongly controlled by the availability of the nutrients in the tissue. To describe3620

mathematically the concept of “availability of the nutrients”, we introduce a criti-3621

cal value of the nutrient mass fraction, ωNcr ∈ ]0,1[, and we model the transfers of3622

mass associated with rpn and rfp as threshold processes. Accordingly, when it holds3623

that ωN ≤ ωNcr, the proliferant cells die, which means that rpn is active, while rfp is3624

switched off. On the contrary, for ωN > ωNcr, rpn must vanish identically, whereas3625

rfp is switched on. Such activation and deactivation of rpn and rfp is formulated3626

by means of the operator ⟨ · ⟩+, which returns the argument to which it is applied,3627

when the argument is greater than zero, and zero otherwise. Thus, it is introduced3628

to switch off cell death when the mass fraction of the nutrients, ωN, is above, or3629

equal to, the threshold level ωNcr ∈ ]0,1[, which is assumed to be a constant of the3630

model.3631

In our model, the coefficients ζpn, ζnf , ζNp and ζfp are constants, and can be3632

related to the characteristic time scales with which, respectively, the proliferating3633

cells die, the necrotic cells are converted into fluid, the nutrients are consumed and3634

the interstitial fluid becomes a tumour due to cell growth.3635

We notice that the sinks defined in (5.31a)–(5.31d) depend on the solid phase3636

volumetric fraction, φs = (JγΦsν)/J , in such a way that they vanish for vanishing3637
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φs. For the same reason, rpn must be zero for zero ωp, rNp must be zero when3638

ωp or ωN is zero, and rnf must be zero for unitary ωp, i.e., for zero ωn (indeed,3639

ωn = 1 − ωp). We remark, in addition, that the dependence of rNp on ωN is taken3640

from Population Dynamics [24], with the constant ωN0 ∈ ]0,1] being a reference3641

value of the nutrient concentration, introduced to modulate the rate at which their3642

uptake occurs. The dependence of rfp on φs and φf = 1 − φs guarantees that3643

growth ceases in the limit of compaction, i.e., when all the fluid flows away, and3644

the porous medium features no voids, or when the solid disappears, which means3645

that φs becomes zero. Besides, rfp vanishes for vanishing ωp, and is modulated by3646

stress through the term ⟨σ̄⟩+, where σ̄ is defined as3647

σ̄ = −1
3(g : σsc) = −

2
3
∑︁3

i=1 i biIi

Je
. (5.32)

We reserve now a separate treatment for the non-standard terms rpγ and rnγ.3648

In particular, for the sake of simplicity, we set rnγ = 0 and we prescribe rpγ as3649

rpγ = c

[︄
ζfp

ωN

ωNcr

φfφs

φf0
ωp

]︄
κγ = c

[︄
ζfp

ωN

ωNcr

J − JγΦsν

Jφf0

JγΦsν

J
ωp

]︄
κγ. (5.33)

With the formulation of rpγ given in (5.33), we assume that rpγ is proportional to3650

κγ through the factor c ζfp(ωN/ωNcr)(φfϱs)/φf0. In this work, the product c ζfp is3651

assumed to be constant and it represents, with respect to a suitable time scale, the3652

way in which the inhomogeneities induced by growth evolve in the tissue. Moreover,3653

as explained above for the standard terms (5.31a)–(5.31d), we need to account for3654

the limit cases in which compaction occurs (φf = 0) or the solid phase is locally3655

absent (φs = 0). In fact, we ensure that rpγ vanishes when φf or φs vanish. Finally,3656

we relate the availability of nutrients to growth. In fact, we prescribe that growth3657

does not take place if ωN = 0, and we modulate the growth rate through the3658

reference value ωNcr. This factor, indeed, is introduced to re-scale the current3659

mass fraction of the nutrients, ωN. In particular, the effect of κγ is amplified for3660

ωN > ωNcr, and reduced for ωN ≤ ωNcr.3661

For the sake of a lighter exposition, in the present work we suppress the rotations3662

related to growth, so that Rγ reduces to a shifter [165] from TB to TNt, and we3663

assume that Uγ represents a pure dilatation, i.e., we set Uγ = γI. This form of Uγ3664

also implies Jγ = γ3 and Cγ = γ2G, so that the material metric, G, is rescaled3665

by γ2. Hence, no remodelling is considered in this work, and growth is entirely3666

expressed in terms of an evolution law for γ, which, for given rfp and rnf , coincides3667

with (5.11b).3668

We emphasise that the introduction of κγ in our model of tumour growth is the3669

major novelty of our work, and it constitutes the principal difference with respect3670

to the model developed in [166]. The difference is in the fact that, while (5.11b) is3671

an ordinary differential equation in [166], it is a partial differential equation in our3672
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model. This feature of our approach allows for an explicit resolution of the spatial3673

variability of γ and, more importantly, it permits to estimate to what extent such3674

variability influences growth. In fact, going through the calculations leading to (5.6),3675

we notice that κγ features the derivatives of γ up to the second order. Hence, by3676

introducing rpγ into (5.11b), we obtain a nonlinear diffusion-reaction like equation3677

in the unknown γ. Solving this equation shows how the resolved spatial variability3678

of γ influences the evolution of the other model descriptors, i.e., the mass fraction of3679

the proliferating cells, the mass fraction of the nutrients, the motion, and pressure.3680

Looking at (5.11b), and combining it with the definitions (5.31b), (5.31d), and3681

(5.33), we notice that, when the mass fraction of the nutrients, ωN, is below the3682

threshold ωNcr (so that rfp = 0), we obtain3683

γ̇

γ
= c

[︄
ζfp

3ϱs

ωN

ωNcr

φf

φf0
ωp

]︄
κγ − ζnf

3ϱs
[1 − ωp]. (5.34)

In (5.34), indeed, the evolution of γ is governed by an affine function of κγ, and is3684

modulated by the mass fractions ωp and ωN. More generally, instead, when ωN is3685

above ωNcr, Equation (5.34) becomes:3686

γ̇

γ
=c

[︄
ζfp

3ϱs

ωN

ωNcr

φf

φf0
ωp

]︄
κγ − ζnf

3ϱs
[1 − ωp]

+ ζfp

3ϱs

⟨︃
ωN − ωNcr

ωNenv − ωNcr

⟩︃
+

[︄
1 − δ1⟨σ̄⟩+

δ2 + ⟨σ̄⟩+

]︄
φf

φf0
ωp. (5.35)

Equation (5.35) combines two models: The first two terms on the right-hand-side3687

of (5.35) are an adaptation of the model by Epstein [66] to our biphasic problem,3688

which requires the introduction of the mass fraction of nutrients and proliferating3689

cells as well as the volumetric fraction of the fluid phase. The last term, instead, is3690

taken from the model by Mascheroni et al. [166] and has phenomenological nature3691

in order to account for the fact that growth occurs when the mass fraction of the3692

nutrients, ωN, is greater than ωNcr, and it is modulated by stress.3693

Remark 5.3.2. Following [66], one could formulate a more general model, without3694

the a priori assumptions of no growth-induced rotations and Uγ = γI. In this3695

case, a possible evolution law for Fγ could be obtained by relating Ḟγ to a known3696

function of R and GradR [66]. Such an evolution law, however, is out of the scope3697

of this work. Therefore, for the moment, we simply neglect GradR in the evolution3698

law for Fγ, thereby keeping only its derivatives up to the second order. Moreover,3699

since in our framework it holds that Uγ = γI, we end up with model in which the3700

evolution of γ is a function of the scalar curvature, κγ, whereas it does not depend3701

on the spatial derivatives of γ of order higher than the second.3702
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5.4 Solution of a benchmark problem3703

5.4.1 Summary of the model3704

Before addressing the details of the considered benchmark problem, we sum-3705

marise the model equations, and declare the unknowns to be determined. In doing3706

this, we perform the following simplifications: (a) since the cells consist mainly of3707

water, the mass densities ϱs and ϱf are regarded as equal to each other, so that3708

the right-hand-side of (5.20a) is zero; (b) the advective term Q GradωN is consid-3709

ered to be negligible with respect to the other terms of (5.20a). In conclusion, the3710

model equations are given by (5.11a), (5.11b), (5.20a), (5.20b), and (5.21), which3711

we rewrite as3712

Div
[︂
−Jpg−1F−T + Psc

]︂
= 0, (5.36a)

J̇ − Div [KGrad p] = 0, (5.36b)

(J − γ3Φsν)ω̇N − Div [DGradωN] = J

(︄
rNp

ϱf
+ 3γ3 Φsν ωN

J

γ̇

γ

)︄
, (5.36c)

ω̇p = −ζpn

ϱs

⟨︃
1 − ωN

ωNcr

⟩︃
+
ωp + ζnf

ϱs
[1 − ωp] + 3[1 − ωp] γ̇

γ
, (5.36d)

γ̇

γ
= c

[︄
ζfp

3ϱs

ωN

ωNcr

J − γ3Φsν

J − JΦsν
ωp

]︄
κγ + J [rfp + rnf ]

3γ3Φsνϱs
, (5.36e)

where rnf , rNp, and rfp are defined in (5.31b), (5.31c), and (5.31d). Consistently3713

with (5.36a)–(5.36e), the unknown of the models are the motion of the solid phase,3714

χ, the pressure, p, the nutrient mass fraction, ωN, the growth parameter, γ, and3715

the mass fraction of the proliferating cells, ωp. Finally, K, D, and Psc are specified3716

in (5.23a), (5.23b), and (5.29), and all the material parameters are reported in3717

Table 5.1 and in Table 5.2.3718

5.4.2 Description of the benchmark test3719

As a proof of concept, we specialise now Equations (5.36a)–(5.36e) to a bench-3720

mark problem taken from the literature. For our purposes, we select the problem3721

of “isotropic and homogeneous growth inside a rigid cylinder”, formulated in [10]3722

for the case of mono-phasic growing medium, and we adapt it to our scopes.3723

Also in our formulation, the growth is isotropic, i.e., Uγ = γI, and takes3724

place inside a tissue specimen of cylindrical shape, with undeformable curved sur-3725

face. Hence, both the reference and the current configurations of the tissue have3726

cylindrical shapes, with equal radius and different lengths. We indicate by Rin3727

and L the initial radius and the initial length of the cylinder, respectively. More-3728

over, the reference configuration is covered with a system of cylindrical coordinates3729
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X̂ = (R,Θ, Z), where R, Θ, and Z are the radial, circumferential, and axial coor-3730

dinate, respectively. Analogously, the generic current configuration of the tissue is3731

covered with the system of cylindrical coordinates x̂ = (r, ϑ, z). Any rigid rotation3732

of the specimen about the axis of the cylinder is suppressed from the outset.3733

The restrictions imposed on χ imply that only the axial component of the mo-3734

mentum balance law (5.36a) has to be solved, and that the sole unknown component3735

of the motion is the axial one, χz, while the radial and circumferential ones, χr and3736

χϑ, return the radial and the angular coordinate, respectively.3737

The growth cannot be assumed to be homogeneous in our framework, as the3738

scalar curvature, κγ, would then be trivially zero, and our model would boil down3739

to a simple biphasic rephrasing of the model presented in [10]. On the contrary,3740

to highlight the role of κγ, we prescribe initial distributions of γ with a strong3741

gradient.3742

In [10], the two extremities of the considered cylinder are free of applied forces,3743

so that the axial component of stress is zero both at two outermost sections of3744

the cylinder and, because of homogeneity, everywhere else inside it. In our setting,3745

however, we may only conclude that the overall axial Cauchy stress, σzz = −p+σzz
sc3746

is zero, whereas the pressure, p, and the constitutive Cauchy stress, σzz
sc , cannot be3747

individually zero because of the point-dependent distribution of γ. In fact, they3748

can be such only in the limit in which the initial inhomogeneities relax, and the3749

conditions p = 0 and σzz
sc = 0 are the unique, stationary solutions to (5.36a) and3750

(5.36b). Further differences with [10] are due to the different constitutive relations3751

which we work with, and to the fact that our solid phase consists of two types of3752

cells.3753

To solve (5.36a)–(5.36e) compatibly with the descriptions given so far, we pre-3754

scribe the reference configuration of the tissue, B, to be of cylindrical shape, and3755

we assign the following set of boundary conditions, which apply for all times:3756

χr = Rin, on (∂B)C, (5.37a)
χϑ = Θ, on (∂B)C, (5.37b)
(−Jpg−1F−T + Psc).NA = 0, on (∂B)Left and (∂B)Right, (5.37c)
(−KGrad p).NC = 0, on (∂B)C, (5.37d)
p = 0, on (∂B)Left and (∂B)Right, (5.37e)
(−ϱfDGradωN).NC = 0, on (∂B)C, (5.37f)
ωN = ωNenv, on (∂B)Left and (∂B)Right, (5.37g)
(Gradγ)N = 0, on ∂B. (5.37h)

In (5.37a)–(5.37g), (∂B)C is the lateral boundary of the cylinder specimen, whereas3757

(∂B)Left and (∂B)Right are the left and the right surfaces at the extremities of B,3758

respectively, NA is the unit vector field normal to (∂B)Left and (∂B)Right, NC is3759

the unit vector field oriented normal to (∂B)C, and Rin is the initial radius of the3760
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cylinder. Furthermore, it holds that ∂B = (∂B)Left ∪ (∂B)Right ∪ (∂B)C, and that3761

N is the unit vector field normal to ∂B.3762

Before going further, we remark that the boundary conditions (5.37d) and3763

(5.37f) describe the situation in which (∂B)C, besides being undeformable, is3764

also impermeable to the fluid and to the nutrients. Finally, the Dirichlet condi-3765

tion (5.37g), with ωNenv kept constant in all calculations, means that the tissue3766

specimen finds itself in a “bath” of nutrients, which can flow through the boundary3767

surfaces (∂B)Left and (∂B)Right.3768

Together with (5.37a)–(5.37g), we enforce the initial conditions:3769

χr(R,Θ, Z,0) = R, χϑ(R,Θ, Z,0) = Θ, (5.38a)
χz(R,Θ, Z,0) = Z + uin(Z), (5.38b)
p(R,Θ, Z,0) = 0, (5.38c)
ωN(R,Θ, Z,0) = ωNenv, (5.38d)
γ(R,Θ, Z,0) = γin(Z), (5.38e)
ωp(R,Θ, Z,0) = 1, (5.38f)

which apply at all inner points of B. The way in which the problem is formulated3770

allows to infer that the deformation gradient tensor takes on the form F = er ⊗3771

ER+eϑ⊗EΘ+(1+u′)ez⊗EZ , where u is the axial displacement, the prime indicates3772

partial differentiation in the axial direction (i.e., u′ ≡ ∂u/∂Z), while {er, eϑ, ez}3773

and {ER,EΘ,EZ} are the vector basis and the co-vector basis generated by the3774

coordinate systems x̂ = (r, ϑ, z) and X̂ = (R,Θ, Z), respectively. It is understood3775

that R ∈ [0, Rin], Θ ∈ [0,2π[, and Z ∈
[︂
−1

2L,
1
2L
]︂
.3776

As a further simplification, we require that all the physical quantities involved3777

in the model are point-independent on each cross-section of the specimen, whereas3778

they do vary along the axis of the cylinder, i.e., they are point-dependent only3779

through the axial coordinate, Z. Therefore, the scalar curvature reads3780

κγ = 2(γ′)2 − 4γγ′′
γ4 = 6(γ′)2 − (4γγ′)′

γ4 , (5.39)

and the model equations simplify as reported below:3781

[(Psc)zZ ]′ = p′, (5.40a)

1 + u′̇ =
[︄

k0

1 + u′
p′
]︄′
, (5.40b)

[(1 + u′) − γ3Φsν ]ω̇N =
[︄(︄

(1 + u′) − γ3Φsν

(1 + u′)2 d0R

)︄
ω′N

]︄′

+ γ3Φsν

[︄
3 γ̇
γ
ωN − ζNp

ϱf

ωN

ωN + ωN0
ωp

]︄
, (5.40c)
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ω̇p = −ζpn

ϱs

⟨︃
1 − ωN

ωNcr

⟩︃
+
ωp + ζnf

ϱs
[1 − ωp] + 3[1 − ωp] γ̇

γ
, (5.40d)

γ̇

γ
= |c|

[︄
ζfp

3ϱs

ωN

ωNcr

(1 + u′) − γ3Φsν

(1 + u′)(1 − Φsν)ωp

]︄
4γγ′′ − 2(γ′)2

γ4

+ ζfp

3ϱs

⟨︃
ωN − ωNcr

ωNenv − ωNcr

⟩︃
+

[︄
1 − δ1⟨σ̄⟩+

δ2 + ⟨σ̄⟩+

]︄
(1 + u′) − γ3Φsν

(1 + u′)(1 − Φsν)ωp

− ζnf

3ϱs
[1 − ωp], (5.40e)

where we have set J = 1+u′, and k0 is defined in (5.22a). Equations (5.40a)–(5.40d)3782

are now put in weak form, and solved by employing the Finite Element Method. To3783

eliminate rigid motions along the axial direction, we introduce a Dirichlet point for3784

u at Z = 0, where we prescribe u(0, t) = 0 for all t. Finally, we assign the initial3785

conditions γin(Z) and uin(Z) in such a way that the problem results to be symmetric3786

with respect to Z = 0.3787

Parameter Unit Value Equation Reference

L [cm] 1.000 Initial length —
Rin [cm] 1.000 · 10−2 Initial radius —
λ [Pa] 1.333 · 104 (5.27) [220]
µ [Pa] 1.999 · 104 (5.27) [220]
k0 [mm4/(N s)] 0.4875 (5.22a), (5.23a), [138]
m0 [−] 0.0848 (5.22a) [138]
m1 [−] 4.638 (5.22a) [138]
d0R [m2/s] 3.200 · 10−9 (5.22b), (5.40c) [216]

Table 5.1: Parameters used in the definitions of the energy density, permeability
and diffusivity. The mass fraction of the solid phase in the natural state is Φsν = 0.8.
The solid and fluid phase densities are ϱs = ϱf = 1000 kg/m3.

5.5 Results3788

To evaluate the impact of the scalar curvature, κγ, on the evolution of the3789

system under study, we solve (5.40a)–(5.40e) twice: First, we set c = 0 in (5.40e),3790

thereby switching off the term with κγ (this first model is denominated M1). Then,3791

we set c /= 0, and solve (5.40a)–(5.40e), paying particular attention to the effect of3792

κγ (this second model is referred to as M2).3793

For our purposes, we prepare a protocol of numerical experiments in which the3794

initial distribution of the growth-related distortions, γin(Z), has strong gradients3795

125



Self-influenced growth through evolving material inhomogeneities

Parameter Unit Value Description Reference

ζfp [kg/(m3 s)] 1.343 · 10−3 (5.31d),(5.33),(5.42) [45]
ζpn [kg/(m3 s)] 1.500 · 10−3 (5.31a) [45]
ζnf [kg/(m3 s)] 1.150 · 10−5 (5.31b) [45]
ζNp [kg/(m3 s)] 3.000 · 10−4 (5.31c) [41, 42]
c [m2] {0, −10−6} (5.33) —
g0 [−] 0.125 · 10−1 (5.41a) —
f0 [−] 1 + g0 (5.41a) —
h0 [1/cm] 8 π (5.41a) —
a0 [−] 1.020 (5.41b) —
b0 [−] 0.010 (5.41b) —
r0 [1/cm] 50 π (5.41b) —
ωNcr [−] 1.000 · 10−3 (5.31d), (5.33),(5.42) —
ωNenv [−] 7.000 · 10−3 (5.31d),(5.42) —
ωN0 [−] 1.480 · 10−4 (5.31c) —
δ1 [−] 7.138 · 10−1 (5.31d),(5.42) [167]
δ2 [Pa] 1.541 · 103 (5.31d),(5.42) [167]

Table 5.2: Parameters used in the definitions of the system’s geometry, in the
definitions of the sources and sinks of mass, and in the initial conditions for γ.

and non-vanishing curvatures. Specifically, we consider two types of γin(Z), i.e.,3796

γosc(Z) = f0 + g0 cos(h0Z), (5.41a)

γatan(Z) =
⎧⎨⎩ a0 − b0 atan

(︂
r0
(︂
Z + 1

4L
)︂)︂
, Z ∈

[︂
−1

2L,0
]︂
,

a0 + b0 atan
(︂
r0
(︂
Z − 1

4L
)︂)︂
, Z ∈

]︂
0, 1

2L
]︂
,

(5.41b)

both defining even functions with respect to Z = 0, and representing a grown3797

configuration of the tumour characterised by strong inhomogeneities. All the pa-3798

rameters featuring in (5.41a) and (5.41b) are reported in Table 5.2. The models3799

‘M1’ and ‘M2’ are further specialised in ‘M1(a)’ and ‘M2(a)’, for γin = γosc, and3800

‘M1(b)’ and ‘M2(b)’, for γin = γatan.3801

5.5.1 Formulation of specialised sub-models3802

Models M1(a) and M1(b) [no spatial resolution of the inhomogeneities]3803

We solve (5.40a)–(5.40e) with c = 0, thereby switching off the curvature in the3804

simulations. Hence, (5.40e) reduces to the ordinary differential equation3805

γ̇

γ
= ζfp

3ϱs

⟨︃
ωN − ωNcr

ωNenv − ωNcr

⟩︃
+

[︄
1− δ1⟨σ̄⟩+

δ2 + ⟨σ̄⟩+

]︄
(1 + u′) − γ3Φsν

(1 + u′)(1 − Φsν)ωp− ζnf

3ϱs
[1 − ωp], (5.42)

and the boundary condition (5.37h) is no longer necessary. Therefore, together3806

with (5.40a)–(5.40d) and (5.42), only the boundary conditions (5.37a)–(5.37g) and3807

the initial conditions (5.38a)–(5.38f) have to be accounted for.3808
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Although the spatial variability of γ does not play a direct role on (5.42), the3809

initial distribution of the growth-related distortions does influence the evolution of3810

γ.3811

Models M2(a) and M2(b) [spatial resolution of the inhomogeneities] We3812

solve (5.40a)–(5.40e) with c /= 0, and we enforce the complete set of boundary and3813

initial conditions, i.e., (5.37a)–(5.37h) and (5.38a)-(5.38f), respectively. In this case,3814

the scalar curvature, κγ, does contribute to drive the evolution of γ, through the3815

first term on the right-hand-side of (5.40e).3816

5.5.2 Numerical results3817

In this section, with the description of the obtained numerical results and the3818

role played by the scalar curvature associated with the growth, we answer to the3819

research question (5.1). In Fig. 5.1, we report the displacement of the tumour in3820

the axial direction of the specimen, evaluated at the cross section of the cylinder3821

Z = L/2, i.e., u(L/2, t) = χz(L/2, t)−χz(L/2,0). As expected, in all the considered3822

cases, the results of our simulations show that u(L/2, t) increases monotonically3823

with time. By comparing M1(a) with M2(a), and M1(b) with M2(b), we note3824

that the curvature seems to play a significant role in the evolution of the tumour3825

displacement. In fact, the inclusion of the curvature augments the steepness of the3826

displacement from the beginning of the simulation, and, from the 3rd day onward,3827

it increases its magnitude appreciably. This result suggests, in addition, that the3828

initial curvature relaxes, and that the system, at the end of the simulation, finds3829

itself in a less curved configuration.These deductions are confirmed by Fig. 5.2 and3830

Fig. 5.3, in which the spatial distribution of the scalar curvature κγ, at the initial3831

and final instants of time, is presented.3832
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Figure 5.1: Evolution of the tumour in the axial direction, evaluated at the cross
section Z = L/2. Panel on the left: comparison between M1(a) and M2(a), for
which γin = γosc. Panel on the right: comparison between M1(b) and M2(b), for
which γin = γatan.
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Figure 5.2: Spatial distribution of the scalar curvature κγ evaluated on the meridian
section of the specimen, in the case of γin = γosc. Panel on the left: initial instant
of time. Panel on the right: final instant of time.

Figure 5.3: Spatial distribution of the scalar curvature κγ evaluated on the meridian
section of the specimen, in the case of γin = γatan. Panel on the left: initial instant
of time. Panel on the right: final instant of time.

Starting from Fig. 5.2, we note that the oscillating behaviour of the scalar cur-3833

vature κγ, which reflects the trend of the initial distribution of the inhomogeneities3834

γin = γosc, results strongly mitigated at the end of the simulation. In fact, oscilla-3835

tions are appeased in this case, and κγ is closer to zero than the initial case, which3836

means that tissue is evolving towards a configuration with reduced curvature. Anal-3837

ogously, in Fig. 5.3, the concentration of the gradient, which characterizes the scalar3838

curvature for the model with γin = γosc, relaxes at the end of the simulation. Also3839

in this case, the tissue attains a final configuration in which the inhomogeneities3840

are appreciably redistributed. The presence of the curvature κγ in the model and3841

its relaxation, influences the spatial trend of the growth. In this sense, looking at3842

Fig. 5.4, we notice that marked qualitative differences emerge among the spatial3843

profiles of γ computed with M1(a) and M2(a), or M1(b) and M2(b). Still, if we3844

neglect the embodiment of the curvature, the curves are qualitatively similar, with3845

the magnitude increasing as time goes by. In particular, no peculiarity of the ini-3846

tial data seems to be found in the computed curves: The presence of oscillations in3847

the case for which γin = γosc (left), or the steep change in concavity, for the other3848
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Figure 5.4: Spatial profile of the growth parameter γ for the models with γin = γosc
(panel on the left) and γin = γatan (panel on the right). Since the problem is
symmetric, only the half [0, L/2] of the domain is shown.

choice of γin, i.e. γin = γatan (right). On the other hand, when the curvature is3849

explicitly considered, the spatial distribution of the growth is strongly influenced by3850

the initial conditions. In detail, depending on time, the oscillations (left) and the3851

rapid change in concavity (right), characterizing the two chosen initial distribution3852

of inhomogeneities, are mitigated, but still present, until the end of the simulations.3853

Although the differences outlined above, and independently on the initial condition3854

γin, all the considered models lead to a final spatial behaviour of γ, in which the3855

inhomogeneities are present.3856

Another point to put in evidence concerns Fig. 5.4 (left). The sub-system cor-3857

responding to the interval [0, L/2] is initially symmetric with respect to Z = L/4.3858

Yet, this further symmetry is lost in the course of time, as visible from the the3859

spatial profile of γ. This peculiarity of the results could be explained by referring3860

to biological motivations, rather than geometric ones. To specify this aspect, let us3861

focus on Fig. 5.5, which reports the trend of the nutrient mass fraction. We note, in-3862

deed, that the nutrients tend to diffuse from the boundaries (∂B)Left and (∂B)Right3863

towards the centre of the specimen, along its axial direction. In the course of this3864

process, there exists an instant of time after which the mass fraction of the nutrients3865

becomes smaller than the critical value ωNcr in the interior of the tumour. Hence,3866

while the growth of the tumour is inhibited in its centre, it is active close to the3867

free boundaries, where the mass fraction of the nutrients is still higher than the3868

critical threshold.3869

A relevant result concerns the dynamics of the proliferating cells, as shown in3870

Fig. 5.6. Their mass fraction, ωp, remains close to unity in the proximity of the3871

boundary (∂B)Right, where the level of nutrients is still high, while it diminishes in3872

the centre of the tumour, where nutrients tend to become unavailable (this means3873

that the proliferating cells are “converted” into necrotic ones). This phenomenon3874

is influenced by the explicit resolution of the curvature in the model. Indeed, when3875

the curvature is explicitly considered, the conversion process of proliferating cells3876

into necrotic ones is accelerated in the first days, and slowed down towards the end3877
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Figure 5.5: Spatial profile of the nutrient mass fraction ωN for the models with
γin = γosc (panel on the left) and γin = γatan (panel on the right). Since the
problem is symmetric, only the half [0, L/2] of the domain is shown.

Figure 5.6: Spatial profile of the proliferating cells mass fraction ωP for the models
with γin = γosc (panel on the left) and γin = γatan (panel on the right). Since the
problem is symmetric, only the half [0, L/2] of the domain is shown.

of the simulations. This behaviour occurs for both choices of γin, but appears to be3878

slightly more pronounced for γin = γatan.3879

To proceed with our analysis, we refer to Fig. 5.7, where we plot the behaviour3880

of the pressure, p. When the tumour grows, the interstitial fluid flows towards the3881

centre of the tumour, and p decreases from the free boundary (where the condition3882

p = 0 applies) to the tumour’s interior, where it takes on negative values. However,3883

when the system goes towards the end of the simulations, p tends to become positive3884

in the cases in which the curvature is explicitly accounted for, while it tends to zero3885

from below otherwise.3886

Finally, in Fig. 5.8, we display the effective stress σ̄. First, we notice that the3887

tumour is subjected to a compressive stress, since σ̄ is positive. Apart from this3888

result, which is common to all the studied cases, we report that the curvature3889

modifies the qualitative behaviour of σ̄. As final remark, we note how the spatial3890

evolution of the stress in the specimen, independently of the model, is strongly3891

affected by the initial distribution of the inhomogeneities.3892
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Figure 5.7: Spatial profile of the pore pressure p for the models with γin = γosc
(panel on the left) and γin = γatan (panel on the right). Since the problem is
symmetric, only the half [0, L/2] of the domain is shown.

Figure 5.8: Spatial profile of the effective stress σ̄ for the models with γin = γosc
(panel on the left) and γin = γatan (panel on the right). Since the problem is
symmetric, only the half [0, L/2] of the domain is shown.

5.6 Conclusion3893

In this work, a mathematical model addressing tumour growth has been pre-3894

sented. The mechanical framework has been developed by regarding the tumour as3895

a multi-constituent, biphasic medium, and by enforcing the BKL-decomposition of3896

the deformation gradient tensor. The growth of the tumour is influenced by both3897

mechanical stimuli and biological factors, such as the nutrients transported by the3898

interstitial fluid, and the interactions among proliferating and necrotic cells.3899

The principal novelty of our approach consists of a partial reformulation of3900

the balance laws for the constituents of the solid phase, in such a way that it is3901

introduced an explicitly dependence on the scalar curvature, κγ, generated by the3902

growth tensor Uγ = γI through the Riemannian, growth-related metric tensor3903

Cγ = γ2G.3904

The introduction of κγ amounts to express the evolution law for γ as a partial3905

differential equation, with the purpose of obtaining a better resolution of the mate-3906

rial inhomogeneities, and an estimate of their influence on growth. To accomplish3907

this task, we prescribe two types of initial conditions for γ, both characterised by3908

strong gradient and nonzero initial curvature, κγin.3909
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Two more thoughts about our results may be worth to be mentioned. The3910

first one concerns the physical interpretation of the evolution of the initial inho-3911

mogeneities accompanying γin. Indeed, since γ evolves according to a generalised3912

diffusion-reaction like equation, one may say that, in our model, the material inho-3913

mogeneities brought about by growth “dissipate” towards a configuration in which3914

they are redistributed over the tissue. This discussion answers the research ques-3915

tion 5.2. The second thought pertains to the structure of the evolution equation3916

(5.40e), and is also related to the first one. Indeed, in the case in which the initial3917

inhomogeneities relax, the system tends to pass from a configuration in which it is3918

not invariant under material translations to a homogeneous configuration in which3919

it is translational invariant, thereby restoring the symmetry that is initially broken3920

by γin. This discussion answers the research question 5.3.3921

One limitation of our study is related to the fact that, in this work, we have3922

just relied on a phenomenological model in which κγ appears without a strong3923

theoretical justification. We have not built a systematic constitutive framework, in3924

which, for example, the strain energy density of our material depends on γ and on3925

κγ, nor have we conducted any study of the dissipation inequality of the system at3926

hand. Yet, confident in the intuitions that have led to the model presented in [66],3927

we hope that our results could provide a basis for further investigations.3928

In our work, we concentrated on an academic benchmark problem in order to3929

compare our results with those of other Authors and, in particular, with those3930

of Ambrosi and Mollica [10]. For this reason, our general setting is as simple as3931

the setting of the problems taken as reference, expect for the fact that we deal3932

with a biphasic system featuring two cell populations and for the fact that we3933

account for the role of inhomogeneities through the introduction of the term rpγ3934

in the mass balance law of the proliferant cells. Clearly, our model can be further3935

generalised and, in our opinion, this could be done in several steps. Here, we give3936

some indications on how the formulation of our problem should look like if such3937

generalisations were done.3938

First, one could consider exactly the same framework and geometry as the ones3939

presented here, while relaxing the hypothesis of axial symmetry of the problem. In3940

this case, the initial inhomogeneities may vary not only in the axial direction, but3941

also radially or circumferentially, and the scalar curvature κγ must be computed3942

according to its own definition (5.6), since it is no longer represented by (5.39). This3943

requires the computation of all the partial derivatives necessary to determine the3944

Christoffel symbols as well as the fourth-order curvature tensor specified in (5.4)3945

and (5.5), respectively.3946

A second option could be to formulate an evolution law for γ in which the3947

evolution is driven by the full curvature tensor R and its gradient GradR, rather3948

than by the scalar curvature only. In this case, the definitions of rpγ and rnγ should3949

be further generalised, thereby implying a rewriting of the mass balance laws of the3950

proliferant and necrotic cells.3951
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A further extension of the model could be the formulation of an evolution law for3952

the whole growth tensor F γ, with a restriction on tr[Ḟ γF−1
γ ], as done in (5.10b). A3953

model of this type extends the concept of growth presented in this work and further3954

rephrases the theory proposed in [66].3955

Another step is to specialise our model to problems with more realistic geome-3956

tries, which may arise from two- and three-dimensional studies. For a given study,3957

this means that the boundary value problem formulated in our work has to be3958

modified, and the Finite Element scheme adopted to solve it has to be extended ac-3959

cordingly. In particular, the use of new computational schemes may not be needed3960

to resolve physical phenomena that could not be captured otherwise, as is the case,3961

for example, when the growth of a tumour in the present of a host tissue and is3962

studied [166].3963

Finally, although in the present work we dispensed with remodelling from the3964

outset, we are aware of the fact that such process accompanies growth. In fact,3965

it plays an important role in the redistribution of the mechanical stress within3966

the tissue and, thus, on the modulating effect of the latter on the growth of a3967

tumour. One possible way for studying remodelling is to use the decompositions3968

F = F eF rF γ or as F = F eF γF r, where F r represents the distortion tensor3969

describing the remodelling process, and to study the dynamics of F r in relationship3970

with all the other model variables. In the literature, F r is often assumed to describe3971

a plastic-like phenomenon and is thus treated accordingly. Within the context of3972

tumour growth, F r accounts for the structural transformations of a tissue at the3973

cellular level. Its introduction requires to elaborate numerical schemes capable of3974

capturing the interplay between the growth and the structural evolution of a tissue,3975

even when these phenomena exhibit rather separated time scales. Finally, at the3976

pore scale, the effect of inhomogeneities could be studied by introducing a kinematic3977

descriptor, called “intrinsic volume ratio” [217].3978

We summarise the answers to the research questions 5.1—5.3 in the following3979

way:3980

• In general, we note that the scalar curvature associated with the growth3981

tensor plays a significant role, both qualitatively and quantitatively, on the3982

evolution of the main quantities of interest related to the growth of a tumour3983

in the avascular stage (we recall, however, that these results are not ready to3984

be used for clinical purposes).3985

• The growth in the regions close to the ends of the specimen is more pro-3986

nounced than in the case in which the scalar curvature associated with γ is3987

not considered.3988

• The growth parameter evolves in such a way that, in the model M2(a), its3989

initial oscillations tend to disappear and its profile tends to become more3990
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straight, and, in the model M2(b), the material gradient of γ, initially con-3991

centrated at Z = L/4, tends to spread over the tumour’s domain. In the3992

model M2(a), the symmetry of the initial distribution of the growth param-3993

eter tends to be lost. Indeed, we start with a discrete symmetry, given by3994

the period of the oscillations and, as time goes by, the curves tend to ac-3995

quire a more uniform gradient. In the model M2(b), the distribution of the3996

growth parameter is such that the tumour is materially homogeneous before3997

and after the kink of γatan(Z = L/4) at early times and become increasingly3998

inhomogeneous as time goes by.3999

134



Chapter 64000

Growth and remodelling through4001

strain-gradient plasticity.4002

The work reported in this chapter has been previously published in [114].4003

6.1 Strain gradient theories for remodelling and4004

growth4005

Motivated by the increasing interest of the biomechanical community towards4006

the employment of strain-gradient theories for solving biological problems, we study4007

the growth and remodelling of a biological tissue on the basis of a strain-gradient4008

formulation of remodelling. Our scope is to evaluate the impact of such an approach4009

on the principal physical quantities that determine the growth of the tissue. For our4010

purposes, we assume that remodelling is characterised by a coarse and a fine length4011

scale and, taking inspiration from a work by L. Anand, O. Aslan, and S.A. Chester,4012

we introduce a kinematic variable that resolves the fine scale inhomogeneities in-4013

duced by remodelling. With respect to this variable, a strain-gradient framework4014

of remodelling is developed. We adopt this formulation in order to investigate how4015

a tumour tissue grows and how it remodels in response to growth. In particu-4016

lar, we focus on a type of remodelling that manifests itself in two different, but4017

complementary, ways: on the one hand, it finds its expression in a stress-induced4018

reorganisation of the adhesion bonds among the tumour cells, and, on the other4019

hand, it leads to a change of shape of the cells and of the tissue, which is generally4020

not recovered when external loads are removed. To address this situation, we resort4021

to a generalised Bilby-Kröner-Lee decomposition of the deformation gradient ten-4022

sor. We test our model on a benchmark problem taken from the literature, which4023

we rephrase in two ways: micro-scale remodelling is disregarded in the first case,4024

and accounted for in the second one. Finally, we compare and discuss the obtained4025

numerical results.4026
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To further clarify the type of remodelling addressed in this work, and to con-4027

textualise the wording “plastic-like distortions”, we provide an explicit example of4028

the inelastic rearrangement of the cells of a tissue. For this purpose, we discuss the4029

results of an experiment commented in [86]. In Figure 6.1 (which corresponds to4030

Figure 7 of [86]), Forgacs et al. [86] show three different stages of a cellular aggre-4031

gate subjected to a loading history referred to as “centrifugation” [86]. The first4032

column of Figure 6.1 reports the configuration of the aggregate “before centrifu-4033

gation” [86], when the cells are “isodiametric” and the aggregate is spherical. The4034

second column, instead, shows the aggregate after a 5 minute centrifugation: at4035

this stage, the aggregate is no longer spherical, the cells have changed their shape4036

and are said to be in a “rapidly relaxing, more elastic phase” [86]. Finally, the4037

third column depicts the configuration of the aggregate after 36 hour centrifuga-4038

tion. In this configuration, the aggregate is believed to have reached a new state4039

of equilibrium, and its cells seem to have attained a state free of stress. Most im-4040

portantly, the cells seem to have changed their positions and to have redistributed4041

their shape and orientation in a permanent manner, so that the aggregate does not4042

spontaneously tend to recover its original configuration, regardless of the absence4043

of external loads. Forgacs et al. [86] use the theory of viscoelasticity to model the4044

experiment described so far. To us, however, the inelastic behaviour of the cellular4045

aggregate may also suggest interpretations other than, and perhaps complementary4046

to, viscoelasticity. Indeed, looking at the third column of Figure 6.1, one observes4047

that the internal structure of the aggregate has changed, and this change seems4048

to be due to the fact that the cells, relaxed or not, have modified their shape and4049

arrangement inside the tissue. Therefore, at least in our opinion, viscoelasticity4050

alone may be insufficient to accurately account for the irreversible deformations4051

(distortions) of the tissue. Rather, the interpretation of the just discussed phe-4052

nomenology may necessitate concepts borrowed from the theories of plasticity or4053

viscoplasticity, since these are able to describe the tissue’s internal kinematics in a4054

way that is similar to the motion of the defects in solids. This view seems to be4055

corroborated also by other experiments conducted on tumour spheroids (see e.g.4056

[219] and references therein). In such experiments, a spheroid is allowed to grow4057

and, after growth has occurred, it is cut radially for a length of about the 80% of its4058

diameter: what is observed is a relaxation of the stresses, resulting in the opening of4059

the spheroid, with the edges of the cut drifting away from one another (see Figure4060

6.1d). This behaviour, in fact, suggests the existence of an incompatible, stress-free4061

state of the tumour, which is consistent with the description of the tumour as an4062

elasto-plastic material. To us, this observation justifies the approach followed in4063

our work, although it does not exclude visco-plastic effects. While bearing this4064

in mind, for simplicity we restrict here our investigations to the case of plasticity4065

alone, and we adopt this approach to model the internal rearrangement, i.e., the4066

remodelling, of the tissues studied in our work. The above discussion answers the4067

research question 6.3.4068
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(a) (b) (c)

Tumour opening

(d)

Figure 6.1: First row (redrawn and adapted from Forgacs et al. [86]): Schematic
representation of the cells rearrangement in an spherical aggregate (a) before cen-
trifugation, (b) after a 5 minute centrifugation, and (c) after 36 hour centrifugation.
Second row (redrawn and adapted from Stylianopoulos et al. [219]): Stress relax-
ation of a tumour spheroid after a radial cut is performed.

6.2 Kinematics4069

6.2.1 Kinematical descriptors4070

To account for the growth and structural reorganisation of the tissue, we have4071

recourse to the multiplicative decomposition of the deformation gradient tensor,4072

which we propose in the form [9, 144, 105]4073

F = FeFpFγ. (6.1)

In (6.1), Fγ, Fp, and Fe describe the distortions associated with the uptake or4074

loss of mass, the distortions accompanying the plastic-like rearrangement of the4075

tissue’s internal structure, and the distortions due to the elastic accommodation4076

of the tissue, respectively. In the sequel, Fp and Fγ will also be referred to as4077

remodelling tensor1 and growth tensor, respectively. We notice that, whereas it is4078

rather standard to consider Fe as the first factor of the right-hand-side of (6.1), the4079

order of appearance of Fp and Fγ is not standard at all. Indeed, it is conceivable to4080

formulate a decomposition of F in which the inelastic contributions to the overall4081

1We use the subscript “p” to emphasise the fact that the distortions associated with remodelling
are plastic-like. In this respect, we could have also referred to Fp as “plasticity tensor”. However,
we prefer to speak here of “remodelling tensor”, because the concept of remodelling is more specific
for the addressed biological materials.

137



Growth and remodelling through strain-gradient plasticity.

deformation appear in reverse order. In addition, there exist also cases in which the4082

accommodating part of the deformation is put at the end of the decomposition [46].4083

We adopt the order shown above because, in the present work, we have in mind a4084

tissue that grows and that remodels its internal structure in response to growth.4085

This statement notwithstanding, we regard growth and structural reorganisation as4086

independent, yet mutually interacting processes. Consequently, we consider Fp and4087

Fγ as independent kinematic (tensor) variables and, following the same philosophy4088

outlined by some previous publications [44, 60, 183, 110, 62, 56], we associate each4089

of them with degrees of freedom having the same “dignity” as those related to4090

the other kinematic descriptors, i.e., Vs and V f . Finally, we emphasise that the4091

decomposition (6.1) is a generalised Bilby-Kröner-Lee decomposition (see e.g. [176]4092

for similar decompositions in the case of damage or other inelastic processes). Since4093

we have recently discussed the decomposition (6.1) in [62] for the case of growth,4094

here we do not fuss over the physics behind it, and we suggest the reviews [176,4095

213] and Chapter 5 for details. However, we recall that, for every X ∈ B and4096

t ∈ I , the product Fp(X, t)Fγ(X, t) maps vectors of the tangent space TXB into4097

vectors of the image vector space NX(t), attached at X. By ideally performing4098

such transformation for all X ∈ B, the solid phase is brought into a relaxed state4099

at time t, the latter being characterised by the absence of any stresses, including4100

the residual ones. Such state is also referred to as natural state [176, 106].4101

Differentiation of F with respect to time and left-multiplication by F−1 =4102

F−1
γ F−1

p F−1
e yield4103

Ḟ F−1 = ḞeF
−1

e + FeLpF−1
e + FeFpLγF−1

p F−1
e , (6.2)

where we introduced the tensor of rate of remodelling-induced distortions, Lp ≡4104

ḞpF−1
p , and the tensor of rate of growth-induced distortions, Lγ ≡ ḞγF−1

γ . In com-4105

pliance with (6.1), the volume ratio J ≡ det F can be rewritten as J = JeJpJγ,4106

where Je ≡ det Fe, Jp ≡ det Fp, and Jγ ≡ det Fγ denote, respectively, the volu-4107

metric distortions associated with the elastic, remodelling, and growth part of the4108

deformation gradient tensor. We use these definitions to perform the Piola trans-4109

formations of the mass balance laws (5.10a), (5.10b), (5.20a) and (5.20b) thereby4110

obtaining4111

ρs0Φsω̇p = Rpn +Rfp −Rsωp, (6.3a)
ρs0Φ̇s = Rs, (6.3b)
ρf0Φf ω̇N + ρf0Q GradωN + DivY N = RNp +RsωN, (6.3c)

J̇ + Div Q =
(︄

1
ρs0

− 1
ρf0

)︄
Rs, (6.3d)

where, for every X ∈ B and t ∈ I , we denote by4112

Φα(X, t) = J(X, t)φα(χ(X, t), t), α ∈ {f, s}, (6.4a)
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Rβ(X, t) = J(X, t)rβ(χ(X, t), t), β ∈ {pn, fp, s,Np}, (6.4b)
ωυ(X, t) = cυ(χ(X, t), t), υ ∈ {p,N}, (6.4c)

the material volumetric fractions, the material sources/sinks of mass, and the mass4113

fractions expressed as functions of X and time, respectively. We recall that, in4114

(6.4c), cp and cN are the spatial volumetric fraction of the proliferating cells and of4115

the nutrients, respectively [114]. Moreover, we introduced the material flux vectors4116

associated with the filtration velocity φfw and with the nutrients’ mass flux vector4117

yN, respectively, i.e.,4118

Q(X, t) = Φf(X, t)w(χ(X, t), t)F−T(X, t), (6.5a)
Y N(X, t) = J(X, t)[yN(χ(X, t), t)]F−T(X, t). (6.5b)

In particular, Q will also be referred to as material filtration velocity in the sequel.4119

The kinematic picture of the problem under study is completed with a scalar4120

descriptor, denoted by ep : B(t) × I → R. This quantity and its gradient, ∇ep,4121

have been introduced in [15] with the purpose of constructing indicators of the in-4122

elastic transformations occurring in the body at the scale of its micro-structure.4123

More precisely, in [15] the Authors speak of ep in terms of a “measure of the4124

inhomogeneity of the microscale plasticity”. In our framework, it is more ap-4125

propriate to interpret ep as a variable defined to resolve explicitly the inhomo-4126

geneities induced by the remodelling of the tissue. To this end, we define the4127

“Lagrangian field” ep, such that ep(X, t) = ep(χ(X, t), t), and the material gradient4128

Gradep(X, t) = [∇ep(χ(X, t), t)]F (X, t).4129

6.2.2 Constraints on the kinematic variables4130

By virtue of the presence of growth in our model, the study conducted in this4131

work may be thought of as a slight generalisation of the framework depicted by4132

Anand et al. [15], where the Authors develop a scalar theory of strain-gradient4133

plasticity based on several ab initio restrictions on the kinematic variables of their4134

problem. Such restrictions are expressed in terms of the generalised velocities of the4135

proposed theory, and are thus cast in non-holonomic form. To highlight their role4136

on the overall dynamics of the system under investigation, we specify the imposed4137

constraints, and we discuss in detail their impact on the kinematic descriptors that4138

they involve.4139

For the sake of clarity, we start with rephrasing, in our formalism, the constraints4140

on Fp and Ḟp introduced by Anand et al. [15]. On the top of those, we exploit the4141

mass balance laws in order to extract pieces of information that can be interpreted4142

as constraints on the growth tensor, Fγ, and on its rate Lγ.4143

If Lp is assigned, Fp can be computed by integrating the ordinary differential4144

equation Ḟp = LpFp, which can be rewritten as4145

Ḟp =
(︂
η−1Dp + η−1Wp

)︂
Fp, (6.6)
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where η is the metric tensor associated with the tissue’s natural state, while Dp4146

and Wp are the symmetric part and the skew-symmetric part of Lp, respectively,4147

i.e.,4148

Dp = sym(ηLp) = 1
2

(︂
ηLp + LT

p η
)︂
, (6.7a)

Wp = skew(ηLp) = 1
2

(︂
ηLp − LT

p η
)︂
. (6.7b)

Following the theory of [15], the first constraint on Fp is supplied by requiring4149

from the outset that the “plastic” spin tensor, Wp vanishes identically, i.e., Wp =4150

0. Hence, we obtain the identity Lp = η−1Dp, and, consequently, Equation (6.6)4151

becomes4152

Ḟp = η−1DpFp. (6.8)

The second constraint on Fp stems from the hypothesis of isochoric remodelling4153

distortions, i.e., Jp = det Fp = 1. This relation, in turn, can be put in differential4154

form, i.e., J̇p = Jptr[ḞpF−1
p ] = 0, and implies tr[η−1Dp] = 0, as can be deduced by4155

right-multiplying Equation (6.8) by F−1
p and taking the trace of the resulting ex-4156

pression. Accordingly, only the deviatoric part of Dp, i.e., D̃p = Dp − 1
3tr[η−1Dp]η,4157

is involved in (6.8), which reduces to4158

Ḟp = η−1D̃pFp. (6.9)

In analogy with [15], we base our model on the further hypothesis that D̃p is4159

co-directional with a tensor Nν , associated with the tissue’s natural state, and4160

obtained by normalising a symmetric tensorial measure of stress, which will be4161

specified later. In formulae, by indicating with Σν such measure of stress, we4162

define Nν as4163

Nν ≡ η Σ̃νη

∥Σ̃ν∥η

, (6.10)

where Σ̃ν ≡ Σν − 1
3tr[ηΣν ]η−1 is the deviatoric part of Σν , and ηΣ̃νη is the4164

covariant representation of Σ̃ν , and we enforce the co-directionality condition as4165

the third constraint on Fp, i.e.,4166

D̃p = ∥D̃p∥η−1Nν . (6.11)

Equation (6.11) follows from the hypothesis that the distortions associated with re-4167

modelling obey an evolution law of the same type as the normality rule of isotropic,4168

associative, finite-strain plasticity. For this reason, the physical quantity that rep-4169

resents them, i.e., D̃p, has to be co-directional with Σ̃ν (see Sections 95.5 and 98 of4170

Gurtin et al. [124]). In turn, this condition is automatically satisfied by introducing4171
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the direction tensor N ν and requiring D̃p to be proportional to N ν . Clearly, this4172

identifies the corresponding proportionality factor with the norm of D̃p.4173

In (6.10) and (6.11), the norms ∥Σ̃ν∥η and ∥D̃p∥η−1 are defined by4174

∥Σ̃ν∥η =
√︄

tr
[︃(︂

ηΣ̃νη
)︂T

Σ̃ν

]︃
, (6.12a)

∥D̃p∥η−1 =
√︃

tr
[︂
η−1D̃pη−1D̃p

]︂
, (6.12b)

and their product coincides with the double contraction Σ̃ν :D̃p = ∥Σ̃ν∥η∥D̃p∥η−1 .4175

Moreover, to simplify the notation, we invoke the definition of accumulated plastic4176

strain[15, 176], εp, i.e.,4177

εp(X, t) ≡
√︂

2
3

∫︂ t

0
∥D̃p(X, τ)∥η−1dτ ⇒ ε̇p(X, t) =

√︂
2
3 ∥D̃p(X, t)∥η−1 , (6.13)

so that Equation (6.11) becomes4178

D̃p =
√︂

3
2 ε̇pNν . (6.14)

Finally, by substituting (6.14) into (6.9), we obtain4179

Ḟp =
(︃√︂

3
2 ε̇pη−1Nν

)︃
Fp ⇒ Lp =

√︂
3
2 ε̇pη−1Nν . (6.15)

Equation (6.15) implies that, once Nν is assigned, Lp has only one independent4180

coefficient, given by ε̇p. The important consequence of this result is that the body’s4181

structural degrees of freedom, originally represented by the tensorial quantity Fp,4182

condense into the scalar variable εp.4183

Remark 6.2.1 (Descriptive adequacy of εp). According to Equation (6.13), εp(X, t)4184

is well-defined for all the tensor fields D̃p such that the norm ∥D̃p(X, · )∥η−1 is an4185

integrable function of time over [0, t], for every X ∈ B and t ∈ [0,+∞[. Coher-4186

ently with this definition, εp(X, t) keeps track of all the magnitudes of the rates4187

of inelastic distortions, D̃p(X, τ), which have occurred in a given material over4188

[0, t]. For this reason, εp is a suitable descriptor of the mechanical response of4189

materials that are capable of “perfectly memorising” inelastic distortions, as is the4190

case for metals exhibiting rate-independent plasticity [133]. Biological tissues, on4191

the contrary, are often modelled as viscoelastic materials [87, 86], and show fading4192

memory effects. Nonetheless, as discussed in the Introduction, the experiments on4193

cellular aggregates reported in [86, 219] seem to suggest the existence of inelastic4194

distortions that do not fade away in time, unless some active process restores the4195

original configuration of the aggregates. For these reasons, εp can be regarded as4196

appropriate for describing the inelastic distortions accumulated in a tissue from the4197

beginning of its loading history. Should the active processes be considered, they4198

could be accounted for by introducing another factor, denoted e.g. by F a, and4199

representing the active part of the tissue’s deformation [193].4200
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We switch now to the constraints placed on Fγ, and we analyse their impact4201

on the way in which the mass balance law (6.3b) can be reformulated. Upon using4202

the decomposition J = JeJpJγ, and recalling the condition Jp = 1, we rewrite Φs as4203

Φs = JγΦsν , where Φsν is such that Φsν(X, t) = Je(X, t)φs(χ(X, t), t), and indicates,4204

thus, the solid phase volumetric fraction with respect to the volume measure of the4205

natural state. Hence, Equation (6.3b) becomes4206

ρs0J̇γΦsν + ρs0JγΦ̇sν = Rs. (6.16)

A rather standard hypothesis in the mechanics of growth, see e.g. [72, 10, 160,4207

157], is to choose Fγ in such a way that the time derivative of its determinant,4208

J̇γ, compensates for the mass source Rs. In other words, by exploiting the identity4209

J̇γ = Jγtr[ḞγF−1
γ ] = Jγtr[Lγ], we require the fulfilment of the auxiliary condition4210

ρs0JγΦsνtr[Lγ] = Rs ⇒ tr[Lγ] = Rs

ρs0ΦsνJγ

, (6.17)

which constitutes the first constraint on Fγ. Such constraint has, in fact, non-4211

holonomic nature, since it is defined through a non-homogeneous algebraic condi-4212

tion on the generalised (tensorial) velocity Lγ. Plugging (6.17) into (6.16) yields4213

ρs0JγΦ̇sν = 0, thereby implying that the volumetric fraction Φsν is necessarily in-4214

dependent of time.4215

The second constraint on Fγ is provided by the phenomenological evidence ac-4216

cording to which, for the class of problems under study, growth occurs isotropically4217

[9]. The consequences of this fact on the admissible choices of the growth tensor can4218

be deduced by looking at the polar decompositions of Fγ. Indeed, by considering4219

for instance the right decomposition, Fγ = RγUγ, where Rγ is the rotation tensor4220

and Uγ is the stretch tensor associated with Fγ, the isotropy of growth translates4221

to the kinematic restrictions Rγ = I and Uγ = γI, where I is the identity tensor.4222

Therefore, it holds that Fγ = γI and (6.17) can be rephrased as4223

γ̇

γ
= Rs

3ρs0ΦsνJγ

⇒ γ̇ = Rs

3ρs0Φsνγ2 . (6.18)

Finally, we notice that Equation (6.3d) can be regarded as a constraint on the4224

material filtration velocity, Q, expressed through a restriction on its divergence.4225

6.3 Principle of Virtual Powers4226

After laying down the kinematic picture that describes the problem under in-4227

vestigation, we select the generalised velocities upon which the system’s mechanical4228

power is defined. Summarising the discussion reported above, such velocities may4229

be enlisted in the following collection of fields4230

V = (vs,∇ vs,Dsεp,Dsep,∇(Dsep) | vf ,∇vf), (6.19)
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which will be employed to define the internal and the external mechanical powers.4231

We remark that, whereas the fluid phase requires only vf and ∇vf for the charac-4232

terisation of the system’s internal power, the solid phase necessitates both standard4233

and non-standard descriptors. The standard ones, i.e., vs and ∇vs, account only4234

for the “visible” changes of shape of the system (here, the word “visible” is meant4235

in the sense of DiCarlo and Quiligotti [60]), while the non-standard terms are the4236

generalised velocities Dsεp, Dsep, and ∇(Dsep), introduced to define the power ex-4237

pended to accomplish the structural changes of the system. As anticipated in the4238

Introduction, the main motivation for taking the approach of Anand et al. [15] and4239

specialising it to our problem is that it allows to develop a strain-gradient formu-4240

lation of remodelling based on the scalar variable ep. The latter is defined as the4241

micro-scale counterpart of the accumulated remodelling strain, εp, and, as such, it4242

is assumed to “condense” in itself all the information about the inelastic processes4243

that determine the micro-scale remodelling of the tissue under study. Moreover,4244

since it is an “effective” representative of these processes, it prevents from the in-4245

troduction of a micro-scale, second-order remodelling tensor, which would render4246

the theoretical and numerical analysis of the problem at hand much more com-4247

plicated. Accordingly, the generalised velocities associated with ep, i.e., Dsep and4248

∇(Dsep), are a scalar and a co-vector field, rather than being a second-order and4249

a third-order tensor field, respectively. It follows from these considerations that an4250

inelastic model built on εp and ep has the right to stand on its own, independently4251

on any numerical issue, even though Anand et al. [15] have originally introduced4252

ep for numerical purposes. Clearly, such a model represents the limit case of more4253

elaborated theories that involve tensor fields, rather than scalar ones.4254

Coherently with (6.19), we introduce the collection of virtual velocities4255

Vv = (us,∇us, uε, up,∇up| uf ,∇uf) ∈ Vv, (6.20)
where Vv is referred to as the set of all virtual velocities. The elements us, ∇us,4256

uf , and ∇uf are the virtual counterparts of vs, ∇vs, vf , and ∇vf , respectively, and4257

the non-standard fields uε, up, and ∇up denote the virtual velocities corresponding4258

to the rates Dsεp, Dsep, and ∇(Dsep), respectively.4259

Once the virtual velocities of the model are identified, it is possible to write4260

the internal and the external virtual powers of the system. These two linear and4261

continuous functionals are defined over Vv, and are specified through the expressions4262

4263

W(i)
v (Vv)≡

∫︂
B(t)

{σs :g∇us+ms.us+σf :g∇uf+mf .uf+h(i)
ε uε + h(i)

p up+ξp∇up},

(6.21a)

W(e)
v (Vv) ≡

∫︂
ΓN

t

{τ s.us + τ f .uf + ζpup} +
∫︂

B(t)

{︂
h(e)

ε uε + h(e)
p up

}︂
, (6.21b)

By requiring the internal virtual power, W(i)
v (Vv), to be invariant under the4264

superposition of arbitrary rigid motions, we deduce the symmetry of the total stress4265
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tensor, σ = σs +σf , and that the sum of the internal forces ms and mf must vanish4266

identically, i.e., we obtain the condition ms + mf = 0 [202]. Consistently with the4267

a priori exclusion of all inertial terms from our model, this last result constitutes4268

an approximation of the more general balance of internal forces that, for a biphasic4269

medium with mass exchange between the phases, is given by ms+rsvs+mf −rsvf =4270

0. In fact, the approximation consists of dropping the term rsvs − rsvf = −rsw,4271

and is based on the argument that the interphase mass transfer, rs, depends on the4272

micro-scale velocity with which the mass passes from the fluid to the solid, and vice4273

versa. Such velocity, multiplied by the relative macro-scale velocity w, is assumed4274

to produce a rate of momentum exchange that weighs much less than ms and mf ,4275

thereby leading to the desired approximation.4276

We emphasise that, in writing the expressions of W(i)
v (Vv) and W(e)

v (Vv), we4277

have omitted all inertial and long-range (e.g. gravity) forces, which we regard4278

as negligible from the outset. Moreover, the nature of the forces h(i)
p and ξp is4279

necessarily coherent with the hypothesis that the kinematics of the solid phase4280

micro-structure is represented by ep and ∇ep. In this sense, the model features some4281

important similarities with Gurtin’s approach to the derivation of the generalised4282

Allen-Cahn equation [122], in which the scalar field describing the micro-structural4283

kinematics of the considered medium is regarded as an order parameter.4284

Looking at (6.21a) and (6.21b), we also notice that, in principle, also the veloc-4285

ity and the velocity gradient of the nutrients should be considered, along with their4286

virtual counterparts, in (6.19) and (6.20). However, in view of a comprehensive4287

formulation of the Principle of Virtual Powers, this would call for the definition4288

of the generalised forces expending power on them, and, above all, for the intro-4289

duction of surface tractions, acting on ΓN
t . Individuating a physically sound way4290

for expressing such contact forces is not easy and taking them into account leads4291

unavoidably to both theoretical and computational complications (see, e.g., Grillo4292

et al. [110] for an attempt of including these forces, based on a work by Sciarra4293

et al. [215]). For these reasons, we present here a simplified framework in which4294

we account for the nutrients through the balance law (5.20a), while we omit to4295

study their kinematics and dynamics in detail. In other words, due to their tan-4296

tamount importance for activating growth, we do include them in our model, but4297

we do not treat them systematically. Hence, we do not consider any force bal-4298

ance associated with the nutrients, nor do we investigate their contribution to the4299

dissipation inequality. Rather, we “guess” that the mass flux vector, yN, obeys4300

a diffusion dynamics of Fickean type, so that it is prescribed to have the form4301

yN = −ρf0d∇cN in the Eulerian description and Y N = −ρf0D GradωN in mate-4302

rial formalism, with d being the diffusivity tensor and D its material counterpart.4303

Note that the latter is related to d through the backward Piola transformation4304

D(X, t) = J(X, t)F−1(χ(X, t), t)d(χ(X, t), t)F−T(X, t).4305

By invoking the Principle of Virtual Powers, we enforce the condition W(i)
v (Vv) =4306

W(e)
v (Vv), which is required to be fulfilled for any admissible set of generalised4307
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velocities Vv, thereby leading to4308 ∫︂
B(t)

{[−divσs + ms].us + [−divσf + mf ].uf}

+
∫︂

B(t)

{︂
[h(i)

ε − h(e)
ε ]uε + [h(i)

p − divξp − h(e)
p ]up

}︂
+
∫︂

ΓN
t

{︂
[σs.n − τ s].us + [σf .n − τ f ].uf + [ξp.n − ζp]up

}︂
= 0. (6.22)

By adopting the usual localisation procedure that extracts the local form of the4309

equations of motion from the Principle of Virtual Powers, Equation (6.22) yields4310

the following balances of generalised forces4311

ms − divσs = 0, (6.23a)
mf − divσf = 0, (6.23b)
h(i)

ε − h(e)
ε = 0, (6.23c)

h(i)
p − divξp − h(e)

p = 0, (6.23d)

which hold in B(t), and the balances of contact forces on ΓN
t4312

σs.n − τ s = 0, (6.24a)
σf .n − τ f = 0, (6.24b)
ξp.n − ζp = 0. (6.24c)

It is worthwhile to mention that, in general, upon defining the field of total contact4313

forces τ = τ s + τ f , and the total Cauchy stress tensor σ = σs + σf , it is rather4314

natural to provide on ΓN
t boundary conditions of the kind σ.n = τ (see [215]4315

for details). Nevertheless, even in that case, the boundary conditions (6.24a) and4316

(6.24b) can be recovered under the assumption that τ s and τ f are obtained by4317

partitioning τ as τ s = (ρs0φs/ρ)τ and τ f = (ρf0φf/ρ)τ , respectively.4318

6.4 Dissipation and Dynamic Equations4319

To extract constitutive information on the internal forces presented so far, we4320

study the dissipation inequality of the system. For this purpose, we enrich the4321

picture proposed in Grillo et al. [110], which, in turn, was inspired by Hassanizadeh4322

[132] and Benethum et al. [27]. This is done by framing the formulation of Anand4323

et al. [15] in the context of biphasic media and, above all, by rephrasing it in order4324

to account for growth. The first step in this direction is to introduce the dissipation4325

density, D, measured per unit volume of the current configuration of the medium,4326

and defining the dissipation associated with an open subset Ωt ⊂ B(t) as4327 ∫︂
Ωt

D = −
∫︂

Ωt

{rs(ψs − ψf) + ρs0φsDsψs + ρf0φfDsψf + (ρf0φf∇ψf)w}
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+
∫︂

∂Ωt

{︂
(σs.n).vs + (σf .n).vf + (ξp.n)Dsep

}︂
+
∫︂

Ωt

{︂
h(e)

ε Dsεp + h(e)
p Dsep

}︂
+
∫︂

Ωt

Dγ ≥ 0. (6.25)

As shown in (6.25), the dissipation can be written as the sum of four different4328

contributions: with reference to the first integral of the sum defining
∫︁

Ωt
D, we4329

recognise that, by indicating with ψs and ψf the Helmholtz free energies per unit4330

mass of the solid and of the fluid, the term rs(ψs −ψf) expresses the rate of change4331

of the free energy densities, ρs0φsψs and ρf0φfψf , due to the mass exchange between4332

the phases. Moreover, ρs0φsDsψs and ρf0φfDsψf are the rates of change of the4333

Helmholtz free energy densities measured with respect to the solid phase motion,4334

and (∇ψf)w describes how ψf is transported due to the motion of the fluid relative4335

to the solid. The terms in the surface integral denote the contributions to the net4336

power expended on Ωt due to the contact forces with the surrounding medium,4337

while the terms in the third integral represent the part of net power ascribable to4338

the non-standard forces h(e)
ε and h(e)

p . Finally, Dγ is a dissipation density introduced4339

to account for the fact that the medium experiences growth (see e.g. [106] for a4340

discussion on this issue).4341

By applying Gauss Theorem to the surface integral of Equation (6.25), and using4342

the balance laws (6.23a)–(6.23d) and (6.24a)–(6.24c), the dissipation inequality4343

becomes4344 ∫︂
Ωt

D = −
∫︂

Ωt

{rs(ψs − ψf) + ρs0φsDsψs + ρf0φfDsψf + (ρf0φf∇ψf)w}

+
∫︂

Ωt

{ms.vs + σs :g∇vs + mf .vf + σf :g∇vf}

+
∫︂

Ωt

{︂
h(i)

p Dsep + ξp∇(Dsep) + h(i)
ε Dsεp

}︂
+
∫︂

Ωt

Dγ ≥ 0. (6.26)

By localising Equation (6.26) and invoking the condition ms + mf = 0, we obtain4345

D = rs(ψf − ψs) − ρs0φsDsψs − ρf0φfDsψf + [mf − g−1(ρf0φf∇ψf)].w
+ σs :g∇vs + σf :g∇vf + h(i)

p Dsep + ξp∇(Dsep) + h(i)
ε Dsεp + Dγ ≥ 0. (6.27)

As a simplifying assumption, we approximate the Helmholtz free energy density4346

of the fluid, ψf , with a constant, so that ρf0φfDsψf and ∇ψf are negligible with4347

respect to all the other terms featuring in the dissipation inequality. Such situation4348

occurs, for instance, when the state variables characterising ψf are, at the most,4349

the temperature and the mass fraction of the nutrients dissolved in the fluid, and4350

the latter is so low that ψf can be safely set equal to the (constant) Helmholtz4351

free energy density of water at constant temperature. Under these hypotheses,4352

Equation (6.27) becomes4353

D = rs(ψf − ψs) − ρs0φsDsψs + mf .w + σs :g∇vs + σf :g∇vf
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+ h(i)
p Dsep + ξp∇(Dsep) + h(i)

ε Dsεp + Dγ ≥ 0. (6.28)

It is convenient to rewrite the dissipation inequality per unit volume of B. To do4354

this, we perform a Piola transformation of (6.28), which yields4355

DR = Rs(Ψf − Ψs) − ρs0JγΦsνΨ̇s + Φ−1
f QMf + Ps :gḞ + Pf :gGradV f

+H(i)
p ėp + ΞpGradėp +H(i)

ε ε̇p + JDγ ≥ 0, (6.29)

where, as anticipated above, Rs(X, t) = J(X, t)rs(χ(X, t), t) is the material form4356

of the source/sink of mass for the solid phase as a whole, and we introduced the4357

notation4358

Ψα(X, t) = ψα(χ(X, t), t), α ∈ {f, s}, (6.30a)
Pα(X, t) = J(X, t)σα(χ(X, t), t)F−T(X, t), α ∈ {f, s}, (6.30b)
H

(i)
β (X, t) = J(X, t)h(i)

β (χ(X, t), t), β ∈ {p, ε}, (6.30c)
Ξp(X, t) = J(X, t)ξp(χ(X, t), t)F−T(X, t), (6.30d)
Mf(X, t) = J(X, t)[g(χ(X, t))mf(χ(X, t), t)]F (X, t). (6.30e)

Here, Pf and Ps indicate the first Piola-Kirchhoff stress tensors of the fluid and the4359

solid phase, H(i)
p and H(i)

ε express, in material form, the internal generalised forces4360

dual to ėp and ε̇p, respectively, Ξp is the material representation of the stress-like4361

generalised force, ξp, and is thus dual to Gradėp, and Mf is the material counterpart4362

of the momentum exchange rate mf .4363

Finally, by generalising the Helmholtz free energy density proposed in [15], we4364

prescribe Ψs to be given by the sum of three terms, i.e.,4365

Ψ̂s(F ,F p,F γ, εp, ep,Gradep) = Ψ̂(st)
s (F F−1

γ F−1
p ) + 1

2a0[εp − ep]2

+ 1
2b0F

−1
γ BpF−T

γ : Gradep ⊗ Gradep, (6.31)

with Bp = F−1
p .F−T

p , so that the time derivative of Ψs reads4366

Ψ̇s =
⎛⎝∂Ψ̂(st)

s
∂Fe

Fp
−TF−T

γ

⎞⎠ :Ḟ − 1
3

tr(η Σν)
ρs0Φsν

Rs

ρs0ΦsνJγ

− 1
ρs0Φsν

{︃√︂
3
2∥Σ̃ν∥η − Aν [εp − ep]

}︃
ε̇p

− Aν

ρs0Φsν
[εp − ep]ėp + Bν

ρs0Φsν

[︂(︂
F−1

γ BpF−T
γ

)︂
Gradep

]︂
Gradep

̇ , (6.32)

where Ψ̂(st)
s is differentiated with respect to Fe = F F−1

γ F−1
p . In (6.32), we intro-4367

duced the notation4368

Σν = η−1Fe
T

⎛⎝ρs0Φsν
∂Ψ̂(st)

s
∂Fe

⎞⎠
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+Bν

[︂
η−1Fp

−TF−T
γ (Gradep ⊗ Gradep) F−1

γ F−1
p η−1

]︂
, (6.33a)

Σ̃ν = Σν − 1
3tr[ηΣν ]η−1, (6.33b)

Aν = ρs0Φsνa0, (6.33c)
Bν = ρs0Φsνb0, (6.33d)

where Aν and Bν are the counterparts of the strictly positive constants a0 and b0,4369

expressed per unit volume of the tissue’s natural state, and Σν is a generalised4370

Mandel stress tensor that comprises both the standard definition of the Mandel4371

stress tensor, i.e.,4372

Σ(st)
ν = η−1Fe

T

⎛⎝ρs0Φsν
∂Ψ̂(st)

s
∂Fe

⎞⎠ , (6.34)

and the non-standard stress-like contribution4373

Σ(n-st)
ν = Bν

[︂
η−1Fp

−TF−T
γ (Gradep ⊗ Gradep) F−1

γ F−1
p η−1

]︂
. (6.35)

We remark that Σ(n-st)
ν is purely configurational, and it descends from the intro-4374

duction of the micro-scale plasticity variable ep. Moreover, Σ(n-st)
ν is independent4375

of deformation, whereas it does depend on the growth and remodelling distortions,4376

Fγ and Fp.4377

Remark 6.4.1 (Tensor Σν and co-directionality). In our work, the deviatoric part4378

of the generalised Mandel stress tensor, Σ̃ν , is the stress tensor used to define Nν4379

in (6.10). Therefore, it is the tensor with which the rate of plastic distortions, D̃p,4380

is co-directional. By virtue of the definition of Nν , the direction of D̃p in the space4381

of the symmetric second-order tensors is determined, partially, by the deviatoric4382

part of the standard Mandel stress tensor, Σ̃(st)
ν , and partially by Σ̃(n-st)

ν , which4383

includes the contributions of the micro-scale “plasticity”, through Gradep, and of4384

the growth and remodelling distortions through Fγ and Fp, respectively. In the4385

work of Anand et al. [15], instead, Nν is determined by Σ(st)
ν only.4386

DR =
⎧⎨⎩−Jγ

⎛⎝ρs0Φsν
∂Ψ̂(st)

s
∂Fe

Fp
−TF−T

γ

⎞⎠+ gPs

⎫⎬⎭ : Ḟ

+
{︄

Ψf − Ψs + 1
3

tr (η Σν)
ρs0Φsν

}︄
Rs +

{︃
H(i)

ε + Jγ

√︂
3
2∥Σ̃ν∥η − JγAν [εp − ep]

}︃
ε̇p

+
{︂
H(i)

p + JγAν [εp − ep]
}︂
ėp

+
{︂
Ξp − JγBν

[︂(︂
F−1

γ BpF−T
γ

)︂
Gradep

]︂}︂
Gradep

̇

+ Φ−1
f QMf + Pf :gGradV f + JDγ ≥ 0 . (6.36)
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We study the dissipation inequality (6.36) by regarding the mass balance law4387

(5.20b) as a constraint [156, 27], and appending it to DR. To this end, we per-4388

form the Piola transformation of (5.20b), thereby obtaining (see e.g. [27, 110])4389

CR ≡ ΦsF
−T :Ḟ + ΦfF

−T :GradV f

+ Φ−1
f Q Grad(J−1Φf) −

(︄
1
ρs0

− 1
ρf0

)︄
Rs = 0, (6.37)

where CR stands for “constraint”. Then, we multiply (6.37) by a Lagrange multi-4390

plier, p, which plays the role of hydrostatic pressure, and we attach the resulting4391

expression to (6.36). This leads to a “new” dissipation function, Dnew
R ≡ DR + pCR,4392

that is equal to DR, but is put in the form4393

Dnew
R =

⎧⎨⎩−Jγ

⎛⎝ρs0Φsν
∂Ψ̂(st)

s
∂Fe

Fp
−TF−T

γ

⎞⎠+ pΦsF
−T + gPs

⎫⎬⎭ : Ḟ

+
{︂
pΦfF

−T + gPf
}︂

:GradV f + Φ−1
f Q

{︂
Mf + JpGrad(J−1Φf)

}︂
+
{︄(︄

Ψf + p

ρf0

)︄
−
(︄

Ψs + p

ρs0

)︄
+ 1

3
tr (η Σν)
ρs0Φsν

}︄
Rs + JDγ

+
{︃
H(i)

ε + Jγ

√︂
3
2 ∥Σ̃ν∥η − JγAν [εp − ep]

}︃
ε̇p +

{︂
H(i)

p + JγAν [εp − ep]
}︂
ėp

+
{︂
Ξp − JγBν

[︂(︂
F−1

γ BpF−T
γ

)︂
Gradep

]︂}︂
Gradep

̇ ≥ 0. (6.38)

6.4.1 Constitutive Laws4394

We require that the inequality (6.38) be valid for arbitrary values of Ḟ , GradV f ,4395

ėp, and Gradep
̇ . Hence, the Coleman-Noll method implies the following identifica-4396

tions4397

Ps = −Φsp g−1F−T + Jγ

⎛⎝ρs0Φsνg−1∂Ψ̂(st)
s

∂Fe
Fp
−TF−T

γ

⎞⎠ , (6.39a)

Pf = −Φfp g−1F−T, (6.39b)
H(i)

p = −JγAν [εp − ep], (6.39c)
Ξp = JγBν

[︂
F−1

γ BpF−T
γ

]︂
Gradep. (6.39d)

In (6.39a), and in the sequel, the standard part of the solid phase Helmholtz free4398

energy density, Ψ̂(st)
s , is assumed to be of the Holmes-Mow type [138], i.e.,4399

Ψ̂(st)
s (Fe) = α0

ρs0Φsν

{︂
exp

(︂
f̂(Ce)

)︂
− 1

}︂
, (6.40)
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where Ce = Fe
T.Fe is the elastic Cauchy-Green deformation tensor, α0 is a material4400

coefficient having physical units of energy per unit volume, and the function f̂ is4401

given by4402

f̂(Ce) = f̌(Î1(Ce), Î2(Ce), Î3(Ce))
= α1[Î1(Ce) − 3] + α2[Î2(Ce) − 3] − α3 ln

(︂
Î3(Ce)

)︂
, (6.41)

with Î1(Ce), Î2(Ce), and Î3(Ce) denoting the first three principal invariants of Ce.4403

The material parameters α1, α2, and α3 are all assumed to be constant in this work.4404

Moreover, it holds that α1 + 2α2 = α3 [138], and the following relations connect α0,4405

α1, α2, and α3 with Lamé’s elastic parameters of the material (see e.g. [225]):4406

α0 = 2µ+ λ

4α3
, α1 = α3

2µ− λ

2µ+ λ
, α2 = α3

λ

2µ+ λ
. (6.42)

In the forthcoming calculations, we set α3 = 1, and we give µ and λ the values4407

reported in Table 6.1.4408

We recognise the dissipative parts of Mf and H(i)
ε , which we identify with the4409

following quantities4410

M
(d)
f = Mf + JpGrad(J−1Φf), (6.43a)

H(i,d)
ε = H(i)

ε + Jγ

√︂
3
2 ∥Σ̃ν∥η − JγAν [εp − ep], (6.43b)

and the dissipation inequality becomes4411

DR = Φ−1
f QM

(d)
f +H(i,d)

ε ε̇p

+
{︄(︄

Ψf + p

ρf0

)︄
−
(︄

Ψs + p

ρs0

)︄
+ 1

3
tr (η Σν)
ρs0Φsν

}︄
Rs + JDγ ≥ 0. (6.44)

We notice that, in (6.43b), growth influences the expression of H(i,d)
ε through the4412

determinant Jγ in the term JγAν [εp − ep].4413

According to (6.44), our model predicts that the system under study features4414

three independent dissipative processes. The first one is due to the power loss asso-4415

ciated with the resistance to the fluid flow and, under the hypothesis of negligible4416

inertial forces, it leads to Darcy’s law, i.e.,4417

M
(d)
f = ΦfK

−1Q. (6.45)

Equation (6.45) represents the material form of Darcy’s law and, accordingly, the4418

tensor K is the material permeability tensor of the medium, defined by4419

K(X, t) = J(X, t)F−1(X, t)k(χ(X, t), t)F−T(X, t), (6.46)
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with k being the spatial permeability tensor. Finally, we remark that, in deriving4420

(6.45), we have tacitly assumed that K is invertible, whereas sometimes this may4421

not be necessarily the case. By substituting (6.45) into the first term on the right-4422

hand-side of (6.44), we obtain that the dissipation due to fluid flow is always non-4423

negative, i.e., for all Q, it holds that Φ−1
f QM

(d)
f = K−1 : (Q ⊗ Q) ≥ 0, as long4424

as K is positive-definite. Note that, by putting together the results (6.43a) and4425

(6.45), M f is determined constitutively as4426

Mf = ΦfK
−1Q − JpGrad(J−1Φf). (6.47)

The second process contributing to the dissipation, DR, is given by H(i,d)
ε ε̇p,4427

which represents the power that the solid phase expends in order to remodel its4428

internal structure by accumulating plastic strain εp. We assume that H(i,d)
ε ε̇p is4429

non-negative for all ε̇p and, since ε̇p is always non-negative by virtue of its own4430

definition (see (6.13)), we conclude that H(i,d)
ε has to be non-negative too. In our4431

work, we hypothesise that the tissue remodels in a rate-dependent way and, in4432

particular, we assign H(i,d)
ε as4433

H(i,d)
ε = Jτpε̇p, (6.48)

where τp is here taken as a strictly positive coefficient with the physical units of a4434

generalised viscosity. By plugging (6.48) into (6.43b), we determine H(i)
ε through4435

the constitutive law4436

H(i)
ε = Jτpε̇p − Jγ

√︂
3
2 ∥Σ̃ν∥η + JγAν [εp − ep]. (6.49)

The third dissipative phenomenon is given by growth, and is represented by4437

the last two summands on the right-hand-side of (6.44), which we denote by Dg4438

and refer to as the “growth part of DR”. In contrast to what we have done for the4439

other dissipative processes, and even though the terms between braces in (6.44)4440

may be understood as the generalised force power-conjugate to γ̇/γ through Rs,4441

we do not try to look for information on Rs from the requirement that Dg has4442

to be non-negative. Rather, following [10, 9, 38, 104, 105, 166, 62], we enforce4443

a phenomenological law for Rs, which is translated into the kinematic constraint4444

(6.18) on γ̇/γ, and we use Dγ to adjust Dg and guarantee that it remains non-4445

negative. We emphasise that, although this path may seem artificial, it can be4446

justified by noticing that Dγ represents processes, related to growth, that are not4447

resolved explicitly by our model but that are necessary for growth to occur. In4448

fact, a motivation for introducing a term like Dγ in the dissipation inequality of a4449

growth problem can be found in [106].4450
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6.4.2 Dynamic Equations4451

By adopting the material form of the momentum balance laws (6.23a) and4452

(6.23b), and by invoking the force balance ms + mf = 0, we obtain4453

− g−1F−TMf − DivPs = 0, (6.50a)
g−1F−TMf − DivPf = 0, (6.50b)

where the constitutive expressions of Ps, Pf , and Mf are given in (6.39a), (6.39b),4454

and (6.47), respectively. Furthermore, by adding together (6.50a) with (6.50b), and4455

using the explicit expression for Mf in (6.50b), we find4456

Div(Ps + Pf) = 0, (6.51a)
K−1Q + Grad p = 0. (6.51b)

We exploit now the generalised force balance (6.23c), which becomes H(i)
ε =4457

H(e)
ε in material form and, by replacing H(i)

ε with the right-hand-side of (6.49), we4458

determine an evolution law for εp, i.e.,4459

Jτpε̇p − Jγ

√︂
3
2 ∥Σ̃ν∥η + JγAν [εp − ep] = H(e)

ε . (6.52)

To close this equation, we prescribe H(e)
ε as4460

H(e)
ε = − [Jσth + JγZν [εp − ep]] , (6.53)

where σth is a threshold stress, and Zν is a material parameter [15]. Hence, setting4461

λp = 1/τp, Equation (6.52) takes on the form4462

ε̇p = λp

J

{︃(︃
Jγ

√︂
3
2 ∥Σ̃ν∥η − Jσth

)︃
− Jγ(Aν + Zν)[εp − ep]

}︃
. (6.54)

The last dynamic equation is supplied by (6.23d). Recalling that, in the present4463

framework, the external force h(e)
p is zero, the material form of (6.23d) reads4464

H(i)
p − Div Ξp = 0. (6.55)

Hence, by substituting (6.39c) and (6.39d) into (6.55), we obtain4465

−JγAν [εp − ep] − Div
(︂
JγBν

[︂
F−1

γ BpF−T
γ

]︂
Gradep

)︂
= 0. (6.56)

In particular, since we take Fγ as Fγ = γI, (6.56) acquires the equivalent form4466

−γ3Aν [εp − ep] − Div (γBνBpGradep) = 0. (6.57)
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Remark 6.4.2 (The equation for ep). The result (6.57) is our generalisation to Equa-4467

tion (4.40) of Anand et al. [15], which, in our notation, and assuming constant4468

values for Aν and Bν , would read4469

−Aν [εp − ep] −Bν∆ep = 0 ⇒ ep − l2ν∆ep = εp, lν =
√︂
Bν/Aν , (A)

with ∆ being the Laplace operator, and lν the characteristic length scale associated4470

with the micro-scale plasticity variable, ep. For a given distribution of εp, Equation4471

(A) returns a “regularised” version of εp. In particular, since ep is required to satisfy4472

Neumann-zero boundary conditions, if εp is constant in B, then the unique solution4473

to (A) is the constant solution ep = εp. However, when εp is strongly localised, the4474

output of (A), i.e., ep, tends to be a lot more homogeneous, the more lν increases.4475

Our generalisation to (A) is twofold: first, the plastic-like distortions deter-4476

mine the evolution of ep both through εp and through the second-order tensor4477

Bp = F−1
p .Fp

−T. While εp is an input for (A), Bp modulates, together with the4478

growth parameter γ, the non-locality of ep, which is thus measured by the tensorial4479

coefficient γBνBp. We notice that the occurrence of this coefficient is due to the4480

last term in the definition of Ψ̂s given in (6.31). Switching to the Eulerian for-4481

malism, and using the identity Gradep(X, t) = (∇ep(χ(X, t), t)F (X, t), this term4482

reads4483

1
2b0be : ∇ep ⊗ ∇ep,

thereby meaning that, in the spatial description, the non-locality of the micro-4484

“plastic” variable, ep, is modulated by the elastic left Cauchy-Green deformation4485

tensor, be = Fe.Fe
T. To eliminate Bp from (6.57), and obtain a model closer to4486

that of Anand et al. [15], we should substitute be with the left Cauchy-Green4487

deformation tensor b = F .F T. Such a choice would lead to replace the last term4488

of (6.31) with4489

1
2b0G

−1 : Gradep ⊗ Gradep,

and would have the consequence of defining the unit tensor Nν just in terms of the4490

standard Mandel stress tensor, Σ(st)
ν (see Remark 6.4.1). We recall that G denotes4491

here the natural material metric tensor associated with B.4492

The second aspect of our generalisation is related to the fact that, in our model,4493

the evolution of ep is influenced by the growth parameter, γ, which couples with the4494

coefficients Aν and Bν , thereby rescaling the characteristic length scale associated4495

with ep in a generally inhomogeneous way, i.e., as lν → l = lν∥Bp∥1/2
G /γ, so that,4496

for a given lν , the condition γ > 1 tends to reduce the length scale associated with4497

ep. Note that ∥Bp∥G = [tr(GBpGBp)]1/2.4498

Remark 6.4.3 (Choice of H(e)
ε ). In the literature on remodelling (see e.g. [183, 127,4499

56]), when an external force, like H(e)
ε , is taken into account, it is often chosen in4500
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such a way that a homeostatic state exists for the system under study. If we had4501

followed such philosophy, we should have admitted homeostatic terms for εp and4502

ep, denoted by ε(h)
p and e(h)

p , and we should have expressed H(e)
ε as4503

H(e)
ε = −Jγ

√︂
3
2 ∥Σ̃(h)

ν ∥η + JγAν [ε(h)
p − e(h)

p ], (6.58)

where Σ̃(h)
ν is the Mandel-like stress tensor in homeostatic conditions (that is, when4504

its arguments attain the homeostatic state). This consideration notwithstanding,4505

in our work we opted for the expression (6.53) because, in order to formulate a4506

proof of concept for our problem, we needed to remain as close as possible to the4507

framework supplied by [15].4508

Remark 6.4.4 (Evolution law for εp). Equation (6.53) represents an essential dif-4509

ference with respect to the evolution law for εp given by [15]. Indeed, Anand et al.4510

[15] set H(i)
ε = H(e)

ε = 0, and assign H(i,d)
ε constitutively as a law that plays the4511

role of an effective yield stress, i.e., H(i,d)
ε = Jσth + JγZν [εp − ep], where σth > 04512

plays the role of the “conventional yield stress” [15]2, while Zν > 0 is a model4513

parameter defining the purely dissipative part of H(i,d)
ε . By doing this, the Authors4514

rewrite the balance equation H(i)
ε = H(e)

ε in terms of a yield function of the type4515

f = Jγ

√︂
3
2∥Σ̃ν∥η − (Jσth + Jγ(Aν + Zν)[εp − ep]). In particular, according to the4516

theory of Anand et al. [15], it occurs that ε̇p = 0, if f < 0, and ε̇p > 0, if f = 0. This4517

approach is equivalent to the elasto-plastic problem in the Karush-Kuhn-Tucker4518

form, i.e.,4519

f ≤ 0, ε̇p ≥ 0, f ε̇p = 0, (6.59)

where ε̇p is determined by means of the consistency condition ε̇pḟ = 0, when f = 0.4520

If, in our work, we had followed the approach outlined by Anand et al. [15], we4521

would have found a very complicated evolution law for εp, especially from the com-4522

putational point of view. To circumvent this technical difficulty, we have proposed4523

a modification to the model, i.e., we have assumed H(i)
ε = H(e)

ε /= 0 and, in order4524

to obtain an evolution law for εp of the type Jτpε̇p = f (cf. Equation (6.52)), with4525

f defined as done by Anand et al. [15], we have exploited the “freedom” we have to4526

express H(e)
ε as in (6.53). A last comment pertains to the terms λp/J and Jσth fea-4527

turing in Equation (6.54): if λp and σth are such that λp/Je ≡ Λp and Jeσth ≡ Σth4528

are constants, then it holds that λp/J = Λp/Jγ and Jσth = JγΣth. In this case, Jγ4529

does not feature explicitly in Equation (6.54), which becomes ε̇p = Λpf̃, where we4530

have set f̃ ≡ f/Jγ. In this case, Σth acquires the meaning of the yield stress that4531

2Note that, differently from what is assumed here, Anand et al. [15] hypothesise that the
conventional yield stress is a monotonically decreasing function of εp, because they are interested
in studying the phenomenon of strain-softening.
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is used in the yield criteria formulated in terms of the norm of the Mandel stress4532

tensor (see e.g. [124]). We remark, however, that solving ε̇p = Λpf̃ in lieu of (6.54)4533

leads, in our work, to no appreciable differences in the simulation results.4534

6.5 Model Equations and benchmark test4535

In this section, we summarise all the model equations and their correspond-4536

ing unknowns, we highlight the fundamental hypotheses adopted to simplify our4537

simulations, and we describe the benchmark problem used for testing our model.4538

6.5.1 Summary of the model equations4539

The first equation of the problem is given by (6.51a), i.e., the momentum balance4540

law for the mixture as a whole, and its associated unknown is given by the solid4541

phase motion, χ. The second equation determines the pressure, p, and is supplied4542

by the mass balance law (6.3d), in which, coherently with (6.51b), Q is expressed4543

as Q = −KGradp. The right-hand-side of (6.3d) is set equal to zero on the basis of4544

the assumption that, in tumours, the mass densities ρs0 and ρf0 are approximately4545

the same. The third equation is the mass balance of the proliferating cells (6.3a),4546

and its corresponding unknown is the mass fraction ωp. The fourth equation is in4547

the mass fraction of the nutrients, ωN, and is obtained from (6.3c) by using the4548

identities Φf = J − JγΦsν and Y N = −ρf0DGradωN. The fifth equation descends4549

for the mass balance law of the solid phase and, by assigning the mass source Rs4550

phenomenologically, it puts a constraint on the growth parameter, γ, which is thus4551

bound to comply with (6.18). Except for the sources and sinks of mass, which are4552

defined in a slightly different way in our work, the five equations mentioned so far4553

are the same as those studied by Mascheroni et al. [166] and Di Stefano et al. [62].4554

The evolution of the plastic distortions is described by the dynamic equation4555

(6.54), which determines εp, and by the constraint on Fp placed by (6.15). These4556

add two more equations to the previous five. Finally, the equation for the micro-4557

scale “plasticity” variable, ep, is supplied by (6.57).4558

In conclusion, by putting together all the laws enumerated up to now, we obtain4559

4560

Div(Pf + Ps) = 0, (6.60a)
Div (KGradp) = J̇ , (6.60b)
ρs0JγΦsνω̇p = Rpn +Rfp −Rsωp, (6.60c)
ρf0[J − JγΦsν ]ω̇N + ρf0Q GradωN = Div (ρf0D GradωN) +RNp +RsωN, (6.60d)

γ̇ = Rs

3ρs0Φsνγ2 , (6.60e)
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ε̇p = λp

J

{︃(︃
Jγ

√︂
3
2∥Σ̃ν∥η − Jσth

)︃
− Jγ(Aν + Zν)[εp − ep]

}︃
, (6.60f)

Ḟp =
(︃√︂

3
2 ε̇pη−1Nν

)︃
Fp, (6.60g)

Div (γBνBpGradep) − γ3Aνep = −γ3Aνεp, (6.60h)

which constitutes a system of 18 scalar equations in the 18 unknowns4561

U = {χ, p, ωp, ωN, γ, εp,Fp, ep}. (6.61)

For ensuring the non-negativity of ε̇p at all times and at all points, we solve (6.60f)4562

numerically by taking the positive part of its right-hand-side. Moreover, to close4563

the problem, we prescribe the permeability tensor and the diffusion tensor [138, 19,4564

62, 80],4565

K = Jk0C
−1, k0 = k0R

[︄
J − JγΦsν

Jγφf0

]︄m0

exp
(︄
m1

2

[︄
J2 − J2

γ

J2
γ

]︄)︄
, (6.62a)

D = Jd0C
−1, d0 = J − JγΦsν

J
d0R, (6.62b)

as well as the sources and sinks of mass [166, 62], i.e.,4566

Rpn = −Jζpn

⟨︃
1 − ωN

ωNcr

⟩︃
+

JγΦsν

J
ωp, (6.63a)

Rfp = Jζfp

⟨︃
ωN − ωNcr

ωNenv − ωNcr

⟩︃
+

[︄
1 − δ1⟨℘⟩+

δ2 + ⟨℘⟩+

]︄
J − JγΦsν

Jφf0

JγΦsν

J
ωp, (6.63b)

Rs = Rfp +Rnf , (6.63c)

Rnf = −Jζnf [1 − ωp]JγΦsν

J
, (6.63d)

RNp = −JζNp
ωN

ωN + ωN0

JγΦsν

J
ωp. (6.63e)

Since the expressions of Rpn, Rfp, Rnf , and RNp have been already commented in4567

previous works [166, 62], we do not spend any more words here on their derivation.4568

We recall, however, that the operator ⟨ · ⟩+ returns the positive part of its argument,4569

and that ωNcr denotes a critical value of the mass fraction of the nutrients, below4570

which the proliferating cells tend to be necrotic (that is, Rpn < 0), whereas ωNenv4571

represents the mass fraction of the nutrients in the “environment”. Both ωNenv and4572

ωNcr are regarded as constant parameters in our work, and it is assumed that the4573

condition ωNenv > ωNcr is always respected, so that also Rfp is deactivated, i.e.,4574

Rfp = 0, for ωN < ωNcr. Moreover, looking at the definition of Rfp, and bearing in4575

mind that, for ωN > ωNcr, Rfp describes the positive variation of mass of the tissue’s4576

solid phase, we notice that the factor4577 [︄
1 − δ1⟨℘⟩+

δ2 + ⟨℘⟩+

]︄
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accounts for mechanotransduction through the action of the stress ⟨℘⟩+. Compar-4578

ing this result with the works of Mascheroni et al. [166] and Di Stefano et al. [62],4579

we notice that our model suggests a slightly different interpretation of mechan-4580

otransduction. Indeed, while Mascheroni et al. [166] and Di Stefano et al. [62]4581

prescribe ℘ as ℘ = −(1/3)tr(gσsc), where σsc = J−1PscF
T is the constitutive part4582

of the solid phase Cauchy stress, and, accordingly, Psc is defined by4583

Psc = Jγ

⎛⎝ρs0Φsνg−1∂Ψ̂(st)
s

∂Fe
(F F−1

γ F−1
p )Fp

−TF−T
γ

⎞⎠ ≡ Psc(F ,Fγ,Fp), (6.64)

in our approach ℘ is taken as ℘ = −(1/3)tr(gσeff) (see also [56]), with4584

σeff = σsc + 1
Je

g−1Fe
−TηΣ(n-st)

ν Fe
T

= 1
Je

g−1Fe
−TηΣ(st)

ν Fe
T + 1

Je
g−1Fe

−TηΣ(n-st)
ν Fe

T

= 1
Je

g−1Fe
−TηΣνFe

T. (6.65)

In other words, while the works done by Mascheroni et al. [166] and Di Stefano4585

et al. [62] the stress used to express the mechanotransduction is the classical σsc,4586

we propose here to adopt the effective Cauchy stress, σeff, which captures both4587

σsc and the non-standard, purely configurational contribution Σ(n-st)
ν . Our point is4588

that, since in our approach Σν is (power-)conjugate to the growth rate γ̇/γ (through4589

Rs) and to ε̇p (see (6.32)), it might be a more natural representative of the stress4590

responsible for modulating growth. This consideration notwithstanding, for the4591

parameters chosen in our simulations, the contribution of Σ(n-st)
ν is very marginal4592

with respect to the standard measures of stress, and its contribution is thus not4593

much appreciable.4594

6.5.2 Benchmark problem4595

The benchmark problem is essentially the same as the one computed in Di4596

Stefano et al. [62], with the major difference that we are now considering also plastic4597

distortions and the role of micro-plasticity. Hence, by adapting a study originally4598

designed by Ambrosi and Mollica[10], we consider the case of volumetric growth4599

in a cylindrical sample of isotropic material. For this purpose, we introduce the4600

systems of cylindrical coordinates (R,Θ, Z) and (r, θ, z), which cover the reference4601

and current configuration, respectively. For both systems, the first coordinate is4602

radial, the second one is circumferential, and the third one is axial.4603

We assume that the radius of the specimen is preserved, and that only its4604

length varies along the axial direction. Hence, we eliminate any rigid rotation4605

about the principal axis. These restrictions imply that the momentum balance law4606
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(6.60a) reduces to a scalar equation in Z, and that the deformation gradient tensor4607

becomes F = er ⊗ ER + eθ ⊗ EΘ + (1 + ∂u
∂Z

)ez ⊗ EZ , where u is the field of axial4608

displacements. We note that {ER,EΘ,EZ} and {er, eθ, ez} are the co-vector and4609

vector bases associated with the system of cylindrical coordinates (R,Θ, Z) and4610

(r, θ, z), respectively.4611

We impose the following boundary conditions on Equations (6.60a)–(6.60h)4612

(−Jpg−1F−T + Psc).NA = 0, on (∂B)Left and (∂B)Right, (6.66a)
p = 0, on (∂B)Left and (∂B)Right, (6.66b)
(−KGrad p).NC = 0, on (∂B)C, (6.66c)
(−ρfDGradωN).NC = 0, on (∂B)C, (6.66d)
ωN = ωNenv, on (∂B)Left and (∂B)Right, (6.66e)
(γBνBpGradep).N = 0, on ∂B, (6.66f)

where ∂B = (∂B)Left ∪ (∂B)C ∪ (∂B)Right, (∂B)C is the lateral boundary of the4613

cylinder, (∂B)Left and (∂B)Right are the left and right surface cross-sections at4614

Z = −L/2 and Z = L/2, respectively, and L is the initial length of the cylin-4615

der. Moreover, NA, NC, and N are fields of unit vectors normal to (∂B)Left and4616

(∂B)Right, (∂B)C, and ∂B, respectively.4617

Equations (6.66a) and (6.66b) mean that the left and right ends of the cylinder4618

are free boundaries. The relations (6.66c) and (6.66d) are enforced to express4619

that (∂B)C is undeformable and impermeable to the fluid and to the nutrients,4620

respectively. Equation (6.66e) is a Dirichlet condition specifying that there always4621

exists a constant availability of nutrients on the boundaries (∂B)Left and (∂B)Right.4622

Finally, the boundary condition (6.66f) is introduced following Anand et al. [15].4623

To complete the mathematical formulation of the problem, we prescribe the4624

initial conditions,4625

χr(R,Θ, Z,0) = R, (6.67a)
χϑ(R,Θ, Z,0) = Θ, (6.67b)
χz(R,Θ, Z,0) = Z, (6.67c)
p(R,Θ, Z,0) = 0, (6.67d)
ωN(R,Θ, Z,0) = ωNenv, (6.67e)
γ(R,Θ, Z,0) = 1, (6.67f)
ωp(R,Θ, Z,0) = 1, (6.67g)
εp(R,Θ, Z,0) = 0, (6.67h)
ep(R,Θ, Z,0) = 0, (6.67i)

with R ∈ [0, Rb], Θ ∈ [0,2π[ and Z ∈ [−L/2, L/2]. The conditions (6.67a)–(6.67i)4626

have to be valid in the whole domain B.4627
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The material parameters k0R, m0, m1, and d0R, the coefficients ζpn, ζfp, ζnf , and4628

ζNp as well as the constants ωNenv, ωNcr, ωN0, δ1, δ2, σth, and λp are given in Table4629

6.1.4630

In Table 6.1, the length of the cylindric specimen, L, and the radius of its4631

cross section, Rb, are chosen within a plausible physical range. However, it is4632

necessary to motivate the choice of the parameters ωNenv, ωNcr, and ωN0, which are4633

all taken from Di Stefano et al. [62]. These quantities are adapted from [166],4634

where they were set equal to ωNenv = 7.0 · 10−6, ωNcr = 2.0 · 10−6, and ωN0 =4635

4.2 · 10−6, respectively. With the exception of ωNcr
3, in the work of Mascheroni et4636

al. [166] these values come from experiments performed on tumour spheroids and4637

associated with geometry, size, diffusion length scales and nutrients’ characteristic4638

mass fractions that are very different from those considered in our work. Indeed,4639

an essential feature of the benchmark problem investigated by Mascheroni et al.4640

[166] is that, because of the spherical geometry of the tumour, and because of the4641

nutrients being distributed homogeneously on the tumour’s surface, the diffusion of4642

the nutrients occurs isotropically, from the boundary to the center of the spheroid,4643

in radial direction. In our problem, instead, the nutrients can diffuse only along the4644

axial direction of the tumour, and they have to travel the length L, which is much4645

larger than the radius, of about 20 µm, of the spheroids considered Mascheroni et4646

al. [166]. Due to these geometric and size aspects, if we used the values of ωNenv,4647

ωNcr and ωN0 suggested Mascheroni et al., we would generate a situation in which4648

the replenishment of the nutrients “eaten” by the cells would be too slow for the4649

tumour to grow. Indeed, especially in the middle of the tumour, the nutrients’4650

mass fraction would go below the threshold value, ωNcr, after few hours. Therefore,4651

to avoid a fast inhibition of growth, we have increased the value of ωNenv of three4652

orders of magnitude in our experiment in silico. Note that there is a certain freedom4653

in the choice of ωNenv, since prescribing its value amounts to preparing the bath4654

of nutrients in which the tumour is immersed. This freedom notwithstanding, the4655

value assigned to ωNenv should take into account the characteristic length of the4656

tumour —in our case, L— in order to ensure that the effects of growth remain4657

active over a sufficiently long time scale. In principle, ωNcr and ωN0 should be4658

determined experimentally. Still, since we are not aware of any experimental value4659

of ωNcr, we have calibrated it so that ωNcr be smaller than ωNenv, but big enough to4660

allow for a transition from the stage of tumour growth, for ωNcr < ωN ≤ ωNenv, to4661

the stage of no growth, for ωN ≤ ωNcr < ωNenv. This reasoning has led us to choose4662

ωNcr three orders of magnitude greater than the value assigned Mascheroni et al.4663

[166]. Finally, the value given to ωN0 in our work (see Table 6.1) is two orders of4664

3Note that the values attributed to ωNcr by Mascheroni et al. [166] for all the considered
studies are never referenced, the only exception being the growth of a tumour spheroid. In this
case, however, the reference is a typographical error.
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magnitude greater than the one prescribed by Mascheroni et al. [166]. This choice4665

allows us to be consistent with the scale of the nutrients’ mass fraction imposed in4666

our work.4667

6.6 Some computational aspects4668

The system (6.60a)–(6.60h) features both ordinary differential equations (ODEs)4669

in time, and partial differential equations (PDEs). All the ODEs of our model, in-4670

cluding those obtained after that the finite element discretisation of the PDEs is4671

performed, have been discretised adaptively in time, and have been solved by means4672

of a four-step Backward Differentiation Formula (BDF4). This is an implicit linear4673

multistep method, which generalises the implicit Euler method. Since the BDF44674

is implicit, it requires in general the solution of nonlinear equations at each time4675

integration step. The BDF4 is available in COMSOL Multiphysics®, which has4676

been used to run our simulations.4677

The PDEs have been put in weak form and solved by means of Finite Element4678

techniques. In particular, classical methods have been used for (6.60b), (6.60d), and4679

(6.60h), while a “special treatment” has been reserved to the momentum balance4680

law (6.60a), for which the Hu-Washizu method [33] has been employed.4681

Looking more closely at the PDEs (6.60b), (6.60d), and (6.60h), we notice that4682

(6.60b) is a generalised Poisson equation in the pressure, p, with a time-dependent4683

right-hand-side, J̇ , which represents the volume change of the solid phase due to4684

the changes in porosity accompanying the flow of the fluid. Equation (6.60d),4685

instead, is a nonlinear diffusion-advection-reaction equation in the mass fraction of4686

the nutrients, ωN, with the nonlinearity being nested in the reaction terms, RNp and4687

Rs. Both for (6.60b) and for (6.60d), the Finite Element Method leads to a set of4688

ODEs in which the unknowns are the nodal pressures and the nodal mass fractions4689

of the nutrients, respectively. Finally, Equation (6.60h) is an equation of Helmholtz4690

type and, in this case, the Finite Element method yields a set of algebraic equations4691

in the nodal values of ep, which are anyway time-dependent. In the following, we4692

do not fuss over the procedure for obtaining the set of nodal equations associated4693

with (6.60b), (6.60d), and (6.60h), since such procedure is rather standard.4694

To sketch the formulation of the Hu-Washizu method, we add together the4695

expressions of the stress tensors Pf and Ps, and we notice that the weak form of4696

the momentum balance law (6.60a) admits the compact form4697 ∫︂
B

(Pf + Ps) : g Grad Us =
∫︂

B

(︂
−Jp g−1F−T + Psc

)︂
: g Grad Us = 0, (6.68)

where Us is the virtual velocity of the solid, expressed as a function of the points4698

X of B.4699

One of the main drawbacks of this formulation is that, once a Finite Element4700

scheme is used for solving (6.68), the “limitations” of the interpolations adopted4701
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for χ [33], F , and Fp are transferred to Psc through its constitutive representation,4702

Psc(F ,Fγ,Fp). This ill behaviour persists even increasing the order of the basis4703

functions used for the discretisation of χ, and may lead to a remarkable deterio-4704

ration of the resolution of Psc, with consequent loss of accuracy of the employed4705

numerical method. A possible way to contain the occurrence of the just depicted4706

numerical phenomenon is supplied by the Hu-Washizu method [33], which we im-4707

plement for our purposes in its three-field-formulation. Although the Hu-Washizu4708

method is well known in the computational community, we briefly explain here how4709

we adapt it to the case under investigation in this work.4710

Together with the motion, χ, which is an unknown of the model, we introduce4711

two tensor-valued auxiliary variables, which we regard as additional independent4712

fields of our model: these are an auxiliary “deformation gradient tensor”, F HW,4713

and an auxiliary first Piola-Kirchhoff stress tensor, P HW
sc (note that the superscript4714

“HW” stands for “Hu-Washizu”). Although being independent, F HW and P HW
sc4715

must be consistent with the true deformation gradient tensor and with the true4716

first Piola-Kirchhoff stress tensor, respectively, and are thus bound to satisfy the4717

constraints4718

F HW = F , (6.69a)
P HW

sc = Psc(F HW,Fγ,Fp). (6.69b)

To proceed with the Hu-Washizu method, we rephrase Equations (6.69a) and4719

(6.69b) in weak form. Hence, we write4720 ∫︂
B

{︂[︂
F − F HW

]︂
:Π +

[︂
Psc(F HW,Fγ,Fp) − P HW

sc

]︂
:Λ
}︂

= 0, (6.70)

where Π and Λ denote the virtual variations of P HW
sc and F HW, respectively, and4721

represent a virtual stress rate and a virtual velocity gradient. Equation (6.70) is4722

now appended to (6.68), which has to be reformulated in terms of the Hu-Washizu4723

auxiliary fields, thereby obtaining4724 ∫︂
B

{
[︂
P HW

sc − (det F HW)pg−1(F HW)−T
]︂
:g Grad Us +

[︂
F − F HW

]︂
:Π

+
[︂
Psc(F HW,Fγ,Fp) − P HW

sc

]︂
:Λ} = 0. (6.71)

After performing the interpolation of all the fields introduced so far, the algebraic4725

form of (6.71) consists of a block system, in which one block corresponds to the4726

balance of momentum, one block is associated with (6.69a), and one with (6.69b).4727

6.7 Results4728

To weigh the effects of the non-local theory of remodelling on the benchmark4729

problem presented in Section 6.5.2, we perform two different simulations: one is4730
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done by excluding micro-plasticity, and is thus said to be “standard”; the other4731

one, instead, accounts for micro-plasticity, and refers to the “non-standard” model.4732

The standard model (ST) is obtained by setting Aν , Bν , and Zν equal to zero,4733

so that Equation (6.60h) is always satisfied and the evolution law for εp only takes4734

into account the first term of the right-hand-side of (6.60f), with Σν ≡ Σ(st)
ν . In the4735

non-standard model (NST), the parameters Aν , Bν , and Zν are different from zero4736

(see Table 6.2), and the full system of equations (6.60a)–(6.60h) has to be solved.4737

Since, to the best of our knowledge, no measurements for Aν , Bν , and Zν are4738

available in the scientific literature on soft tissues, we have chosen such parameters4739

after several trials. For this reason, the values used to obtain Figures 6.4–6.3 may4740

be unrealistic for describing a true biological situation. Moreover, we remark that4741

the convergence of the system (6.60a)–(6.60h) was achieved only for Zν ≤ 1 and4742

Aν > Bν , whereas our computations never converged for Zν > 1, regardless of the4743

tested values of Aν and Bν . We also emphasise that, for the cases in which the4744

model converged, the results of the simulations featured no remarkable difference.4745

To report the results of our model, we display the numerical solutions of the4746

displacement, the growth parameter, γ, the mass fraction of the proliferating cells,4747

ωp, the pressure, p, and the axial component of the effective Cauchy stress tensor,4748

σzz
eff. We plot all these quantities versus the axial coordinate of the specimen, and4749

at the times t = 10 d and t = 20 d.4750

Figure 6.4 shows the displacement of the tumour (left panel) and the growth pa-4751

rameter, γ (right panel). Both quantities are computed only for the case of growth4752

without “plasticity” (remodelling) (NP), i.e., for Fp = I, εp = 0, ep = 0, and for4753

the case in which “plasticity” (remodelling) is active. Moreover, “plasticity” is ac-4754

counted for as prescribed by the non-standard model (NST). In fact, we could have4755

also used the standard one (ST), but it would have led to imperceptible differences4756

with respect to the non-standard model. As expected, both the displacement and4757

the growth parameter increase as time goes by, but we observe a drastic reduction4758

of their spatiotemporal evolution when remodelling is active. The results presented4759

in Figure 6.4 confirm the ones obtained by Mascheroni et al. [166] and Di Stefano et4760

al. [62], and have been re-computed with the purpose of highlighting the important4761

role that remodelling may play on growth.4762

To further investigate the possible role of remodelling on growth and, in par-4763

ticular, the switch from the standard to the non-standard approach, we study the4764

evolution of ωp (Figure 6.2), p (Figure 6.5), and σzz
eff (Figure 6.3).4765

Figure 6.2 displays, in the left panel, the progression of the mass fraction of4766

the proliferating cells, ωp, and, in the right panel, the absolute value of the differ-4767

ence between ωST
p and ωNST

p , which denote the mass fractions of the proliferating4768

cells computed with the standard model (ST) and the non-standard model (NST),4769

respectively. In the left panel, we notice that, at time t = 10 d, the differences be-4770

tween ωST
p and ωNST

p are irrelevant. However, at t = 20 d, a slight, yet appreciable,4771

difference starts to appear. We visualise this difference in the right panel of Figure4772
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6.2. Here, we notice that, due to the Dirichlet boundary condition imposed on ωp4773

at Z = L/2, such difference cannot be pronounced for values of the axial coordinate4774

tending to L/2. On the other hand, |ωST
p − ωNST

p | becomes relatively more visible4775

in the portion of the specimen in which growth is inhibited (see Figure 6.4(right)).4776

This is due to a limited availability of nutrients (data not shown).4777

In the left panel of Figure 6.5, we show the pressure, p, both for the ST model4778

and for the NST one. For both models, the same behaviour is attained, i.e., the4779

pressure drops from the tumour boundary towards its centre, where it takes neg-4780

ative values. In the right panel of Figure 6.5, we report the absolute value of the4781

difference, at time t = 20 d, between pST and pNST, i.e., the pressures computed4782

with the ST model and the NST model, respectively. The differences between pST
4783

and pNST are relatively small, but visible, in almost all of the half domain and4784

at both times. They are clearly zero at the Dirichlet boundary Z = L/2 and, at4785

t = 20 d, the maximum of |pST − pNST| is reached at a point between 0.4 cm and4786

0.5 cm.4787

Parameter Unit Value Equation Reference
L [cm] 1.000 — [62]
Rb [cm] 1.000 · 10−2 — [62]
k0R [mm4/(N s)] 0.4875 (6.62a) [138]
m0 [−] 0.0848 (6.62a) [138]
m1 [−] 4.6380 (6.62a) [138]
d0R [m2/s] 3.200 · 10−9 (6.62b) [216]
σth [Pa] 1.000 · 10−7 (6.53) [112]
λp [m s/kg] 7.000 · 10−7 (6.54) [112]
λ [Pa] 1.333 · 104 (6.42) [220]
µ [Pa] 1.999 · 104 (6.42) [220]
ωNcr [−] 1.000 · 10−3 (6.63a) [62]
ωNenv [−] 7.000 · 10−3 (6.63b) [62]
ωN0 [−] 1.480 · 10−4 (6.63e) [62]

Table 6.1: Numerical values of the parameters used both for the standard and for
the non-standard model.

4788 Moreover, in Figure 6.3, the axial component of the constitutive part of the4789

Cauchy stress tensor, σzz
sc , is shown. Indeed, due to the imposed boundary con-4790

ditions and the symmetry restrictions of the considered problem, the balance of4791

momentum (6.60a) amounts to requiring −p+σzz
sc = 0 everywhere in the specimen.4792

Hence, it holds that σzz
sc = p. In addition, the axial component of the stress used4793

to model the mechanotransduction, σzz
eff, is different from σzz

sc , as it features ∂ep/∂Z4794
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(see Equation (6.65)). However, since this derivative is very small, it occurs that4795

σzz
eff can be safely approximated with σzz

sc and, thus, with p. The above discussion4796

answers the research question 6.1.4797

A last comment concerns the evolution of ep and εp. As reported in Figure 6.6,4798

both εp and ep are increasing functions of time and space. If we focus on εp, we4799

note that, as time goes by, the remodelling strains augment and accumulate in a4800

neighbourhood of the boundaries of the specimen. This is highlighted by the fact4801

that the slope of the curves corresponding to εp tends to raise when it approaches4802

the edge. However, as predicted by the theory, ep plays a smoothing role on the4803

remodelling distortions and, in fact, it distributes itself more uniformly along the4804

specimen. A relevant aspect of this result is that, while the curves corresponding to4805

εp at t = 10 d and t = 20 d are almost coincident at the centre of the specimen, the4806

curves determining ep are distinguishable from one another. The above discussion4807

answers the research question 6.2.4808

6.8 Conclusions4809

In this work, we study an idealised biological tissue that grows and remod-4810

els. As tissue we consider a tumour in avascular stage, and we assume that its4811

remodelling —or structural reorganisation— occurs through a two-scale plasticity-4812

like phenomenon. Following [15], we distinguish a coarse and a fine scale, and4813

we resolve this phenomenon, at the coarse scale, by means of the accumulated4814

remodelling strain, εp, and, at the fine scale, by means of ep. The latter is the4815

representative of the so-called micro-“plasticity” and, being related to εp through4816

a Helmholtz-like equation, it makes εp non-local [15]. Within this framework, we4817

have set ourselves the scope of evaluating if, how, and to what extent the micro-4818

“plasticity” influences the growth of the tumour. In our approach, such influence4819

can occur both directly and indirectly. The direct way is due to the fact that the4820

effective Cauchy stress, σeff, modulates the source of mass Rfp, and thus also Rs,4821

by giving rise to mechanotransduction. The indirect way, instead, manifests it-4822

self through the slight, and to a certain extent visible, changes that the non-local4823

plastic-like distortions induce in some of the physical quantities that characterise4824

the growth of the tumour, as reported in Section 6.7.4825

It is important to emphasise that the results shown in this work (see Figures4826

6.4–6.3) are obtained for numerical values of the “non-standard” parameters Aν , Bν ,4827

and Zν (see Table 6.2), which could be far beyond the physical range. Therefore,4828

for the time being, our results aim at being a qualitative contribution to a unified4829

strain-gradient theory of growth and remodelling. However, they are quantitative4830

in evaluating the impact of the considered theory on growth.4831

We remark that, following an idea put forward by Epstein [66], Di Stefano4832

et al. [62] proposed a model of strain-gradient growth, in which the evolution4833
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of γ is governed by a generalised diffusion-reaction equation. Such equation was4834

obtained by accounting for the growth-induced scalar curvature, κγ
4, which features4835

the spatial derivatives of γ up to the second order. However, in that model we4836

considered no remodelling. In the present work, instead, we have neglected the role4837

of κγ, but we have focussed our attention on strain-gradient remodelling in order4838

to quantify its effect on growth. The role of κγ in the current framework can be4839

recovered by simply re-activating rpγ and rnγ in (5.9a) and (5.9b) (see Di Stefano4840

et al. [62] for the definition of these terms as functions of κγ).4841

Apart from the obvious fact that the topics under study necessitate further4842

investigations from our side, two comments are in order: firstly, we have not hy-4843

pothesised a strain-softening behaviour of the considered material, and no formation4844

of shear bands can be observed that justifies from the outset the use of a strain-4845

gradient regularisation; secondly, the benchmark problem adopted in this work4846

might be inappropriate, since it does not produce the desired/expected localisation4847

of the accumulated plastic strain, εp, which calls for the employment of a strain-4848

gradient theory. Nevertheless, our model is able to capture the regularising effect4849

that the microscale descriptor ep has on the accumulated remodelling distortions4850

(cf. Figure 6.6).4851

It is known that the internal structural changes occurring in heterogeneous ma-4852

terials influence their overall macroscopic behaviour. For example, in bones, the4853

change of orientation of the lamellae’s collagen fibres modifies the bone’s longitudi-4854

nal effective Young’s modulus [229, 205]. In the present work, we attempt to know4855

how, and to what extent, the microscopic plastic-like (remodelling) effects are sig-4856

nificant for the macroscopic evolution of the tissue. To the best of our knowledge,4857

there are no experimental studies showing the influence of the microscopic plastic4858

effects on the tissue behaviour. However, one can think of an experiment where, at4859

some level, there can be a relatively strong localisation of the accumulated “plastic”4860

strain, ep, because of the presence of constraints (e.g. contact of the tissue with4861

much stiffer materials). In this respect, we hope that our work contributes to un-4862

derstand the interactions between growth and remodelling by merging the theories4863

of multiphasic materials and of strain-gradient plasticity.4864

To the best of our understanding, another important difference between our4865

work and previous publications (see e.g. [50, 48, 47]) resides in the definition of the4866

internal and external mechanical powers. Indeed, looking for instance at [48], these4867

powers feature only the generalised velocities associated with the “classical” degrees4868

of freedom of a body5, while the time derivatives of the tensors associated with the4869

4The growth distortions, Fγ = γI, induce the Riemannian metric tensor Cγ = γ2G, which
yields Christoffel symbols that allow to determine a Levi-Civita connection with nontrivial fourth-
order curvature tensor [165, 106] and, thus, with nontrivial associated Ricci curvature tensor, Rγ .
Hence, it is possible to define the scalar curvature as κγ := Rγ :C−1

γ (see [62] for details).
5These are the body velocity, V , the time derivative of the deformation gradient tensor, Ḟ ,
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body’s structural changes appear in the study of the dissipation inequality through4870

the derivative of the body’s Helmholtz free energy density. In our case, instead,4871

following a philosophy outlined in other papers [122, 44, 60, 123, 15], we introduce4872

the structural kinematic descriptors both constitutively, i.e., as arguments of the4873

solid phase Helmholtz free energy density, and in the formulation of the overall4874

virtual powers of the problem, that is, jointly with the “classical” ones.4875

In our work, the tensor Σ̃ν is entirely determined by mechanical quantities4876

(cf. Equation (6.33a)) and this property is inherited by its associated direction4877

tensor, N ν = Σ̃ν/∥Σ̃ν∥η. Consequently, the hypothesis of co-directionality of D̃p4878

and Σ̃ν implies that the direction of the plastic flow is exclusively dictated by4879

mechanical stress, the latter being augmented by the non-standard contribution4880

Σ̃(n-st)
ν . However, in more general situations, it is possible to define generalised4881

Mandel stress tensors featuring bio-chemical contributions, i.e., depending explicitly4882

on the mass fraction of the nutrients (and on its gradient). In such cases, tensor N ν4883

defines the direction of the plastic flow on the basis of chemo-mechanical guidance.4884

A last comment is on the design of an adequate benchmark problem. Indeed,4885

when Anand et al. [15] developed their theory, they wrote that ep “is introduced4886

for the purpose of regularisation of numerical simulations of shear band formation4887

under strain softening conditions”. To achieve this objective, they called for the4888

concept of micro-scale plasticity, and admitted a physics described by εp, ep, and4889

Gradep. Then, in order to determine these quantities, they established a thermody-4890

namically consistent framework, rather than simply improving the equations that4891

were problematic from the numerical point of view. In our work, we have extended4892

such thermodynamic set-up to a growth problem, by admitting that its physical4893

meaning goes beyond the necessity of solving numerical issues. Nevertheless, we4894

have seen only a very marginal impact of this modelling choice on our results and we4895

argue that it is of fundamental importance to design benchmark problems capable4896

of capturing the physics behind it. This is part of our ongoing research.4897

We summarise the answers to the research questions 6.1—6.3 in the following4898

way:4899

• The result obtained from the numerical simulations of the model presented4900

in this chapter do not show significant differences with the results obtained4901

by numerically simulating the “standard” model. With “standard model” we4902

refer to the one in which the contributions associated with the strain gradient4903

formulation are neglected.4904

• We note that, as time goes by, the accumulated remodelling strain εp increases4905

as it approaches the boundary of the specimen, with a rapidly raising of its4906

slope. However, as predicted by the theoretical framework outlined in this4907

and the time derivative of the second gradient of the deformation, i.e., GradḞ [48].
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chapter, the micro-scale plasticity parameter ep guarantees a smoothing of4908

the remodelling distortions and, in fact, it distributes itself more uniformly4909

along the specimen.4910

• To properly clarify the type of remodelling studied in this chapter, we con-4911

sider, as an example, the inelastic rearrangement of a multicellular spheroid,4912

following an experiment discussed in [86].4913

Figure 6.2: Left panel: spatial profile of the mass fraction of the proliferating
cells, ωp. Since the problem is symmetric, only the half [0, L/2] of the domain is
shown. Right panel: spatial profile of the absolute value of the difference between
ωST

p and ωNST
p , i.e., the mass fractions of the proliferating cells computed with

the standard model (ST) and the non-standard model (NST), respectively. The
picture refers to the portion of the half domain in which |ωST

p − ωNST
p | is greater

than, approximatively, 2.25 · 10−3, and is computed at time t = 20 day.

4914
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Parameter Unit Value Equation Reference
δ1 [−] 7.138 · 10−1 (6.63b) [167]
δ2 [Pa] 1.541 · 103 (6.63b) [167]
ζpn [kg/(m3 s)] 1.500 · 10−3 (6.63a) [45]
ζfp [kg/(m3 s)] 1.343 · 10−3 (6.63b) [45]
ζnf [kg/(m3 s)] 1.150 · 10−5 (6.63d) [45]
ζNp [kg/(m3 s)] 3.000 · 10−4 (6.63e) [41]
Aν [Pa] 1.0 · 10−9 (6.33c)
Bν [Pa m2] 1.0 · 10−14 (6.33d)
Zν [Pa] 1.0 · 10−2 (6.60f)

Table 6.2: Numerical values of the parameters used both for the standard and for
the non-standard model.

Figure 6.3: Left panel: spatial profile of the axial component of the effective Cauchy
stress tensor, σzz

eff. Right panel: spatial profile of the absolute value of the difference
between σ

zz(ST)
eff and σ

zz(NST)
eff , which denote the stress computed with the standard

model (ST) and the non-standard model (NST), respectively. The picture is com-
puted at time t = 20 day. Since the problem is symmetric, in both panels only the
half [0, L/2] of the domain is shown.
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Figure 6.4: Left panel: spatial profile of the displacement. Right panel: spatial
profile of the growth parameter, γ. Since the problem is symmetric, in both panels
only the half [0, L/2] of the domain is shown.

Figure 6.5: Left panel: spatial profile of the pressure, p. Right panel: spatial profile
of the absolute value of the difference between pST and pNST, which denote the
pressure computed with the standard model (ST) and the pressure computed with
the non-standard model (NST). The picture is computed at time t = 20 day. Since
the problem is symmetric, in both panels only the half [0, L/2] of the domain is
shown.
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Figure 6.6: Spatial profiles of the accumulated remodelling strain εp and of the
microscale plasticity ep. Since the problem is symmetric, only the half [0, L/2] of
the domain is shown.
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Chapter 74915

Growth and remodelling in the4916

light of of Noether’s Theorem4917

The work reported in this chapter has been previously published in [113].4918

7.1 Internal time in growth mechanics4919

Starting from the observation that the growth of a body breaks the time transla-4920

tion symmetry of the body’s dynamics, we determine a scalar field, called internal4921

time, that defines an indicator of the intrinsic time scale of the growth-related4922

body’s structural evolution. By recasting the theory of growth for monophasic me-4923

dia within a variational framework, we obtain the internal time as the solution of4924

a partial differential equation descending from Noether’s Theorem. We do this by4925

considering two approaches, one formulated in terms of internal variables and one4926

adopting the concept of augmented kinematics.4927

The mechanics of volumetric growth studies the variation of mass and the con-4928

comitant structural evolution of biological tissues [210, 222, 72]. Such processes are4929

often conceived as anelastic, and are described by a generally non-integrable tensor4930

field, Fγ, referred to as growth tensor.4931

The role of Fγ in the modelling of growth is not unique, and its interpretation4932

depends on the theory within which it is introduced. To the best of our knowl-4933

edge, there exist at least two ways of interpreting Fγ: it can be viewed either as an4934

internal variable (see e.g. [72]) or as a kinematic variable (see e.g. [60]). The con-4935

ceptual difference between these two approaches affects all the relations governing4936

the dynamics of a body, especially the one representing the evolution of its internal4937

structure.4938

The way in which the dissipation is studied in [72] and [60] plays a major4939

role in this work. In the sequel, indeed, we employ the dissipation inequality to4940

show that a growing body possesses an intrinsic time scale, defined by the chosen4941
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theory. To this end, we take inspiration from Vakulenko’s concept of “endochronic4942

thermodynamics” [227, 176], and we demonstrate that the body’s intrinsic time4943

scale is related to a generalised force, hereafter denoted by F0 and termed time-like4944

inhomogeneity force [168]. In our framework, F0 plays a role similar to that played4945

by the material inhomogeneity forces in Eshelby’s theory of inclusions [74] and,4946

more generally, in the mechanics of materials with inhomogeneities [168], as is the4947

case of growing media [72].4948

Vakulenko’s theory addresses the thermodynamics of anelastic processes [227,4949

176], and is said to be “endochronic” since it associates a given anelastic process4950

with a scalar-valued function, the “thermodynamic time”, defined from the outset4951

as the time integral of a suitable function of the entropy production [176].4952

Quite differently, in our work we identify the internal time of growth of a body,4953

hereafter denoted by τ , with the solution of the partial differential equation [117]4954

N0(τ) := H τ̇ − (P Tv) Grad τ − F0 τ = 0, (7.1)

where H is the body’s total energy density, P is the first Piola-Kirchhoff stress4955

tensor and v is the Lagrangian velocity field.4956

Equation (7.1) was deduced in [117] as a consequence of Noether’s Theorem,4957

and τ was defined as a deformation of time depending on material points and on4958

time itself. More specifically, τ was introduced to highlight how the occurrence of4959

growth in a body is a symmetry breaking, spoiling the invariance of the body’s4960

dynamics under time translations and yielding the failure of the conservation of4961

energy [117]. This symmetry breaking results in the arising of F0 and manifests4962

itself as the loss of the homogeneity of time.4963

In this work, we deeply reformulate the mathematical framework of [117] and,4964

after polishing it from some formal imprecisions, we propose the following novelties:4965

(a) we retrieve Equation (7.1) within the two different pictures of growth given in4966

[72] and [60], respectively; (b) for both pictures, we compute explicitly the internal4967

time, τ , and we show that the quantity τc := 1 − τ/τ0, where τ0 is a reference4968

value, is analogous to endochronic time in that it increases monotonically in time4969

and may thus represent an intrinsic time-scale associated with growth; (c) within4970

the formulation presented in [60], we describe mechanotransduction through the4971

conceptually systematic approach of Theoretical Mechanics. Our results also apply4972

to remodelling.4973

7.2 Growth in monophasic continua4974

We consider the simplest possible formulation of the volumetric growth of a4975

body. In particular, we assume the body to be hyperelastic and we employ the4976

Bilby-Kröner-Lee decomposition of the deformation gradient tensor, i.e., F = ΦFγ,4977
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so that the body’s material response is described by the strain energy density4978

function4979

Ψ(X, t) = Ψ̂(F (X, t),Fγ(X, t)) = JγΨ̂ν(Φ(X, t)), (7.2)

where Φ := F F−1
γ is the elastic part of the deformation gradient tensor, Ψ̂ν is the4980

strain energy density expressed per unit volume of the body in its stress-free state,4981

and Jγ := det Fγ > 0.4982

In local form, and with respect to the body’s reference configuration, B, the4983

mass balance law is given by ϱ̇R = Π, where ϱR is the mass density of the body per4984

unit volume of B, the superimposed dot denotes partial differentiation with respect4985

to time, and Π is the source or sink of mass that describes growth. As in [72, 7], we4986

write ϱR = Jγϱν , where ϱν is the mass density of the body in its stress-free state,4987

and we require the conditions4988

J̇γ

Jγ

= tr(F−1
γ Fγ

̇ ) = 1
2tr(ĊγC−1

γ ) = Π
Jγϱν

=: Γ, (7.3)

where Cγ := F T
γ .Fγ is the metric tensor induced by Fγ, Γ measures the relative4989

variation of ϱR, and ϱν is regarded as a time independent field specified from the4990

outset.4991

Within the quasi-static limit, and neglecting all inertial and long-range body4992

forces, such as gravity, the local form of the momentum balance law reads4993

Div P = 0, (7.4a)

P = ∂Ψ̂
∂F

◦ (F ,Fγ) = Jγ

⎡⎣∂Ψ̂ν

∂Φ
◦ Φ

⎤⎦F−T
γ , (7.4b)

where Div is the material divergence operator and P is the first Piola-Kirchhoff4994

stress tensor. The balance law (7.4a) should be regarded as an equation for the4995

motion of the body, χ, whose partial derivatives define the components of F . To4996

determine Fγ, an additional, independent equation is needed.4997

7.2.1 Tensor Fγ viewed as internal variable4998

The tensor field Fγ shares several formal analogies with the inverse of the tensor4999

field referred to as “uniformity mapping” in [72]. Hence, if Fγ is regarded as an5000

internal variable, the theory exposed in [72] can be employed to develop a criterion5001

for determining an admissible evolution law for Fγ. In particular, by invoking the5002

representation theorem for tensor-valued functions [155], it can be shown that, in5003

the case of isotropy, Fγ satisfies5004

sym[CγLγ] =
2∑︂

n=0
(Jγ)−nβnE

nCγ, (7.5)
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where Lγ := F−1
γ Fγ

̇ , E is Eshelby’s stress tensor,5005

E := ΨIT − F TP ≡ F T
γ

⎛⎝ ∂Ψ̂
∂Fγ

◦ (F ,Fγ)
⎞⎠ , (7.6)

and {βn}2
n=0 are to be expressed constitutively through functions of Jγ, Ψ, the three5006

principal invariants of E, and other quantities, possibly required by phenomenology.5007

In Equation (7.5), the convention E0 = IT is used, where IT is the transpose of5008

the material identity tensor, I. Moreover, because of isotropy, ECγ is symmetric,5009

and so is also E2Cγ = ECγE
T [169]. Finally, the functions {βn}2

n=0 have to comply5010

with the dissipation inequality5011

DIV = Ψ tr(Lγ) − E : Lγ + Dnc ≥ 0. (7.7)

Here, Dnc is said to be the “non-compliant” contribution to the dissipation [106]5012

and is attributed to processes accompanying growth but not explicitly accounted5013

for in the model. Moreover, the subscript “IV” in DIV stands for “internal variable”5014

to remark that in Equation (7.7) Fγ is viewed as an internal variable.5015

In order to model the material inhomogeneities associated with growth, Epstein5016

and Maugin [72] introduce a Lagrangian density function, L, whose constitutive5017

representation depends on material points and time through Fγ. Hence, within the5018

quasi-static limit, in which the identification L = −Ψ applies, and by mimicking5019

the theory of material uniformity [72], we can write5020

L = Ľ ◦ (F ,X , T ) = L̂ ◦ (F ,Fγ) = −Ψ̂ ◦ (F ,Fγ), (7.8)

where X : B × R → B and T : B × R → R are auxiliary functions defined5021

by X (X, t) = X and T (X, t) = t, and introduced to account for the explicit5022

dependence of Ľ on material points and time [78], i.e.,5023

L(X, t) = Ľ(F (X, t), X, t) = −Ψ̂(F (X, t),Fγ(X, t)). (7.9)

Equations (7.8) and (7.9) permit to determine the time-like inhomogeneity force,5024

F0 (see also [3], where it is referred to as “energy release rate”), which, recalling5025

the definition Lγ := F−1
γ Fγ

̇ , reads5026

F0 :=∂Ľ
∂T

◦ (F ,X , T ) = −

⎛⎝ ∂Ψ̂
∂Fγ

◦ (F ,Fγ)
⎞⎠ : Fγ

̇

= − E : Lγ = DIV − Dnc − Ψ tr(Lγ). (7.10)

Thus, τ is determined by Equation (7.1) with H = Ψ.5027
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7.2.2 Tensor Fγ viewed as kinematic variable5028

A different approach to the mechanics of growth is provided in [60], where the5029

structural transformation of a body corresponds to the activation of structural de-5030

grees of freedom describing the body’s internal kinematics. From this perspective,5031

Fγ and Fγ
̇ acquire the meaning of tensor-valued kinematic descriptors that, to-5032

gether with χ, v = χ̇ and Grad v = Ḟ , define the overall kinematics of the body.5033

Restricting our considerations to a material of first grade in χ and zeroth grade5034

in Fγ [60], it is natural to define the body’s configuration manifold as a suitable5035

set of pairs (χ,Fγ) describing the overall evolution of the body. Accordingly, the5036

bundle of the body’s virtual velocities is given by the set of triples (v,Gradv,Z)5037

that represent all the admissible realisations of the generalised velocities associated5038

with the “standard” motion, i.e., v and Gradv, and with the structural evolution,5039

Z, respectively.5040

By duality, it is natural to introduce the generalised forces expending virtual5041

power on v, Gradv, and Z. Hence, the Principle of Virtual Powers, specialised here5042

to the case of no external forces dual to v (i.e., neither inertial nor body forces),5043

reads5044 ∫︂
B

{P : Gradv + F−T
γ Y i : Z} =

∫︂
B

F−T
γ Y e : Z, (7.11)

where Y i and Y e are an internal and an external generalised force dual to F−1
γ Z,5045

respectively, and Z is the virtual counterpart of Fγ
̇ . The strong form of (7.11)5046

consists of the force balances5047

Div P = 0, (7.12a)
Y i = Y e. (7.12b)

To close the model, we prescribe Y i constitutively, in compliance with the dissipa-5048

tion inequality5049

DKV = −E : Lγ + Y i : Lγ = Y id : Lγ ≥ 0, (7.13)

where Y id := Y i − E is said to be the dissipative part of Y i [44, 60] and the5050

subscript “KV” reminds that Equation (7.13) is obtained by regarding Fγ as a5051

kinematic variable.5052

In the sequel, we admit that Y id depends constitutively on F , Fγ and Fγ
̇ , and,5053

because of isotropy, we express such dependence as a function Ȳ id of F , Cγ and5054

Ċγ, i.e., Y id = Ȳ id ◦ (F ,Cγ, Ċγ). Thus, we rewrite (7.12b) as5055

Y e − Ȳ id ◦ (F ,Cγ, Ċγ) = E, (7.14)

thereby obtaining the equation of “motion” for Fγ. To supply an explicit expression5056

for Ȳ id, we rewrite it as a function of Lγ, i.e., Ȳ id◦(F ,Cγ, Ċγ) = Y̌ id◦(F ,Fγ,Lγ),5057
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and we notice that, because of isotropy, the tensor Y e−Y id in Equation (7.14) must5058

have the same symmetry property as E, i.e., C−1
γ (Y e − Y id) = (Y T

e − Y T
id)C−1

γ .5059

Here, without much loss of generality, we hypothesise that such property holds,5060

independently, both for Y id and for Y e, and, by further assuming Y̌ id to be linear5061

in Lγ, we prescribe (cf. e.g. [110, 178] and references therein)5062

C−1
γ [Y̌ id ◦ (F ,Fγ,Lγ)] = D : sym(CγLγ), (7.15)

where D is a fourth-order tensor function given by5063

D = 3JγdvK♯ + 2JγdmM♯. (7.16)
Here, dv and dm are scalar constitutive functions to be specified, K♯ and M♯ are5064

defined as (analogous operators have been introduced in [77, 110])5065

K♯ = 1
3C−1

γ ⊗ C−1
γ , (7.17a)

M♯ = 1
2 [C−1

γ ⊗C−1
γ + C−1

γ ⊗C−1
γ ] − K♯, (7.17b)

and the tensor products “⊗” and “⊗” are defined in [57]. By using the identity5066

sym(CγLγ) = 1
2Ċγ, we find (cf. [183])5067

D : 1
2Ċγ = C−1

γ [Y e − E], (7.18)
thereby supplying six independent differential equations in the six independent5068

components of Cγ. Moreover, we split Equation (7.18) into the two independent5069

equations5070

Jγdvtr
(︂

1
2ĊγC−1

γ

)︂
= 1

3tr Y e − 1
3trE, (7.19a)

2Jγdmdev
(︂

1
2ĊγC−1

γ

)︂
= dev Y e − devE. (7.19b)

Once the external force Y e is identified, and CFγ is computed by solving (7.18), the5071

term Γ in the mass balance law (7.3) is determined by Γ = trLγ = 1
2tr(ĊγC−1

γ ).5072

Finally, F0 becomes5073

F0 = −E : Lγ = (Y id − Y e) : Lγ, (7.20)
and the equation for τ takes on the form5074

Ψ τ̇ − (P Tv) Grad τ + [(Y e − Y id) : Lγ]τ = 0. (7.21)
Before proceeding, we remark that Equation (7.15) is not the most general5075

constitutive law relating Y id with Lγ, or Ċγ. The main property of (7.15) is that,5076

being invertible, if Lγ is null, then Y id is null too, thereby implying Y e = E.5077

Moreover, due to invertibility, it is true that, when Y id is null, also Lγ has to5078

vanish, which means that the balance between Y e and E leads to a stop of the5079

growth process. However, in the case of a tumour, this last result need not be5080

true (see e.g. [7]), as it may well happen that, if no nutrients are available for the5081

tumour cells, Lγ vanishes also when Y id is not null, a situation that, according to5082

Equation (7.19a), requires dv to diverge for finite values of Y id := Y e − E.5083
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7.3 A Noether-like framework5084

Equation (7.1) can be obtained by framing growth within a Noether-like ap-5085

proach. To show this, we introduce the action5086

A :=
∫︂

B×I
L,

where I ⊆ [0,+∞[ is an interval of time, and the notation
∫︁
B×I f ≡

∫︁
I {

∫︁
B f dV } dt5087

applies.5088

7.3.1 Fγ considered as internal variable: internal time5089

When Fγ is regarded as an internal variable, the Lagrangian density function5090

is defined in Equation (7.9), and the first-order total variation of the action reads5091

DA =
∫︂

B×I

[︂
Eh + Div(−ETW − P Tu)

]︂
, (7.22)

where W is a vector field, valued in the tangent bundle of B, that at each time5092

t maps the points X of B into X̃ = X + εW (X, t), with ε being a real smallness5093

parameter, h is the vector field describing the variation of χ when the points X5094

are held fixed, u := h + F W is the vector field representing the total variation5095

of χ, and Eh = Eah
a is the contraction of the co-vector field E := Div P with h5096

(see [78] for a derivation in a notation similar to that adopted here). In addition,5097

we denote by J := −ETW − P Tu Noether’s current density, which is the sum of5098

a fully material current density, J (m) = −ETW , and a “spatial” current density,5099

J (s) = −P Tu (note that, although J (s) is a material field too, we call it “spatial”5100

because it is generated by the spatial vector field u).5101

Upon setting W = 0 in B and h|∂B = u|∂B = 0 for all times, Hamilton’s5102

Principle of Stationary Action [150] requiresDA = 0, which leads to E = Div P = 05103

in B and P .N = 0 on ∂NB, where N is the field of unit vectors normal to the5104

Neumann boundary of B, ∂NB.5105

For χ and Fγ satisfying E = 0, we look at Equation (7.22) under the light shed5106

by Noether’s Theorem [136]. Hence, we search for conservation laws, and we obtain5107

[117]5108

Div J (s) = −P : Grad u, (7.23a)
Div J (m) = FW − E : Grad W =: N (W ), (7.23b)

where F := ∂Ľ
∂X ◦ (F ,X , T ) = −[ ∂Ψ̂

∂Fγ
◦ (F ,Fγ)] : Grad Fγ is referred to as “material5109

inhomogeneity force” [73, 71, 168] and FW = FAW
A. We remark that, more5110

generally, the integrand in Equation (7.22) should feature a summand consisting5111
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of the divergence of a vector field independent of F , and descending from the so-5112

called “divergence transformation” of the Lagrangian density function [136, 168,5113

78]. However, as in [136], this summand can be omitted for the type of symmetries5114

addressed here.5115

In Equation (7.23a), P : Grad u vanishes identically in three cases: when u5116

is null, when u represents a uniform translation, or when u takes on the form5117

u = g−1ω[χ− x0], where ω is a uniform skew-symmetric tensor, x0 is a fixed point5118

of space and g−1 is the inverse of the spatial metric tensor, g. The second case is5119

consistent with the fact that Ľ is independent of χ, so that the system is invariant5120

under translations in space and, thus, linear momentum is conserved. The third5121

case, instead, stems from the symmetry of g−1P F T, which ensures P : Grad u =5122

(g−1P F T) : ω = 0 and is equivalent to the conservation of angular momentum.5123

In conclusion, for the mentioned choices of u, Div J (s) is zero, which implies that5124

J (s) is conserved.5125

We turn now to Equation (7.23b), and we notice that it is obtained by using the5126

relation −DivE = F . This result follows from the computation of the divergence5127

of E, and characterises the fully material force balance describing the “inverse5128

dynamics” of the body [168, 72]. It stipulates that the “spatial” part of the body’s5129

energy-momentum tensor, −E, is not conserved. This is a manifestation of the5130

symmetry breaking due to the material inhomogeneity of the body, reflected by5131

N (W ). This quantity plays the role of an effective source term for J (m) [117] and5132

is such that the variation of the action becomes DA =
∫︁
B×I N (W ). Therefore, in5133

order to search for the class of fields W such that J (m) is conserved and the action5134

is invariant, i.e., DA = 0, one has to impose [117]5135

N (W ) = −E : Grad W + FW

= −E :
[︂
Grad W + (F−1

γ Grad Fγ)W
]︂

= 0. (7.24)

We remark that relations of the type (7.24) are sometimes referred to as “Noetherian5136

identities” [196].5137

Apart from the trivial solution W = 0, a uniform field W does not generally5138

satisfy Equation (7.24) and, thus, the action is not invariant under uniform trans-5139

lations of the material points. This result is another evidence of the symmetry5140

breaking emerging because of F . Clearly, if Fγ is uniform, so that Grad Fγ = 0,5141

then W can be uniform too. When this occurs, F vanishes identically and, in the5142

jargon of [168], one obtains the conservation of “canonical pseudo-momentum”. Let5143

us now look at the identity5144

Ψ̇ − Div(P Tv) = −F0, (7.25)

which is the non-conservation of energy for H = Ψ = −L (i.e., in the quasi-static5145

limit), and let us multiply Equation (7.25) by a scalar field τ : B × I → R5146
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describing a point- and time-dependent deformation of time [117]. Then, recalling5147

the definition of F0 given in (7.10), we find (cf. [168])5148

Ψτ̇ + Div(−P Tvτ)
= Ψτ̇ − (P Tv) Grad τ + (E : Lγ)τ =: N0(τ). (7.26)

By analogy with Equation (7.23b), we call N0(τ) effective source of Noether’s energy5149

current density, defined by the time-like component Ψτ and the flux vector −P Tvτ .5150

As noticed for N (W ), the presence of F0 = −E : Lγ implies that N0(τ) does not5151

vanish for nonzero constant fields τ . Hence, to conserve Noether’s energy current5152

density, we enforce the condition anticipated by Equation (7.1), i.e.,5153

N0(τ) = Ψτ̇ − (P Tv)Grad τ + (E : Lγ)τ = 0, (7.27)

in which E : Lγ is now regarded as the generator of τ .5154

7.3.2 Fγ considered as a kinematic variable: internal time5155

Equations (7.6), (7.8) and (7.14) allow to rephrase the force balances (7.12a)5156

and (7.12b) as5157

Div P ≡ −Div
(︄
∂L̂
∂F

◦ (F ,Fγ)
)︄

= 0, (7.28a)

−E ≡ F T
γ

(︄
∂L̂
∂Fγ

◦ (F ,Fγ)
)︄

= Y id − Y e. (7.28b)

Looking at (7.28b), we notice that a relevant case occurs when there exists a po-5158

tential U = Û ◦ (F ,Fγ) such that5159

∂Û
∂F

◦ (F ,Fγ) = 0,
∂Û
∂Fγ

◦ (F ,Fγ) = F−T
γ Y e, (7.29)

where the first requirement of Equation (7.29) prevents Û from introducing an5160

unphysical contribution to P . Thus, Eqs. (7.28a) and (7.28b) become5161

−Div
(︄
∂L̂eff

∂F
◦ (F ,Fγ)

)︄
= 0, (7.30a)

F T
γ

(︄
∂L̂eff

∂Fγ

◦ (F ,Fγ)
)︄

= Y id, (7.30b)

with Leff := L + U being referred to as effective Lagrangian density function. Note5162

that, although Equation (7.29) may be too restrictive for biologically meaningful5163
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situations, it is possible to think of Y e as the sum of an integrable and a non-5164

integrable force, with the former one admitting a potential like Û . For this reason,5165

in this work we concentrate on the limiting case in which Y e is integrable.5166

By defining the effective action, Aeff =
∫︁
B×I Leff , the first-order total variation5167

of Aeff is given by5168

DAeff =
∫︂

B×I

[︂
F−T

γ Y id : Υ + Div(J (s) + J (m)
eff )

]︂
, (7.31)

with J (s) = −P Tu, J (m)
eff = −ET

effW , the effective Eshelby stress tensor Eeff =5169

−(LeffIT + F TP ) and Υ being the variation of Fγ when the points X are “held5170

fixed”.5171

Upon taking Div J (s) = 0, as done in Section 7.3.1, a direct calculation yields5172

Div J (m)
eff = F effW − Eeff : Grad W , (7.32)

where we call F eff :=
(︂
F−T

γ Y id : Grad Fγ

)︂
effective inhomogeneity force, and Equa-5173

tion (7.31) reduces to5174

DAeff =
∫︂

B×I
[F−T

γ Y id : Q − Eeff : Grad W ], (7.33)

with Q := Υ + (GradFγ)W being the total variation of Fγ. If we set W = 0,5175

Equation (7.33) returns Rayleigh-Hamilton Principle [150, 58], which states that the5176

first-order variation of the action is equal to the integral of the work F−T
γ Y id : Q.5177

Thus, if we reinterpret Equation (7.33) on the basis of this result, we find that the5178

class of fields W satisfying DAeff =
∫︁
B×I F−T

γ Y id : Q is given by all the solutions5179

of the equation5180

−Eeff : Grad W = 0. (7.34)

In contrast to (7.24), Equation (7.34) is satisfied by nontrivial uniform fields W . To5181

see the implications of this result, let us consider the situation in which Y id is null.5182

Hence, it follows that E = Y e, Div J (m)
eff = −Eeff : Grad W , and Equation (7.33)5183

becomes DAeff =
∫︁
B×I [−Eeff : Grad W ]. In this case, uniform fields W leave5184

the action invariant, i.e., DAeff = 0, and represent symmetry transformations.5185

This constitutes a symmetry restoration and is due to the fact that, since Y id is5186

null, E is entirely “balanced” by Y e, which plays the role of compensating field.5187

In fact, this results follows from Equation (7.30b), which, for Y id = 0, implies5188

F eff :=
(︂

∂L̂eff
∂Fγ

◦ (F ,Fγ)
)︂

: Grad Fγ = 0 even though it holds that F = −E :5189

F−1
γ Grad Fγ /= 0.5190

As done in Section 7.3.1, we consider the identity5191

Ψ̇eff − Div(P Tv) = −Y id : Lγ = −DKV, (7.35)
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where Ψeff := −Leff denotes the effective energy density associated with the body5192

and, by multiplying (7.35) by τ , we obtain5193

Ψeffτ
̇ + Div(−P Tvτ)

= Ψeff τ̇ − (P Tv) Grad τ − DKV τ =: N0eff(τ). (7.36)

Equation (7.35) describes the non-conservation of Ψeff , while Equation (7.36) defines5194

N0eff(τ) as the effective source of Noether’s energy current density with time-like5195

component Ψeffτ and flux vector −P Tvτ . Hence, to conserve Noether’s energy5196

current density, the condition5197

N0eff(τ) = Ψeff τ̇ − (P Tv) Grad τ − DKV τ = 0 (7.37)

has to be imposed. Equation (7.37) prescribes that DKV is the generator of τ .5198

Therefore, DKV can be thought of as an effective time-like inhomogeneity force, i.e.,5199

F0eff := DKV, which vanishes in the non-dissipative limit. If this is the case, a5200

constant field τ satisfies N0eff(τ) = 0 and, consequently, Eq. (7.36) and (7.37) is5201

satisfied as a conservation law. This is a crucial difference with Equations (7.21)5202

and (7.27), in which the generator of τ is given by −F0 = Y e − Y id = E : Lγ and5203

need not vanish even when the dissipation is zero. The above discussion answers5204

the research question 7.2.5205

7.4 A proof of concept5206

To supply a proof of concept of the theory discussed so far, we take a bench-5207

mark problem from [7]. Specifically, we study a tumour modelled as a monophasic,5208

isotropic, solid body of cylindric shape, confined by an undeformable lateral wall,5209

and allowed to expand uniformly along its axial direction, with traction-free termi-5210

nal cross sections. Moreover, we assume the growth tensor, Fγ, to be spherical. By5211

using cylindrical coordinates, these hypotheses imply that the only nonzero com-5212

ponent of the velocity, v, is the axial one, vz, and that F , Fγ, Lγ = F−1
γ Fγ

̇ , P and5213

E admit the diagonal matrix representations5214

[F ] = diag{1,1, f}, (7.38a)
[Fγ] = γ diag{1,1,1}, (7.38b)
[Lγ] = γ−1γ̇ diag{1,1,1}, (7.38c)
[P ] = diag{P R

r , P Φ
φ , P Z

z }, (7.38d)
[E] = diag{Ψ − P R

r ,Ψ − P Φ
φ ,Ψ − fP Z

z }. (7.38e)

We remark that, since Div P = 0 reduces to ∂P Z
z /∂Z = 0, and the terminal cross5215

sections of the body are free of tractions [7], P Z
z is zero at all the points of the5216
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tumour. This implies that the energy flux P Tv vanishes identically, i.e., P Tv = 05217

and P Z
z vz = 0. Moreover, as in [7], we adopt the Blatz-Ko strain energy density5218

Ψ = Jγ
1
2µ
[︂
(I1 − 3) − 1

q/2(I q/2
3 − 1)

]︂
, (7.39)

with I1 = tr(CC−1
γ ), I3 = J−2

γ detC and material constants µ > 0 and q < 0. Due5219

to Equation (7.39), the constitutive expression of P Z
z is such that [7]5220

P Z
z = µ

γ3

f

[︄
f2

γ2 −
(︄

f

γ3

)︄q]︄
= 0 ⇒ f = γ

2−3q
2−q . (7.40)

Therefore, any constitutive function of f and γ can be rephrased as a function of γ5221

alone. For, example, in the case of Eshelby stress, one has E = Ê(f, γ) ≡ H(γ) and5222

H(γ) := 1
3trH(γ) = Ψ − 1

3(P R
r + P Φ

φ ) = 1
3trE. (7.41)

First, we consider the case in which Fγ is an internal variable [72] and we refer5223

to this model as “IV Model”. We notice that, in order to recover the growth law5224

proposed in [7] from Equation (7.5), we have to set βn = 0, for n /= 0, thereby5225

obtaining5226

γ̇ = β0γ, β0 = 1
3Γ, (7.42)

where, in general, β0 depends on mechanical stress through the principal invari-5227

ants of E. However, if β0 is assumed to be a positive constant, and if the initial5228

distribution of γ, denoted by γin, is independent of material points, γ is uniform5229

and increases exponentially in time [7], i.e., γ(t) = γin exp(β0t) (see the line marked5230

with triangles, and referred to as “IV Model”, in Fig. 7.1). Moreover, according to5231

Equation (7.40), also f is independent of material points. In the case under study,5232

the material inhomogeneity force F is null, so that uniform fields W = W 0 satisfy5233

Equation (7.24) and, since the identity E : Lγ = Ψ̇ holds true, Equation (7.27)5234

becomes5235

N0(τ) = Ψτ̇ + Ψ̇τ = Ψτ̇ = 0. (7.43)

Coherently with Equation (7.26), this result implies that the time-like component5236

of Noether’s current density, Ψτ , is conserved, and the internal time is given by5237

Ψ(t)τ(t) = Ψ0τ0 ⇒ τ(t) = τ0Ψ0

Ψ(t) , (7.44)

where Ψ0 and τ0 are reference constant values, and Ψ(t) is rescaled so that Ψ(0) =5238

Ψ0. The trend of τ is reported in Fig. 7.2 and corresponds to the solid line marked5239

with triangles and referred to as “τ/τ0 IV Model”. The product Ψ0τ0 defines the5240

negative of a reference value of the action, i.e., A0 := −Ψ0τ0, which is invariant.5241
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Now, we regard Fγ as a kinematic variable [60] and we call this model “KV5242

Model”. In this case, the evolution of γ is given by Equations (7.19a) and (7.19b),5243

which yield5244

γ̇

γ
= 1

3γ3dv
[Ye − H(γ)] , (7.45)

with Ye := 1
3tr Y e and dev Y e = 0. Within the present variational setting, we5245

choose a constant Ye, so that it can be obtained by differentiation of the potential5246

Û ◦(F ,Fγ) = Ye ln(det Fγ), and the numerical solution of Equation (7.45), obtained5247

for constant dv, is reported in Fig. 7.1 (see the solid line marked with open circles5248

and referred to as “KV Model - Linear Case”).5249

Since it holds true that P Tv = 0, Equation (7.35) prescribes DKV = −Ψ̇eff and,5250

consequently, Equation (7.37) becomes5251

N0eff = Ψeff τ̇ + Ψ̇effτ = Ψeffτ
̇ = 0. (7.46)

Therefore, the internal time, τ , is given by5252

Ψeff(t)τ(t) = Ψeff0τ0 ⇒ τ(t) = τ0Ψeff0

Ψeff(t) , (7.47)

with τ0 and Ψeff0 being reference constants, and Ψeff(t) rescaled so that Ψeff(0) =5253

Ψeff0. In spite of the similarity with Equation (7.44), in the present case τ(t)5254

depends on Ye. Its evolution is shown in Fig. 7.2 and corresponds to the solid line5255

marked with open circles.5256

7.5 Discussion5257

In the IV Model, the coefficient β0 in Equation (7.42) is assumed to be constant.5258

Although this choice may be too restrictive, it describes the limit case in which, to5259

activate growth, it is sufficient that the nutrient substances in the tumour exceed a5260

certain threshold. Clearly, more general models, which include the feedback of stress5261

on growth (mechanotransduction), can be obtained by considering Equation (7.5)5262

in full, or by expressing β0 as a phenomenological function of the stress.5263

In the KV Model, which descends from Equation (7.15), (7.19a) and (7.45), γ5264

is coupled with Yid := 1
3tr Y id = Ye − H(γ), rather than with stress alone, and this5265

coupling may appear both directly, i.e., in the right-hand-side of Equation (7.45),5266

and indirectly, i.e., through the coefficient dv, which can be taken as a function5267

of the principal invariants of Y id. To the best of our understanding, this could5268

be a possible interpretation of the “Eshelbian coupling” mentioned in [60]. In this5269

respect, we also notice that, even within our variational setting, mechanotransduc-5270

tion can be accounted for by suitably interpreting Ye. This can be achieved by5271
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relating γ̇/γ to a term of the type [166, 62]5272

M(H) := 1 − c0E

c0Ye + E
= 1 − E

Ye
+ o

(︄
E

Ye

)︄
, (7.48)

where c0 ∈ ]0,1[ is a model parameter and E = 1
3trE = H(γ). By setting Mlin(E) :=5273

1 − E/Ye, Equation (7.45) can be rewritten as γ̇/γ = Mlin(E)/3γ3τ̄ , where τ̄ is a5274

characteristic time scale and dv ≡ τ̄Ye. The solution to this equation, or, equiva-5275

lently, to Equation (7.45), corresponds to the solid line marked with open circles in5276

Fig. 7.1, where it is compared with the solution to the equation γ̇/γ = M(E)/3γ3τ̄ .5277

The latter is represented by the solid line marked with triangles in Fig. 7.1, and5278

refers to a phenomenological model in which the mechanotransduction term, M(E),5279

is not linearised. Looking at the magnified inset in Fig. 7.1, we notice that a con-5280

stant and integrable Ye, although being restrictive, leads to reasonable results for5281

the first days in which the tumour grows, i.e., as long as the ratio E/Ye remains5282

sufficiently small. For longer times, however, the solution to Equation (7.45) ceases5283

to be acceptable. Indeed, it tends towards a stationary value, corresponding to the5284

force balance Ye = H(γ), which contradicts the hypothesis E/Ye → 0. The solu-5285

tion of the nonlinear model, instead, keeps increasing in time, and is qualitatively5286

closer to the dashed curve marked with open circles that describes the trend of γ in5287

the case of a reference model available in the literature [62]. The above discussion5288

answers the research question 7.3.5289

The main result of this work is the introduction of the internal time, τ , that, for5290

the considered benchmark problem, is obtained by solving Equation (7.44) for the5291

IV Model and Equation (7.47) for the KV Model. The solutions, expressed in terms5292

of the ratio τ/τ0, are reported in Fig. 7.2 and correspond to the solid lines marked5293

with asterisks and open circles, respectively. We notice that, since both Ψ and Ψeff5294

increase with γ, and since γ increases with time, τ/τ0 decreases monotonically for5295

both models. In particular, since γ is computed by solving Equation (7.45), which5296

admits a stationary solution, τ/τ0 reaches a plateau for long times, and the solution5297

predicted by the IV Model tends to converge to the one supplied by the KV Model.5298

Finally, we notice that the function τc = 1 − τ(t)/τ0 is monotonically increasing,5299

and might thus be taken as a natural characteristic time scale of growth, just as5300

the endochronic time in Plasticity [176]. The above discussion answers the research5301

question 7.1.5302

7.6 Conclusions5303

In this work, we have studied a problem of volumetric growth in a continuum5304

body within the quasi-static limit. In doing this, we have followed two paths:5305

the one that views the growth tensor, Fγ, as an internal variable, and the one that5306

defines Fγ as a kinematic variable. We have cast the problem in a variational setting5307
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Figure 7.1: Time evolution of γ. The model parameters are Γ = 2.68 · 10−2 s−1, for
the IV-model, and c0 = 0.7138, Ye = 2.159 kPa and τ̄ = 106 s, for the KV-model.
For both models, we set µ = 1.999 kPa, q = −1, kin = 1, τ0 = 1 s.

Figure 7.2: Time evolution of τ . The values of the model parameters are declared
in the caption of Fig. 7.1.

and we have employed the framework of Noether’s Theorem in order to reveal5308

some subtle implications of the two theories of growth exploited in the manuscript,5309

especially in terms of material inhomogeneities and conservation laws.5310

Hence, we have shown that Noether’s current is not conserved, in general, for5311

the classes of transformations that would represent material symmetries if the body5312

were homogeneous. This has been reflected, in fact, by the condition N (W ) = 0,5313

imposed to annihilate the effective source of Noether’s current [117].5314

We have focussed on the non-conservation of energy. This has led us to adopt the5315
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conditions N0(τ) = 0 and N0eff(τ) = 0, respectively, to search for transformations5316

capable of defining a characteristic time scale for growth, termed internal time.5317

We summarise the answers to the research questions 7.1—7.3 in the following5318

way:5319

• The internal time, τ , for the considered benchmark problem is computed as5320

the solution of two differential equations relying on two different models of5321

growth. For both models, the normalised internal time τ/τ0 is an increasing5322

function of time and it reaches a plateau, since the equation for the growth5323

parameter, γ, admits a stationary solution. However, the KV model, which5324

regards the growth tensor as a kinematic variable predicts that the stationary5325

state is attained faster than in the case of IV model, in which the growth5326

tensor is viewed as an internal parameter,5327

• One of the main advantages of using variational principles within the study of5328

growth is the possibility of giving a unifying definition of internal time, which5329

results to be independent on the specific theory of growth that one decides to5330

adhere to. In fact, the internal time can be defined as the solution of a differ-5331

ential equation, descending from Noether’s Theorem and whose formulation5332

is, in fact, independent on the mathematical model used to describe growth.5333

• Although we have adhered to variational principles for studying the growth in5334

monophasic continua, we have shown that it is possible to address the issue of5335

“mechanotrasduction”. Therefore, in spite of some technical limitations that5336

require ad hoc hypotheses, we have recast in a some evolution laws for the5337

growth parameter, which are usually declared to be phenomenological, in a5338

variational framework5339
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Chapter 85340

Future perspectives5341

The work outlined in this Thesis addresses the mathematical modelling of some5342

key problems in the field of Biomechanics, by focusing on theoretical and compu-5343

tational aspects of Nonlinear Continuum Mechanics.5344

Although relevant technical aspects have been solved in a different manner,5345

depending on the problem at hand, we have always tried to harmonise all the diverse5346

theoretical visions emerging in our works and to find a physico-mathematical link5347

able to disclose a common theoretical substrate.5348

In this respect, in the works presented in Chapter 2 and in Chapter 3 we have5349

employed a mathematical framework in which the distortion tensor, Fp (or, equiv-5350

alently, its inverse H), and the growth tensor, Fγ, are treated as internal variables.5351

Moreover, the evolution laws for Fp and for Fγ are are in part phenomenological.5352

In particular, in the case of Fp, its equation is derived by the Dissipation Inequal-5353

ity, while, for Fγ, its evolution is imposed from the outset, in accordance with5354

experimental evidences.5355

On the contrary, in Chapter 3 and in Chapter 6, the tensors Fp and Fγ are5356

regarded as kinematic variables. In this sense, their evolution laws are deduced5357

from a balance of generalised forces, dual to suitable generalised velocities and all5358

the phenomenological assumptions are employed as kinematic constraints.5359

Beyond the differences characterising the ”internal variables” approach and the5360

”kinematic variables” approach discussed so far, we have wondered about the pos-5361

sibility of identifying a bridge between these two ways of proceeding. A first step in5362

this direction is presented in Chapter 7 with the employment of Noether’s Theorem5363

and the introduction of the internal time as a thermodynamic indicator of anelastic5364

processes.5365

In general, for all the specific problems studied in this Thesis, the formulation5366

adopted for developing our works has been characterised by the employment of5367

Differential Geometry in order to satisfy two requirements. The first one, accord-5368

ing to the conception of a deep relationship between Mechanics and Geometry,5369

relies on the adoption of the Covariant Formalism of Continuum Mechanics as a5370
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fundamental “language” to proceed with our scientific studies. The choice of such5371

way of proceeding makes it particularly easy to disclose duality for defining the5372

(generalised) forces acting on a mechanical system as dual entities of a specified5373

(generalised) kinematics. Second, to study a certain class of problems in the field5374

of Biomechanics, it raises the necessity to “enrich” their kinematic description and,5375

in our framework, this has been achieved by having recourse to some classical tools5376

of Differential Geometry, as explained in Chapters 2, 3, 5 and 6.5377

Starting from the framework outlined in Chapters 2 and 3, the remodelling5378

can be understood as the occurrence of two types of events: one consists of the5379

reorientation of the fibres and, the other one relies on the production of inelastic5380

distortions at the tissue scale. It is assumed that the fibres are oriented accordingly5381

to a probability density function, whose functional form is prescribed. The inelastic5382

distortions, which can be associated with the rupture and formation of bonds among5383

the tissue cells, are represented by means of a second-order tensor and studied by5384

means of the Bilby–Kröner–Lee decomposition of the deformation gradient tensor.5385

An evolution law for the tensor of inelastic distortions is prescribed.5386

In general, the evolution law for the tensor of inelastic distortions is written5387

by considering only the symmetric part of the inelastic distortions tensor and it is5388

assumed that its rotational component reduces to the identity tensor. One possibil-5389

ity is to investigate mathematical models of structural reorganisation in which the5390

role of the inelastic rotations is explicitly considered. From the modelling point of5391

view, this choice requires to individuate a suitable geometrical quantity able to be5392

represent the kinematics associated with the inelastic rotations. Consequently, the5393

overall framework should be rephrased to account for the new kinematics, which5394

enriches the standard one previously employed.5395

In the modelling framework of gradient theories, one could employ a different5396

model of the fluid flow. More in detail, instead of making use of Darcy’s law5397

one could refer to Brinkman-like models, which involve the gradient of the fluid5398

velocity [146, 34, 63]. This will allow, on the one hand, to relax the hypothesis of5399

negligibility of the dissipative part of the stress tensor of the fluid phase and, on the5400

other hand, to resolve the fluid-structure interactions as well as boundary effects,5401

which cannot be accounted for by Darcy-based models.5402

In Chapter 6, a mathematical model to investigate how a tumour tissue grows5403

and remodels in response to growth has been proposed. For our scopes, it has5404

been assumed that remodelling is characterised by a coarse and a fine length scale,5405

and a kinematic variable that resolves the fine scale inhomogeneities induced by5406

remodelling have been introduced . With respect to this variable, a strain-gradient5407

framework of remodelling has been developed.5408

One research line, starting from the work presented in Chapter 6, could be to5409

investigate a tumour growth inside a host tissue, in order to resolve the mechanical5410

interactions at the interface between the two media.5411

Finally, the model of growth employed in Chapter 5 and in Chapter 6 could be5412
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developed and extended to describe other biological situations. For instance, the5413

approach presented in this two chapters for isotropic media could be adapted for5414

describing a tumour growing in anisotropic tissues. Moreover, we could investigate5415

the coupling with other remodelling phenomena, introduced in term of cellular5416

reorganisation, fibre reorientation or onset of degenerative phenomena.5417
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Appendix A5418

The notation adopted in the following is taken from [77]. Let [TB]11, [TB] 1
1 ,5419

[TB]20, and [TB]02 denote the spaces of all second-order tensors which, as bilinear5420

maps, read5421

A : T ⋆B × TB → R, (8.1a)
B : TB × T ⋆B → R, (8.1b)
T : T ⋆B × T ⋆B → R, (8.1c)
Q : TB × TB → R, (8.1d)

respectively. Let also ([TB]20, sym) and ([TB]02, sym) be, respectively, the subspaces5422

of [TB]20 and [TB]02 of all symmetric, second-order tensors. The elements of [TB]115423

and [TB] 1
1 can be written as linear maps from TB into itself, and from T ⋆B into5424

itself, respectively, while the elements of [TB]20, and [TB]02 can be written as linear5425

maps from T ⋆B into TB, and from TB into T ⋆B, respectively.5426

Let us also consider the spaces [TB]22 and [TB] 2
2 of all fourth-order tensors of5427

the type5428

T ∈ [TB]22, T : T ⋆B × T ⋆B × TB × TB → R,
Q ∈ [TB] 2

2 , Q : TB × TB × T ⋆B × T ⋆B → R.

An element of [TB]22 can also be represented as a linear map from [TB]20 into5429

[TB]20. Analogously, an element of [TB] 2
2 can be represented as a linear map from5430

[TB]02 into [TB]02. For instance, the fourth-order tensor5431

I : [TB]20 → ([TB]20, sym), I = 1
2 (I ⊗ I + I ⊗ I) , (8.3)

where I : TB → TB is the identity tensor in TB, returns the symmetric part of5432

the element of [TB]20 to which it is applied. Given two tensors A,D ∈ [TB]11,5433

the representation of the tensor products A⊗D and A⊗D in index notation reads5434

[A⊗D]AB
MN = AA

MD
B
N and [A⊗D]AB

MN = AA
ND

B
M [57]. Accordingly, in index5435

notation, I is represented by the expression5436

IAB
MN = 1

2

(︂
δA

Mδ
B
N + δA

Nδ
B
M

)︂
. (8.4)
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Thus, for every T ∈ [TB]20, it holds that5437

I : T = 1
2

(︂
T + T T

)︂
= sym(T ), (8.5)

where the symbol “:” stands for “double contraction”. In index notation, it reads5438

(I : T )AB = IAB
MNT

MN = [sym(T )]AB. By definition, I is the identity fourth-order5439

tensor over the space ([TB]20, sym). From here on, we consider only the restrictions5440

of the fourth-order tensors of [TB]20 onto ([TB]20, sym).5441

For every T ∈ ([TB]20, sym), the fourth-order tensor5442

K∗ : ([TB]20, sym) → ([TB]20, sym),
K∗ = 1

3C−1 ⊗ C (8.6)

extracts the spherical part of T with respect to the metric C, i.e.,5443

K∗ : T = 1
3tr(CT )C−1. (8.7)

The deviatoric part of T with respect to the metric C is obtained by substracting5444

K∗ : T to T . This operation can be represented by the application of the fourth-5445

order tensor5446

M∗ : ([TB]20, sym) → ([TB]20, sym)
M∗ = I − K∗, (8.8)

to T i.e.,5447

M∗ : T = (I − K∗) : T = T − 1
3tr(CT )C−1. (8.9)

Clearly, it holds that tr [C (M∗ : T )] = 0. We remark that, by their own definition,5448

K∗ and M∗ constitute the partition of unity, i.e., I = K∗ + M∗.5449

In analogous manner, we introduce the identity fourth-order tensor over the5450

space ([TB]02, sym), i.e.,5451

IT : ([TB]02, sym) → ([TB]02, sym),
IT = 1

2

(︂
IT ⊗ IT + IT ⊗ IT

)︂
, (8.10)

where IT : T ⋆B → T ⋆B is the identity tensor in T ⋆B. For every Q ∈ ([TB]02, sym)5452

it holds that5453

IT : Q = 1
2

(︂
Q + QT

)︂
≡ Q. (8.11)

The spherical and the deviatoric parts of Q with respect to the inverse metric C−1
5454

are extracted by employing the fourth-order tensors5455

K∗T : ([TB]02, sym) → ([TB]02, sym),
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K∗T = 1
3C ⊗ C−1, (8.12)

and5456

M∗T : ([TB]02, sym) → ([TB]02, sym),
M∗T = IT − K∗T, (8.13)

respectively, which are such that5457

K∗T : Q = 1
3tr(C−1Q)C, (8.14)

M∗T : Q = (IT − K∗T) : Q = Q − 1
3tr(C−1Q)C. (8.15)

In this case, it holds that tr
[︂
C−1

(︂
M∗T : Q

)︂]︂
= 0.5458

Finally, we introduce the fourth-order tensor5459

I♯∗ : ([TB]02, sym) → ([TB]20, sym),
I♯∗ = 1

2

(︂
C−1 ⊗ C−1 + C−1 ⊗ C−1

)︂
. (8.16)

For every Q ∈ ([TB]02, sym), it holds that5460

I♯∗ : Q = C−1QC−1. (8.17)

In index notation, Equation (8.17) implies (I♯∗ : Q)AB = (C−1)AMQMN(C−1)NB,5461

which means that I♯∗ raises the indices of Q through the inverse metric tensor C−1
5462

rather than through G−1, the latter being the inverse of the metric tensor G in5463

the undeformed configuration. In analogy with K∗ and M∗, we also consider the5464

fourth-order tensors5465

K♯∗ : ([TB]02, sym) → ([TB]20, sym),
K♯∗ = 1

3C−1 ⊗ C−1, (8.18a)
M♯∗ : ([TB]02, sym) → ([TB]20, sym),
M♯∗ = I♯∗ − K♯∗. (8.18b)

For every Q ∈ ([TB]02, sym), we obtain5466

K♯∗ : Q = 1
3tr(C−1Q)C−1, (8.19a)

M♯∗ : Q = C−1QC−1 − 1
3tr(C−1Q)C−1. (8.19b)

Note that the second-order tensor M♯∗ : Q is deviatoric in the sense that tr[C(M♯∗ :5467

Q)] = 0.5468
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[1] M. Bongué -Boma, L. Sudak, and S. Federico. “Gradient Dependent Consti-5470

tutive Laws For A Model Of Microcracked Bodies”. In: International Jour-5471

nal for Multiscale Computational Engineering 10.6 (2012), pp. 581–597. doi:5472

10.1615/intjmultcompeng.2012002781.5473

[2] T. Alarcón, H. M. Byrne, and P. K. Maini. “A cellular automaton model for5474

tumour growth in inhomogeneous environment”. In: Journal of Theoretical5475

Biology 225.2 (Nov. 2003), pp. 257–274. doi: 10.1016/s0022-5193(03)5476

00244-3.5477

[3] M. F. Alhasadi, M. Epstein, and S. Federico. “Eshelby force and power for5478

uniform bodies”. In: Acta Mechanica 230.5 (Jan. 2019), pp. 1663–1684. doi:5479

10.1007/s00707-018-2353-6.5480

[4] G. Allaire and M. Briane. “Multiscale convergence and reiterated homogeni-5481

sation”. In: Proceedings of the Royal Society of Edinburgh: Section A Math-5482

ematics 126.2 (1996), pp. 297–342. doi: 10.1017/s0308210500022757.5483

[5] D. Ambrosi and F. Guana. “Stress-modulated growth”. In: Math. Mech.5484

Solids 12 (2007), pp. 319–342. doi: 10.1177/1081286505059739.5485

[6] D. Ambrosi, A. Guillou, and E. S. Di Martino. “Stress-modulated remod-5486

elling of a non-homogeneous body”. In: Biomechanics and Modeling in Mech-5487

anobiology 1 (2007), pp. 63–76. doi: 10.1007/s10237-007-0076-z.5488

[7] D. Ambrosi and F. Mollica. “On the mechanics of a growing tumor”. In:5489

Int. J. Eng. Sci. 40 (2002), pp. 1297–1316. doi: 10.1016/S0020-7225(02)5490

00014-9.5491

[8] D. Ambrosi and F. Mollica. “The role of stress in the growth of a multicell5492

spheroid”. In: J. Math. Biol. 49 (2004), pp. 477–499. doi: 10.1007/s00285-5493

003-0238-2.5494

[9] D. Ambrosi and L. Preziosi. “Cell adhesion mechanisms and stress relaxation5495

in the mechanics of tumours”. In: Biomechanics and Modeling in Mechanobi-5496

ology 8 (2009), pp. 397–413. doi: 10.1007/s10237-008-0145-y.5497

195

https://doi.org/10.1615/intjmultcompeng.2012002781
https://doi.org/10.1016/s0022-5193(03)00244-3
https://doi.org/10.1016/s0022-5193(03)00244-3
https://doi.org/10.1016/s0022-5193(03)00244-3
https://doi.org/10.1007/s00707-018-2353-6
https://doi.org/10.1017/s0308210500022757
https://doi.org/10.1177/1081286505059739
https://doi.org/10.1007/s10237-007-0076-z
https://doi.org/10.1016/S0020-7225(02)00014-9
https://doi.org/10.1016/S0020-7225(02)00014-9
https://doi.org/10.1016/S0020-7225(02)00014-9
https://doi.org/10.1007/s00285-003-0238-2
https://doi.org/10.1007/s00285-003-0238-2
https://doi.org/10.1007/s00285-003-0238-2
https://doi.org/10.1007/s10237-008-0145-y


BIBLIOGRAPHY

[10] D. Ambrosi and L. Preziosi. “On the closure of mass balance models for5498

tumor growth”. In: Mathematical Models and Methods in Applied Sciences5499

12.05 (May 2002), pp. 737–754. doi: 10.1142/s0218202502001878.5500

[11] D. Ambrosi, L. Preziosi, and G. Vitale. “The insight of mixtures theory for5501

growth and remodeling”. In: Z. Angew. Math. Phys. 61 (2010), pp. 177–191.5502

doi: 10.1007/s00033-009-0037-8.5503

[12] D. Ambrosi, L. Preziosi, and G. Vitale. “The interplay between stress and5504

growth in solid tumors”. In: Mech. Res. Commun. 42 (2012), pp. 87–91. doi:5505

10.1016/j.mechrescom.2012.01.002.5506

[13] D. Ambrosi et al. “Perspectives on biological growth and remodeling”. In:5507

J. Mech. Phys. Solids 59(4) (2011), pp. 863–883. doi: 10.1016/j.jmps.5508

2010.12.011.5509

[14] D. Ambrosi et al. “Solid tumors are poroelastic solids with a chemo-mechani-5510

cal feedback on growth”. In: J. Elast. 129 (2017), pp. 107–124. doi: 10.1007/5511

s10659-016-9619-9.5512

[15] L. Anand, O. Aslan, and A. Chester. “A large-deformation gradient the-5513

ory for elastic-plastic materials: Strain softening and regularization of shear5514

bands”. In: International Journal of Plasticity 30–31 (2012), pp. 116–143.5515

doi: 10.1016/j.ijplas.2011.10.002.5516

[16] R. P. Araujo and D. L. McElwain. “A history of the study of solid tumour5517

growth: the contribution of mathematical modelling”. In: Bulletin of Math-5518

ematical Biology (May 2004). doi: 10.1016/s0092-8240(03)00126-5.5519

[17] G. A. Ateshian. “On the theory of reactive mixtures for modeling biological5520

growth”. In: Biomechanics and Modeling in Mechanobiology 6.6 (Jan. 2007),5521

pp. 423–445. doi: 10.1007/s10237-006-0070-x.5522

[18] G. A. Ateshian and J. D. Humphrey. “Continuum Mixture Models of Bio-5523

logical Growth and Remodeling: Past Successes and Future Opportunities”.5524

In: Annual Review of Biomedical Engineering 14.1 (Aug. 2012), pp. 97–111.5525

doi: 10.1146/annurev-bioeng-071910-124726.5526

[19] G. A. Ateshian and J. A. Weiss. “Anisotropic hydraulic permeability un-5527

der finite deformation”. In: J. Biomech. Engng. 132 (2010), pp. 111004-1–5528

111004-7. doi: 10.1115/1.4002588.5529

[20] J. L. Auriault, C. Boutin, and C. Geindreau. Homogenization of Coupled5530

Phenomena in Heterogenous Media. ISTE, Jan. 2009. doi: 10.1002/978047-5531

\\0612033.5532

[21] F. Baaijens, C. Bouten, and N. Driessen. “Modeling cartilage remodeling”.5533

In: J. Biomech. 43 (2010), pp. 166–175. doi: 10.1016/j.jbiomech.2009.5534

09.022.5535

196

https://doi.org/10.1142/s0218202502001878
https://doi.org/10.1007/s00033-009-0037-8
https://doi.org/10.1016/j.mechrescom.2012.01.002
https://doi.org/10.1016/j.jmps.2010.12.011
https://doi.org/10.1016/j.jmps.2010.12.011
https://doi.org/10.1016/j.jmps.2010.12.011
https://doi.org/10.1007/s10659-016-9619-9
https://doi.org/10.1007/s10659-016-9619-9
https://doi.org/10.1007/s10659-016-9619-9
https://doi.org/10.1016/j.ijplas.2011.10.002
https://doi.org/10.1016/s0092-8240(03)00126-5
https://doi.org/10.1007/s10237-006-0070-x
https://doi.org/10.1146/annurev-bioeng-071910-124726
https://doi.org/10.1115/1.4002588
https://doi.org/10.1002/978047-\\0612033
https://doi.org/10.1002/978047-\\0612033
https://doi.org/10.1002/978047-\\0612033
https://doi.org/10.1016/j.jbiomech.2009.09.022
https://doi.org/10.1016/j.jbiomech.2009.09.022
https://doi.org/10.1016/j.jbiomech.2009.09.022


BIBLIOGRAPHY

[22] N. M. Bachrach, V. C. Mow, and F. Guilak. “Incompressibility of the solid5536

matrix of articular cartilage under high hydrostatic pressures”. In: Journal5537

of Biomechanics 31 (1998), pp. 445–451. doi: 10.1016/S0021-9290(98)5538

00035-9.5539

[23] N. Bakhvalov and G. Panasenko. Homogenisation: Averaging Processes in5540

Periodic Media. Springer Netherlands, 1989. doi: 10.1007/978-94-009-5541

2247-1.5542

[24] A. D. Bazykin. Nonlinear dynamics of interacting populations. World Sci-5543

entific Publishing, Singapore New Jersey London Hong Kong, 1998. doi:5544

10.1142/2284.5545

[25] J. Bear and Y. Bachmat. Introduction to Modeling of Transport Phenomena5546

in Porous Media. Kluwer, Dordrecht, 1990. doi: 10.1007/978-94-009-5547

1926-6.5548

[26] N. Bellomo and L. Preziosi. “Modelling and mathematical problems related5549

to tumor evolution and its interaction with the immune system”. In: Math-5550

ematical and Computer Modelling 32.3-4 (Aug. 2000), pp. 413–452. doi:5551

10.1016/s0895-7177(00)00143-6.5552

[27] L. Schreyer Bennethum, M. A. Murad, and J. H. Cushman. “Macroscale5553

thermodynamics and the chemical potential for swelling porous media”. In:5554

Transport in Porous Media 39.2 (2000), pp. 187–225. doi: 10.1023/a:5555

1006661330427.5556

[28] A. Bensoussan, J. L. Lions, and G. Papanicolaou. Asymptotic Analysis for5557

Periodic Structures. AMS Chelsea Publishing, 1978. doi: 10 . 1115 / 1 .5558

3424588.5559

[29] Y. Benveniste. “A general interface model for a three-dimensional curved5560

thin anisotropic interphase between two anisotropic media”. In: Journal of5561

the Mechanics and Physics of Solids 54.4 (Apr. 2006), pp. 708–734. doi:5562

10.1016/j.jmps.2005.10.009.5563

[30] Y. Benveniste and T. Miloh. “Imperfect soft and stiff interfaces in two-5564

dimensional elasticity”. In: Mechanics of Materials 33.6 (June 2001), pp. 309–5565

323. doi: 10.1016/s0167-6636(01)00055-2.5566

[31] X. Bi et al. “A novel method for determination of collagen orientation in5567

cartilage by Fourier transform infrared imaging spectroscopy (FT-IRIS)”.5568

In: Osteoarthr. Cartil. 13 (2005), pp. 1050–1058. doi: 10.1016/j.joca.5569

2005.07.008.5570
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Fluids and Solids. Birkhäuser Basel, 1995, pp. 469–482. doi: 10.1007/978-5760

3-0348-9229-2_25.5761

[93] Y. C. Fung. “What are the residual stresses doing in our blood vessels?”5762

In: Annals of Biomedical Engineering 19.3 (May 1991), pp. 237–249. doi:5763

10.1007/bf02584301.5764

[94] W. Jones G and S. J. Chapman. “Modeling Growth in Biological Materials”.5765

In: SIAM Review 54.1 (Jan. 2012), pp. 52–118. doi: 10.1137/080731785.5766

[95] J. F. Ganghoffer. “A kinematically and thermodynamically consistent vol-5767

umetric growth model based on the stress-free configuration”. In: Interna-5768

tional Journal of Solids and Structures 50.20-21 (Oct. 2013), pp. 3446–3459.5769

doi: 10.1016/j.ijsolstr.2013.06.011.5770

[96] J. F. Ganghoffer. “On Eshelby tensors in the context of the thermodynamics5771

of open systems: application to volumetric growth”. In: International Jour-5772

nal of Engineering Science 48(12) (2010), pp. 2081–2098. doi: 10.1016/j.5773

ijengsci.2010.04.003.5774

[97] D. Garcia et al. “A three-dimensional elastic plastic damage constitutive law5775

for bone tissue”. In: Biomech. Model. Mechanobiol. 8(2) (2009), pp. 149–165.5776

doi: 10.1007/s10237-008-0125-2.5777

[98] K. Garikipati et al. “A continuum treatment of growth in biological tissue:5778

the coupling of mass transport and mechanics”. In: J. Mech. Phys. Solids5779

52 (2004), pp. 1595–1625. doi: 10.1016/j.jmps.2004.01.004.5780

[99] K. Garikipati et al. “Biological remodelling: Stationary energy, configura-5781

tional change, internal variables and dissipation”. In: Journal of the Me-5782

chanics and Physics of Solids 54 (2006), pp. 1493–1515. doi: 10.1016/j.5783

jmps.2005.11.011.5784

[100] T. C. Gasser, R. W. Ogden, and G. A. Holzapfel. “Hyperelastic modelling of5785

arterial layers with distributed collagen fibre orientations”. In: Journal of the5786

Royal Society Interface 3 (2006), pp. 15–35. doi: 10.1098/rsif.2005.0073.5787

[101] M. Gei, F. Genna, and D. Bigoni. “An Interface Model for the Periodontal5788

Ligament”. In: Journal of Biomechanical Engineering 124.5 (2002), p. 538.5789

doi: 10.1115/1.1502664.5790

[102] G. Giantesio, A. Musesti, and D. Riccobelli. “A Comparison Between Ac-5791

tive Strain and Active Stress in Transversely Isotropic Hyperelastic Materi-5792

als”. In: Journal of Elasticity 137.1 (Dec. 2018), pp. 63–82. doi: 10.1007/5793

s10659-018-9708-z.5794

203

https://doi.org/10.1007/978-3-0348-9229-2_25
https://doi.org/10.1007/978-3-0348-9229-2_25
https://doi.org/10.1007/978-3-0348-9229-2_25
https://doi.org/10.1007/bf02584301
https://doi.org/10.1137/080731785
https://doi.org/10.1016/j.ijsolstr.2013.06.011
https://doi.org/10.1016/j.ijengsci.2010.04.003
https://doi.org/10.1016/j.ijengsci.2010.04.003
https://doi.org/10.1016/j.ijengsci.2010.04.003
https://doi.org/10.1007/s10237-008-0125-2
https://doi.org/10.1016/j.jmps.2004.01.004
https://doi.org/10.1016/j.jmps.2005.11.011
https://doi.org/10.1016/j.jmps.2005.11.011
https://doi.org/10.1016/j.jmps.2005.11.011
https://doi.org/10.1098/rsif.2005.0073
https://doi.org/10.1115/1.1502664
https://doi.org/10.1007/s10659-018-9708-z
https://doi.org/10.1007/s10659-018-9708-z
https://doi.org/10.1007/s10659-018-9708-z


BIBLIOGRAPHY

[103] Thomas Gibson and W. Brian Davis. “The distortion of autogenous cartilage5795

grafts: Its cause and prevention”. In: British Journal of Plastic Surgery 105796

(1957), pp. 257–274. doi: 10.1016/s0007-1226(57)80042-3.5797

[104] C. Giverso and L. Preziosi. “Modelling the compression and reorganization5798

of cell aggregates”. In: Math. Med. Biol. 29(2) (2012), pp. 181–204. doi:5799

10.1093/imammb/dqr008.5800

[105] C. Giverso, M. Scianna, and A. Grillo. “Growing avascular tumours as elasto-5801

plastic bodies by the theory of evolving natural configurations”. In: Mech.5802

Res. Commun. 68 (2015), pp. 31–39. doi: http://dx.doi.org/10.1016/5803

j.mechrescom.2015.04.004.5804

[106] A. Goriely. The Mathematics and Mechanics of Biological Growth. Springer5805

New York, 2016. doi: 10.1007/978-0-387-87710-5.5806

[107] A. Grillo, M. Carfagna, and S. Federico. “An Allen–Cahn approach to the5807

remodelling of fibre-reinforced anisotropic materials”. In: Journal of Engi-5808

neering Mathematics 109.1 (Apr. 2018), pp. 139–172. issn: 1573-2703. doi:5809

10.1007/s10665-017-9940-8.5810

[108] A. Grillo, M. Carfagna, and S. Federico. “Non-Darcian flow in fibre-reinforced5811

biological tissues”. In: Meccanica 52 (2017), pp. 3299–3320. doi: 10.1007/5812

s11012-017-0679-0.5813

[109] A. Grillo, M. Carfagna, and S. Federico. “The Darcy-Forchheimer law for5814

modelling fluid flow in biological tissues”. In: Theoret. Appl. Mech. TEOPM75815

41(4) (2014), pp. 283–322. doi: 10.2298/TAM1404281G.5816

[110] A. Grillo, S. Federico, and G. Wittum. “Growth, mass transfer, and re-5817

modeling in fiber-reinforced, multi-constituent materials”. In: International5818

Journal of Non-Linear Mechanics 47 (2012), pp. 388–401. doi: 10.1016/j.5819

ijnonlinmec.2011.09.026.5820

[111] A. Grillo, R. Prohl, and G. Wittum. “A generalised algorithm for anelastic5821

processes in elastoplasticity and biomechanics”. In: Mathematics and Me-5822

chanics of Solids 22(3) (2017), pp. 502–527. doi: 10.1177/1081286515598-5823

661.5824

[112] A. Grillo, R. Prohl, and G. Wittum. “A poroplastic model of structural5825

reorganisation in porous media of biomechanical interest”. In: Continuum5826

Mechanics and Thermodynamics 28 (2016), pp. 579–601. doi: 10.1007/5827

s00161-015-0465-y.5828

[113] A. Grillo, S. Di Stefano, and S. Federico. “Growth and remodelling from the5829

perspective of Noether’s theorem”. In: Mechanics Research Communications5830

97 (Apr. 2019), pp. 89–95. doi: 10.1016/j.mechrescom.2019.04.012.5831

204

https://doi.org/10.1016/s0007-1226(57)80042-3
https://doi.org/10.1093/imammb/dqr008
https://doi.org/http://dx.doi.org/10.1016/j.mechrescom.2015.04.004
https://doi.org/http://dx.doi.org/10.1016/j.mechrescom.2015.04.004
https://doi.org/http://dx.doi.org/10.1016/j.mechrescom.2015.04.004
https://doi.org/10.1007/978-0-387-87710-5
https://doi.org/10.1007/s10665-017-9940-8
https://doi.org/10.1007/s11012-017-0679-0
https://doi.org/10.1007/s11012-017-0679-0
https://doi.org/10.1007/s11012-017-0679-0
https://doi.org/10.2298/TAM1404281G
https://doi.org/10.1016/j.ijnonlinmec.2011.09.026
https://doi.org/10.1016/j.ijnonlinmec.2011.09.026
https://doi.org/10.1016/j.ijnonlinmec.2011.09.026
https://doi.org/10.1177/1081286515598- 661
https://doi.org/10.1177/1081286515598- 661
https://doi.org/10.1177/1081286515598- 661
https://doi.org/10.1007/s00161-015-0465-y
https://doi.org/10.1007/s00161-015-0465-y
https://doi.org/10.1007/s00161-015-0465-y
https://doi.org/10.1016/j.mechrescom.2019.04.012


BIBLIOGRAPHY

[114] A. Grillo et al. “A study of growth and remodeling in isotropic tissues,5832

based on the Anand-Aslan-Chester theory of strain-gradient plasticity”. In:5833

GAMM-Mitteilungen (May 2019), e201900015. doi: 10.1002/gamm.201900-5834

15.5835

[115] A. Grillo et al. “Mass transport in porous media with variable mass”. In:5836

Numerical Analysis of Heat and Mass Transfer in Porous Media. Ed. by5837

J. M. P. Q. Delgado et al. Berlin, Heidelberg, Germany: Springer-Verlag,5838

2012, pp. 27–61. doi: 10.1007/978-3-642-30532-0-2.5839

[116] A. Grillo et al. “Remodelling in statistically oriented fibre-reinforced mate-5840

rials and biological tissues”. In: Math. Mech. Solids 20(9) (2015), pp. 1107–5841

1129. doi: 10.1177/1081286513515265.5842

[117] A. Grillo et al. “Restoration of the symmetries broken by reversible growth5843

in hyperelastic bodies”. In: Theoret. Appl. Mech. 30(4) (2003), pp. 311–331.5844

doi: 10.2298/TAM0304311G.5845

[118] M. Grynpas. “Age and disease-related changes in the mineral of bone”. In:5846

Calcified Tissue International 53.S1 (Feb. 1993), S57–S64. doi: 10.1007/5847

bf01673403.5848

[119] A. Guerra et al. “Phase transitions in tumor growth VI: Epithelial–Mesenchy-5849

mal transition”. In: Physica A: Statistical Mechanics and its Applications 4995850

(June 2018), pp. 208–215. doi: 10.1016/j.physa.2018.01.040.5851

[120] A. Guillou and R. W. Ogden. “Growth in Soft Biological Tissue and Residual5852

Stress Development”. In: Mechanics of Biological Tissue. Springer-Verlag,5853

2006, pp. 47–62. doi: 10.1007/3-540-31184-x_4.5854

[121] R. Guinovart-Dı́az et al. “Effective elastic properties of a periodic fiber rein-5855

forced composite with parallelogram-like arrangement of fibers and imperfect5856

contact between matrix and fibers”. In: International Journal of Solids and5857

Structures 50.13 (June 2013), pp. 2022–2032. doi: 10.1016/j.ijsolstr.5858

2013.02.019.5859

[122] M. E. Gurtin. “Generalized Ginzburg-Landau and Cahn-Hilliard equations5860

based on a microforce balance”. In: Physica D 92 (1994), pp. 178–192. doi:5861

10.1016/0167-2789(95)00173-5.5862

[123] M. E. Gurtin and L. Anand. “A theory of strain-gradient plasticity for iso-5863

tropic, plastically irrotational materials. Part II: Finite deformations”. In:5864

International Journal of Plasticity 21 (2005), pp. 2297–2318. doi: 10.1016/5865

j.ijplas.2005.01.006.5866

[124] M. E. Gurtin, E. Fried, and L. Anand. The Mechanics and Thermody-5867

namics of Continua. Cambridge University Press, 2010. doi: 10 . 1017 /5868

CBO9780511762956.5869

205

https://doi.org/10.1002/gamm.201900- 15
https://doi.org/10.1002/gamm.201900- 15
https://doi.org/10.1002/gamm.201900- 15
https://doi.org/10.1007/978-3-642-30532-0-2
https://doi.org/10.1177/1081286513515265
https://doi.org/10.2298/TAM0304311G
https://doi.org/10.1007/bf01673403
https://doi.org/10.1007/bf01673403
https://doi.org/10.1007/bf01673403
https://doi.org/10.1016/j.physa.2018.01.040
https://doi.org/10.1007/3-540-31184-x_4
https://doi.org/10.1016/j.ijsolstr.2013.02.019
https://doi.org/10.1016/j.ijsolstr.2013.02.019
https://doi.org/10.1016/j.ijsolstr.2013.02.019
https://doi.org/10.1016/0167-2789(95)00173-5
https://doi.org/10.1016/j.ijplas.2005.01.006
https://doi.org/10.1016/j.ijplas.2005.01.006
https://doi.org/10.1016/j.ijplas.2005.01.006
https://doi.org/10.1017/CBO9780511762956
https://doi.org/10.1017/CBO9780511762956
https://doi.org/10.1017/CBO9780511762956


BIBLIOGRAPHY

[125] D. A. Hammer and M. Tirrell. “Biological Adhesion at Interfaces”. In: An-5870

nual Review of Materials Science 26.1 (Aug. 1996), pp. 651–691. doi: 10.5871

1146/annurev.ms.26.080196.003251.5872

[126] R. H. Hardin and N. J. A. Sloane. “McLaren’s improved Snub cube and other5873

new spherical designs in three dimensions”. In: Discrete Comput. Geom. 155874

(1996), pp. 429–441. doi: 10.1007/BF02711518.5875

[127] I. Hariton et al. “Stress-driven collagen fiber remodeling in arterial walls”.5876

In: Biomech. Model. Mechanobiol. 6(3) (2007), pp. 163–175. doi: 10.1007/5877

s10237-006-0049-7.5878

[128] Z. Hashin. “Thermoelastic properties of fiber composites with imperfect5879

interface”. In: Mechanics of Materials 8.4 (Feb. 1990), pp. 333–348. doi:5880

10.1016/0167-6636(90)90051-g.5881

[129] Z. Hashin. “Thin interphase/imperfect interface in elasticity with application5882

to coated fiber composites”. In: Journal of the Mechanics and Physics of5883

Solids 50.12 (Dec. 2002), pp. 2509–2537. doi: 10.1016/s0022-5096(02)5884

00050-9.5885

[130] K. Hashlamoun and S. Federico. “Transversely isotropic higher-order aver-5886

aged structure tensors”. In: Z. Angew. Math. Phys. 68(4) (2017), pp. 113–5887

145. doi: 10.1007/s00033-017-0830-8.5888

[131] K. Hashlamoun, A. Grillo, and S. Federico. “Efficient evaluation of the ma-5889

terial response of tissues reinforced by statistically oriented fibres”. In: Z.5890

Angew. Math. Phys. 67 (2016), pp. 113–145. doi: 10.1007/s10237-006-5891

0049-7.5892

[132] S. M. Hassanizadeh. “Derivation of basic equations of mass Transp. Porous5893

Med., Part 2. Generalized Darcy’s and Fick’s laws”. In: Adv. Water Resour.5894

9 (1986), pp. 207–222. doi: 10.1016/0309-1708(86)90025-4.5895

[133] P. Haupt. Continuum Mechanics and Theory of Materials. Springer, 2000.5896

doi: 10.1007/978-3-662-04775-0.5897

[134] H. Hedlund et al. “Stereologic studies on collagen in bovine articular carti-5898

lage”. In: APMIS 101.1-6 (Jan. 1993), pp. 133–140. doi: 10.1111/j.1699-5899

0463.1993.tb00092.x.5900

[135] G. Helmlinger et al. “Solid stress inhibits the growth of multicellular tumor5901

spheroids”. In: Nature Biotechnology 15.8 (Aug. 1997), pp. 778–783. doi:5902

10.1038/nbt0897-778.5903

[136] E. L. Hill. “Hamilton’s principle and the conservation theorems of mathe-5904

matical physics”. In: Reviews of Modern Physics 23(3) (1951), pp. 253–260.5905

doi: 10.1103/RevModPhys.23.253.5906

206

https://doi.org/10.1146/annurev.ms.26.080196.003251
https://doi.org/10.1146/annurev.ms.26.080196.003251
https://doi.org/10.1146/annurev.ms.26.080196.003251
https://doi.org/10.1007/BF02711518
https://doi.org/10.1007/s10237-006-0049-7
https://doi.org/10.1007/s10237-006-0049-7
https://doi.org/10.1007/s10237-006-0049-7
https://doi.org/10.1016/0167-6636(90)90051-g
https://doi.org/10.1016/s0022-5096(02)00050-9
https://doi.org/10.1016/s0022-5096(02)00050-9
https://doi.org/10.1016/s0022-5096(02)00050-9
https://doi.org/10.1007/s00033-017-0830-8
https://doi.org/10.1007/s10237-006-0049-7
https://doi.org/10.1007/s10237-006-0049-7
https://doi.org/10.1007/s10237-006-0049-7
https://doi.org/10.1016/0309-1708(86)90025-4
https://doi.org/10.1007/978-3-662-04775-0
https://doi.org/10.1111/j.1699-0463.1993.tb00092.x
https://doi.org/10.1111/j.1699-0463.1993.tb00092.x
https://doi.org/10.1111/j.1699-0463.1993.tb00092.x
https://doi.org/10.1038/nbt0897-778
https://doi.org/10.1103/RevModPhys.23.253


BIBLIOGRAPHY

[137] M. H. Holmes. Introduction to perturbation methods. Ed. by New York.5907

Springer Science & Business Media Springer-Verlag. 1995. doi: 10.1007/5908

978-1-4614-5477-9.5909

[138] M. H. Holmes and V. C. Mow. “The nonlinear characteristics of soft gels and5910

hydrated connective tissues in ultrafiltration.” In: Journal of biomechanics5911

23 (11 1990), pp. 1145–1156. issn: 0021-9290. doi: 10.1016/0021-9290(90)5912

90007-P.5913

[139] G. A. Holzapfel, T. C. Gasser, and R. W. Ogden. “A new constitutive frame-5914

work for arterial wall mechanics and a comparative study of material mod-5915

els”. In: J. Elast. 61(1-3) (2000), pp. 1–48. doi: 10.1023/A:1010835316564.5916

[140] G. A. Holzapfel and R. W. Ogden. “On Fiber Dispersion Models: Exclusion5917

of Compressed Fibers and Spurious Model Comparisons”. In: J. Elast. 129(1-5918

2) (2017), pp. 49–68. doi: 10.1007/s10659-016-9605-2.5919

[141] M. Hori and S. Nemat-Nasser. “On two micromechanics theories for de-5920

termining micro–macro relations in heterogeneous solids”. In: Mechanics of5921

Materials 31.10 (Oct. 1999), pp. 667–682. doi: 10.1016/s0167-6636(99)5922

00020-4.5923

[142] J. D. Humphrey. “Towards a Theory of Vascular Growth and Remodeling”.5924

In: Mechanics of Biological Tissue. Ed. by Holzapfel G.A. and Ogden R.W.5925

Springer-Verlag, 2006, pp. 3–15. doi: 10.1007/3-540-31184-x_1.5926

[143] J. M. Huyghe, R. Van Loon, and F.T.P. Baaijens. “Fluid-solid mixtures and5927

electrochemomechanics: the simplicity of Lagrangian mixture theory”. In:5928

Clinics 23.2-3 (Dec. 2004). doi: 10.1590/s1807-03022004000200008.5929

[144] R. K. Jain, J. D. Martin, and T. Stylianopoulos. “The role of mechanical5930

forces in tumor growth and therapy”. In: Annual Review of Biomedical En-5931

gineering 16 (2014), pp. 321–346. doi: 10.1146/annurev-bioeng-071813-5932

105259.5933

[145] A. Javili, P. Steinmann, and E. Kuhl. “A novel strategy to identify the5934

critical conditions for growth-induced instabilities”. In: Journal of the Me-5935

chanical Behavior of Biomedical Materials 29 (Jan. 2014), pp. 20–32. doi:5936

10.1016/j.jmbbm.2013.08.017.5937

[146] A. R. A. Khaled and K. Vafai. “The role of porous media in modeling flow5938

and heat transfer in biological tissues”. In: International Journal of Heat5939

and Mass Transfer 46.26 (Dec. 2003), pp. 4989–5003. doi: 10.1016/s0017-5940

9310(03)00301-6.5941

[147] A. Klarbring, T. Olsson, and J. St̊alhand. “Theory of residual stresses with5942

application to an arterial geometry”. In: Arch. Mech. 59(4–5) (2007), pp. 341–5943

364.5944

207

https://doi.org/10.1007/978-1-4614-5477-9
https://doi.org/10.1007/978-1-4614-5477-9
https://doi.org/10.1007/978-1-4614-5477-9
https://doi.org/10.1016/0021-9290(90)90007-P
https://doi.org/10.1016/0021-9290(90)90007-P
https://doi.org/10.1016/0021-9290(90)90007-P
https://doi.org/10.1023/A:1010835316564
https://doi.org/10.1007/s10659-016-9605-2
https://doi.org/10.1016/s0167-6636(99)00020-4
https://doi.org/10.1016/s0167-6636(99)00020-4
https://doi.org/10.1016/s0167-6636(99)00020-4
https://doi.org/10.1007/3-540-31184-x_1
https://doi.org/10.1590/s1807-03022004000200008
https://doi.org/10.1146/annurev-bioeng-071813-105259
https://doi.org/10.1146/annurev-bioeng-071813-105259
https://doi.org/10.1146/annurev-bioeng-071813-105259
https://doi.org/10.1016/j.jmbbm.2013.08.017
https://doi.org/10.1016/s0017-9310(03)00301-6
https://doi.org/10.1016/s0017-9310(03)00301-6
https://doi.org/10.1016/s0017-9310(03)00301-6


BIBLIOGRAPHY
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and homogenized constitutive law of large deforming fluid saturated hetero-6142

geneous solids”. In: Computers & Structures 84.17-18 (June 2006), pp. 1095–6143

1114. doi: 10.1016/j.compstruc.2006.01.008.6144

[212] T. Roose, S. J. Chapman, and P. K. Maini. “Mathematical Models of Avas-6145

cular Tumor Growth”. In: SIAM Review 49.2 (Jan. 2007), pp. 179–208. doi:6146

10.1137/s0036144504446291.6147

[213] S. Sadik and A. Yavari. “On the origins of the idea of the multiplicative6148

decomposition of the deformation gradient”. In: Mathematics and Mechanics6149

of Solids 22.4 (Oct. 2017), pp. 771–772. doi: 10.1177/1081286515612280.6150

[214] E. Sanchez-Palencia. “Non-homogeneous media and vibration theory”. In:6151

Lecture Notes in Physics, 127. Springer-Verlag, Berlin, 1980. doi: 10.1007/6152

3-540-10000-8.6153

[215] G. Sciarra, G. A. Maugin, and K. Hutter. “A variational approach to a micro-6154

structured theory of solid-fluid mixtures”. In: Archive of Applied Mechanics6155

73 (2003), pp. 194–224. doi: 10.1007/s00419-003-0279-4.6156
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